
Programtning with Xlib

Version 11, Release 3

HP 9000 Series 300/800 Computers

HP Part Number 98794-90002

rliDW HEWLETT
~~ PACKARD

Hewlett-Packard Company
1000 NE Circle Blvd., Corvallis OR 97330

NOTICE

The information contained in this document is subject to change without notice.

HEWLEIT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. He.vlett-Packard shall not be liable

for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,

or use of this material.

e Copyright 1989, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be

photocopied, reproduced or translated to another language without the prior written consent of He.vlett-Packard Company, except as provided
below. The information contained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is SUbject to restrictions as set forth in paragraph (b)(3)(B) of the Rights in Technical Data and

Software clause in DAR 7-104(a).

Copyright 1985, 1986, 1987, 1988, Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital Equipment Corporation,

Maynard, Massachusetts.

Parts of this software and documentation are based in part on software and documentation developed and distributed by Massachusetts Institute

of Technology. Permission to use, copy, modify, and distribute only those parts provided by M.I.T. for any purpose and without fee is hereby

granted, provided that the above copyright notices appear in all copies and that those copyright notices and this permission notice appear in

supporting documentation, and that the names of M.I.T. and Digital not be used in advertiSing or publicity pertaining to distribution of the software

without specific, written prior permission.

UNIX is a trademark of AT&T.

OSF /Motif is a trademark of the Open Software Foundation, Inc.

Certification for conformance with OSF /Motif user environment is pending.

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number changes
when extensive technical changes are incorporated.

July 1988 ... Edition 1
December 1988 ... Edition 2
September 1989 ... Edition 3

Contents

1
1.1
1.2
1.3
1.4
1.5

2
2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.4
2.5
2.6

3
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Introduction to X1ib .. .
Overview of the X Window System
Errors
Naming and Argument Conventions within Xlib
Programming Considerations
Conventions Used in This Manual

Display Functions .. .
Opening the Display .. .
Obtaining Information about the Display, Image Formats, or Screens

Display Macros .. .
Image Format Macros
Screen Information Macros .. .

Generating a NoOperation Protocol Request
Freeing Client-Created Data .. .
Closing the Display .. .
X Server Connection Close Operations

Window Functions
Visual1'ypes .. .
Window Attributes

Background Attribute .. .
Border Attribute
Gravity Attributes
Backing Store Attribute
Save Under Flag
Backing Planes and Backing Pixel Attributes
Event Mask and Do Not Propagate Mask Attributes
Override Redirect Flag .. .
Colormap Attribute
Cursor Attribute

Creating Windows .. .
Destroying Windows .. .
Mapping Windows .. .
Unmapping Windows .. .
Configuring Windows .. .
Changing Window Stacking Order
Changing Window Attributes

1-1
1-2
1-4
1-4
1-5
1-6

2-1
2-1
2-3
2-3
2-8

2-10
2-13
2-13
2-14
2-14

3-1
3-2
3-4
3-7
3-8
3-9

3-10
3-10
3-11
3-11
3-11
3-12
3-12
3-12
3-16
3-17
3-19
3-20
3-25
3-28

Contents 1

3.10 Translating Window Coordinates .. 3-32

4
4.1
4.2
4.3
4.4

5
5.1
5.1.1
5.1.2
5.1.3
5.2
5.3
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7

6
6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.4.1
6.4.2
6.4.3
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6

Window Information Functions
Obtaining Window Information
Properties and Atoms .. .
Obtaining and Changing Window Properties
Selections

Graphics Resource Functions .. .
Colormap Functions

Creating, Copying, and Destroying Colormaps .. .
Allocating, Modifying, and Freeing Color Cells
Reading Entries in a Colormap .. .

Creating and Freeing Pixmaps .. .
Manipulating Graphics Context/State .. .
Using GC Convenience Routines .. .

Setting the Foreground, Background, Function, or Plane Mask
Setting the Line Attributes and Dashes .. .
Setting the Fill Style and Fill Rule .. .
Setting the Fill '"file and Stipple
Setting the Current Font .. .
Setting the Clip Region
Setting the Arc Mode, Subwindow Mode, and Graphics Exposure

Graphics Functions
Clearing Areas .. .
Copying Areas .. .
Drawing Points, Lines, Rectangles, and Arcs

Drawing Single and Multiple Points .. .
Drawing Single and Multiple Lines
Drawing Single and Multiple Rectangles
Drawing Single and Multiple Arcs

Filling Areas .. .
Filling Single and Multiple Rectangles
Filling a Single Polygon
Filling Single and Multiple Arcs

Font Metrics .. .
Loading and Freeing Fonts
Obtaining and Freeing Font Names and Information
Setting and Retrieving the Font Search Path .. .
Computing Character String Sizes-
Com puting Logical Extents
Querying Character String Sizes .. .

2 Contents

4-1
4-1
4-6
4-9

4-14

5-1
5-2
5-4
5-6

5-13
5-14
5-15
5-26
5-27
5-28
5-30
5-31
5-34
5-34
5-36

6-1
6-1
6-3
6-5
6-6
6-7
6-9

6-10
6-12
6-13
6-14
6-15
6-17
6-23
6-25
6-27
6-28
6-29
6-30

6.6
6.6.1
6.6.2
6.6.3
6.7
6.8
6.8.1
6.8.2
6.8.3

7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.7.1
7.7.2
7.8
7.9
7.10
7.11
7.11.1
7.11.2

8
8.1
8.2
8.3
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
8.4.9
8.5
8.6

Drawing Text
Drawing Complex Text .. .
Drawing Text Characters
Drawing Image Text Characters

Transferring Images between Client and Server .. .
Cursors

Creating a Cursor
Changing and Destroying Cursors
Defining the Cursor

Window Manager Functions .. .
Changing the Parent of a Window
Controlling the Lifetime of a Window
Determining Resident Colormaps
Pointer Grabbing
Keyboard Grabbing .. .
Server Grabbing .. .
Miscellaneous Control Functions

Controlling Input Focus
Killing Clients

Keyboard and Pointer Settings
Keyboard Encoding .. .
Screen Saver Control
Controlling Host Access .. .

Adding, Getting, or Removing Hosts
Changing, Enabling, or Disabling Access Control

Events and Event-Handling Functions
Event 'JYpes
Event Structures
Event Masks .. .
Event Processing .. .

Keyboard and Pointer Events
Window Entry/Exit Events
Input Focus Events
Key Map State Notification Events
Exposure Events
Window State Change Events
Structure Control Events
Colormap State Change Events
Client Communication Events .. .

Selecting Events .. .
Handling the Output Buffer

6-32
6-33
6-35
6-36
6-38
6-42
6-43
6-45
6-46

7-1
7-1
7-2
7-4
7-5

7-12
7-18
7-19
7-19
7-21
7-22
7-28
7-34
7-37
7-37
7-39

8-1
8-2
8-3
8-5
8-7
8-9

8-14
8-18
8-23
8-24
8-26
8-35
8-38
8-39
8-43
8-44

Contents 3

8.7
8.8
8.8.1
8.8.2
8.8.3
8.9
8.10
8.11
8.12
8.12.1
8.12.2

9
9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.7
9.1.8
9.1.9
9.2
9.2.1
9.2.2
9.2.3

10
10.1
10.1.1
10.1.2
10.2
10.3
10.4
10.5
10.6
10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.7

Event Queue Management
Manipulating the Event Queue .. .

Returning the Next Event
Selecting Events Using a Predicate Procedure
Selecting Events Using a Window or Event Mask

Putting an Event Back into the Queue
Sending Events to Other Applications
Getting Pointer Motion History
Handling Error Events .. .

Enabling or Disabling Synchronization
Using the Default Error Handlers

Predefined Property Functions .. .
Communicating with Window Managers

Setting Standard Properties .. .
Setting and Getting Window Names .. .
Setting and Getting Icon Names .. .
Setting the Command .. .
Setting and Getting Window Manager Hints
Setting and Getting Window Sizing Hints
Setting and Getting Icon Size Hints
Setting and Getting the Class of a Window .. .
Setting and Getting the Transient Property .. .

Manipulating Standard Colormaps .. .
Standard Colormaps .. .
Standard Colormap Properties and Atoms
Getting and Setting an XStandardColormap Structure

8-45
8-46
8-46
8-47
8-49
8-52
8-53
8-54
8-55
8-56
8-57

9-1
9-1
9-4
9-5
9-6
9-7
9-7
9-9

9-13
9-15
9-16
9-17
9-18
9-19
9-21

Application Utility Functions .. 10-1
Keyboard Utility Functions .. 10-1

Keyboard Event Functions ... 10-2
Keysym Classification Macros ... 10-5

Obtaining the X Environment Defaults ... 10-6
Parsing the Window Geometry ... 10-7
Parsing the Color Specifications ... 10-9
Generating Regions ... 10-10
Manipulating Regions ... 10-10

Creating, Copying, or Destroying Regions .. 10-11
Moving or Shrinking Regions .. 10-11
Computing with Regions .. 10-12
Determining if Regions Are Empty or Equal ... 10-13
Locating a Point or a Rectangle in a Region ... 10-14

Using the Cut and Paste Buffers ... 10-15

4 Contents

10.8
10.9
10.10
10.11
10.11.1
10.11.2
10.11.3
10.11.4
10.12

A

B

Determining the Appropriate Visual Type .. 10-17
Manipulating Images .. 10-19
Manipulating Bitmaps .. 10-22
Using the Resource Manager .. 10-26

Resource Manager Matching Rules ... 10-27
Basic Resource Manager Definitions ... 10-28
Resource Database Access .. 10-31
Parsing Command Line Options ... 10-38

U sing the Context Manager ... 10-40

Xlib Functions and Protocol Requests .. A-I

X1ib Font Cursors ... B-1

C Extensions .. C-1
C.1 Basic Protocol Support Routines .. C-1
C.2 Hooking into Xlib .. C-2
C.3 Hooks into the Library C-3
C.4 Hooks onto Xlib Data Structures .. C-9
C.S GC Caching .. C-10
C.6 Graphics Batching ... C-11
C.7 Writing Extension Stubs ... C-13
C.8 Requests, Replies, and Xproto.h ... C-13
C.9 Request Format ... C-13
C.10 Starting to Write a Stub Routine ... C-15
C.11 Locking Data Structures ... C-16
C.12 Sending the Protocol Request and Arguments ... C-16
C.13 Variable Length Arguments ... C-17
C.14 Replies .. C-18
C.1S Synchronous Calling ~ ... C-21
C.16 Allocating and Deallocating Memory ... C-21
C.17 Portability Considerations .. C-22
C.18 Deriving the Correct Extension Opcode .. C-22

D Version 10 Compatibility Functions ... D-1
D.1 Drawing and Filling Polygons and Curves ... D-1
D.2 Associating User Data with a Value ... D-4

Contents 5

E
E.l
E.l.l
E.l.2
E.l.3
E.l.4
E.l.5
E.l.6
E.l.7
E.l.8
E.l.9
E.l.10
E.l.l1
E.l.12
E.l.13
E.l.14
E.l.15
E.l.16
E.l.17
E.l.18
E.l.19
E.1.20
E.l.21
E.1.22
E.l.23
E.l.24
E.l.25
E.l.26
E.1.27
E.2
E.2.1
E.2.2
E.2.3
E.2.4
E.2.5
E.3
E.3.1
E.3.2
E.3.3
E.3.4
E.4
E.4.1
E.4.2

UP Extensions ... E-l
Input Device Extensions ... E-l

Programming with Extended Input ... E-2
Listing Available Devices ... E-2
Freeing the DeviceList .. E-3
Enabling Extended Input Devices ... E-4
Getting the Event Select Mask and Event Type .. E-4
Selecting Input From Extended Input Devices ... E-6
Grabbing Extended Input Devices .. E-7
Ungrabbing Extended Input Devices ... E-8
Grabbing Extended Input Device Buttons ... E-9
Ungrabbing Extended Input Device Buttons .. E-I0
Grabbing Extended Input Device Keys .. E-ll
Ungrabbing Extended Input Device Keys .. E-12
Getting Extended Input Device Focus ... E-13
Setting Extended Input Device Focus ... E-13
Getting Current Extended Input Event Selection Masks E-15
Getting Extended Device Motion History.. E-15
Enabling Auto-Repeat for Extended Input Devices ; E-16
Disabling Auto-Repeat for Extended Input Devices E-17
Sending a Prompt to Extended Input Devices ... E-17
Sending an Acknowledge to Extended Input Devices E-18
Getting Control Attributes of Extended Input Devices E-18
Setting Control Attributes of Extended Input Devices E-19
Getting the Key Mapping of Extended Input Devices E-21
Changing the Key Mapping of Extended Input Devices E-22
Setting the Modifier Mapping of Extended Input Devices E-23
Getting the Modifier Mapping of Extended Input Devices E-24
Getting the Server Mode .. E-25

Image Input/Output Library Functions ... E-25
Saving the Contents of a Window ... E-26
Saving a Pixmap .. E-27
Displaying a Stored Image ... E-27
Displaying a Stored Pixmap ... E-29
Getting the Image File Header Structure .. E-29

National Language I/O Support ... E-32
Xlib Support ... E-32
Getting the Associate Font ... E-34
Checking for 16-bit Characters .. E-34
Conversions Between XII Keysyms and HP Roman 8 codes E-34

Locking an X Display .. E-35
Disabling the Reset Key Sequence. .. E-35
Enabling the Reset Key Sequence. ... E-36

6 Contents

E.5 Support for Multiple Error Handlers ... E-36

F HP Window Manager Programmatic Interface ... F-l
F.l Window Management Calls ... F-l
F.2 Creating a Top-Level Window... F-3
F.2.1 Client Properties .. F-3
F.3 Window Manager Properties ... F-7
F.4 Client Responses to Window Manager Actions .. F-8
F.4.1 Redirection of Operations ... F-8
F.4.2 Window Configuration ... F-8
F.4.3 (De)Iconify ... F-9
F.4.4 Colormap Change ... F-9
F.4.5 InputFocus .. F-9
F.4.6 ClientMessage Events ... F-9

G
G.1
G.2
G.3

H
H.1
H.2
H.2.1
H.2.2
H.3
H.3.1
H.3.2

Example Programs ... G-l
A Simple Example ... G-l
Getting Input From an Extended Input Device .. G-5
U sing Image and Overlay Planes G-13

HP OSF/MotifWindow Manager Programmatic Interface H-l
MWM Programmatic Interface Standards H-l
Inter-Client Communication Conventions ... H-l

Programming Client Actions ... H-2
Client Responses to MWM Actions ... H-7

MWM Specific Information ... H-7
MOTIF WM HINTS ... H-7 - --

Window Management Calls ... H-12

I Fortran Bindings .. 1-1
1.1 Translating C types to Fortran ... 1-1
1.2 Creating an Xll Object .. 1-2
1.2.1 XfCreate 1-2
1.2.2 Xfpack ... 1-2
1.2.3 XfUnpack ... 1-2
1.2.4 Examples .. 1-2
1.3 Managing Objects ... 1-2
1.3.1 XfInsert ... 1-2
1.3.2 XfExtract .. 1-2
1.3.3 XfValue ... 1-2
1.3.4 XfAttach ... 1-2
1.3.5 XfDetach .. 1-2
1.3.6 XfSync ... 1-2

Contents 7

1.4 Releasing an Object .. 1-7
1.4.1 Example .. 1-7
1.5 Extending the Fortran Bindings 1-8
1.6 FORTRAN/X Program Examples ... 1-12

J Glossary .. J-1

8 Contents

Introduction to Xlib 1
The X Window System is a network-transparent window system that was designed at MIT.
It runs under 4.3BSD UNIX, ULTRIX-32, many other UNIX variants, VAX/VMS,
MS /DOS, as well as several other operating systems.

X display servers run on computers with either monochrome or color bitmap display
hardware. The server distributes user input to and accepts output requests from various
client programs located either on the same machine or elsewhere in the network. Xlib is a
C subroutine library that application programs (clients) use to interface with the window
system by means of a stream connection. Although a client usually runs on the same
machine as the X server it is talking to, this need not be the case.

This manual is a reference guide to the low-level C language interface to the X Window
System protocol. It is neither a tutorial nor a user's guide to programming the X Window
System. Rather, it provides a detailed description of each function in the library as well as
a discussion of the related background information. This manual assumes a basic
understanding of a graphics window system and of the C programming language. Other
higher-level abstractions (for example, those provided by the toolkits for X) are built on
top of the Xlib library. For further information about these higher-level libraries, see the
appropriate toolkit documentation. The X Window System Protocol provides the definitive
word on the behavior of X. Although additional information appears here, the protocol
document is the ruling document.

To provide an introduction to X programming, this chapter discusses:

• Overview of the X Window System

• Errors

• Naming and argument conventions

• Programming considerations

• Conventions used in this document

Introduction to Xlib 1 -1

1.1 Overview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are common to
other window systems have different meanings in X. You may find it helpful to refer to the
glossary, which is located at the end of the book.

The X Window System supports one or more screens containing overlapping windows or
subwindows. A screen is a physical monitor and hardware, which can be either color or
black and white. There can be multiple screens for each display or workstation. A single
X server can provide display services for any number of screens. A set of screens for a
single user with one keyboard and one pointer (usually a mouse) is called a display.

All the windows in an X server are arranged in strict hierarchies. At the top of each
hierarchy is a root window, which covers each of the display screens. Each root window is
partially or completely covered by child windows. All windows, except for root windows,
have parents. There is usually at least one window for each application program. Child
windows· may in turn have their own children. In this way, an application program can
create an arbitrarily deep tree on each screen. X provides graphics, text, and raster
operations for windows.

A child window can be larger than its parent. That is, part or all of the child window can
extend beyond the boundaries of the parent, but all output to a window is clipped by its
parent. If several children of a window have overlapping locations, one of the children is
considered to be on top of or raised over the others thus obscuring them. Output to areas
covered by other windows is suppressed by the window system unless the window has
backing store. If a window is obscured by a second window, the second window obscures
only those ancestors of the second window, which are also ancestors of the first window.

A window has a border zero or more pixels in width, which can be any pattern (pixmap) or
solid color you like. A window usually but not always has a background pattern, which will
be repainted by the window system when uncovered. Each window has its own coordinate
system. Child windows obscure their parents unless the child windows (of the same depth)
have no background, and graphic operations in the parent window usually are clipped by
the children.

X does not guarantee to preserve the contents of windows. When part or all of a window is
hidden and then brought back onto the screen, its contents may be lost. The server then
sends the client program an Expose event to notify it that part or all of the window needs
to be repainted. Programs must be prepared to regenerate the contents of windows on
demand.

1-2 Introduction to Xlib

X also provides off-screen storage of graphics objects, called pixmaps. Single plane (depth
1) pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most graphics
functions interchangeably with windows and are used in various graphics operations to
define patterns or tiles. Windows and pixmaps together are referred to as drawables.

Most of the functions in Xlib just add requests to an output buffer. These requests later
execute asynchronously on the X server. Functions that return values of information
stored in the server do not return (that is, they block) until an explicit reply is received or
an error occurs. You can provide an error handler, which will be called when the error is
reported.

If a client does not want a request to execute asynchronously, it can follow the request with
a call to XSync, which blocks until all previously buffered asynchronous events have been
sent and acted on. As an important side effect, the output buffer in Xlib is always flushed
by a call to any function that returns a value from the server or waits for input.

Many Xlib functions will return an integer resource ID, which allows you to refer to
objects stored on the X server. These can be of type Window, Font, Pixmap,
Colormap, Cursor, and GContext, as defined in the file < XlljX.h >. * These
resources are created by requests and are destroyed (or freed) by requests or when
connections are closed. Most of these resources are potentially sharable between
applications, and in fact, windows are manipulated explicitly by window manager
programs. Fonts and cursors are shared automatically across multiple screens. Fonts are
loaded and unloaded as needed and are shared by multiple clients. Fonts are often cached
in the server. Xlib provides no support for sharing graphics contexts between applications.

Client programs are informed of events. Events may either be side effects of a request (for
example, restacking windows generates Expose events) or completely asynchronous (for
example, from the keyboard). A client program asks to be informed of events. Because
other applications can send events to your application, programs must be prepared to
handle (or ignore) events of all types.

Input events (for example, a key pressed or the pointer moved) arrive asynchronously from
the server and are queued until they are requested by an explicit call (for example,
XNextEvent or XWindowEvent). In addition, some library functions (for example,
XRaiseWindow) generate Expose and ConfigureRequest events. These events
also arrive asynchronously, but the client may wish to explicitly wait for them by calling
XSync after calling a function that can cause the server to generate events.

* The < > has the meaning defined by the # include statement of the C compiler and is a file relative to a
well-known directory. On UNIX-based systems, this is /usr/include.

Introduction to Xlib 1 - 3

1.2 Errors

Some functions return S ta tus, an integer error indication. If the function fails, it returns
a zero. If the function returns a status of zero, it has not updated the return arguments.
Because C does not provide multiple return values, many functions must return their
results by writing into client-passed storage. By default, errors are handled either by a
standard library function or by one that you provide. Functions that return pointers to
strings return NULL pointers if the string does not exist.

The X server reports protocol errors at the time that it detects them. If more than one
error could be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is, it
buffers them), errors can be reported much later than they actually occur. For debugging
purposes, however, Xlib provides a mechanism for forcing synchronous behavior (see
section 8.12.1). When synchronization is enabled, errors are reported as they are
generated.

When Xlib detects an error, it calls an error handler, which your program can provide. If
you do not provide an error handler, the error is printed, and your program terminates.

1.3 Naming and Argument Conventions within Xlib

Xlib follows a number of conventions for the naming and syntax of the functions. Given
that you remember what information the function requires, these conventions are intended
to make the syntax of the functions more predictable.

The major naming conventions are:

• To differentiate the X symbols from the other symbols, the library uses mixed case
for external symbols. It leaves lowercase for variables and all uppercase for user
macros, as per existing convention.

• All Xlib functions begin with a capital X.

• The beginnings of all function names and symbols are capitalized.

• All user-visible data structures begin with a capital X. More generally, anything that
a user might dereference begins with a capital X.

• Macros and other symbols do not begin with a capital X. To distinguish them from
all user symbols, each word in the macro is capitalized.

1- 4 Introduction to Xlib

• All elements of or variables in a data structure are in lowercase. Compound words,
where needed, are constructed with underscores U.

• The display argument, where used, is always first in the argument list.

• All resource objects, where used, occur at the beginning of the argument list
immediately after the display argument.

• When a graphics context is present together with another type of resource (most
commonly, a drawable), the graphics context occurs in the argument list after the
other resource. Drawables outrank all other resources.

• Source arguments always precede the destination arguments in the argument list.

• The x argument always precedes the y argument in the argument list.

• The width argument always precedes the height argument in the argument list.

• Where the x, y, width, and height arguments are used together, the x and y
arguments always precede the width and height arguments.

• Where a mask is accompanied with a structure, the mask always precedes the
pointer to the structure in the argument list.

1.4 Programming Considerations

The major programming considerations are:

• Keyboards are the greatest variable between different manufacturer's workstations.
If you want your program to be portable, you should be particularly conservative
here.

• Many display systems have limited amounts of off-screen memory. If you can, you
should minimize use of pixmaps and backing store.

• The user should have control of his screen real estate. Therefore, you should write
your applications to react to window management rather than presume control of
the entire screen. What you do inside of your top-level window, however, is up to
your application. For further information, see chapter 9.

• Coordinates and sizes in X are actually 16-bit quantities. They usually are declared
as an "int" in the interface (int is 16 bits on some machines). Values larger than 16
bits are truncated silently. Sizes (width and height) are unsigned quantities. This
decision was taken to minimize the bandwidth required for a given level of
performance.

Introduction to Xlib 1-5

1.5 Conventions Used in This Manual

This document uses the following conventions:

• Global symbols in this manual are printed in this special font. These can
be either function names, symbols defined in include files, or structure names.
Arguments are printed in italics.

• Each function is introduced by a general discussion that distinguishes it from other
functions. The function declaration itself follows, and each argument is specifically
explained. General discussion of the function, if any is required, follows the
arguments. Where applicable, the last paragraph of the explanation lists the possible
Xlib error codes that the function can generate. For a complete discussion of the
Xlib error codes, see section 8.12.2.

• To eliminate any ambiguity between those arguments that you pass and those that a
function returns to you, the explanations for all arguments that you pass start with
the word specifies or, in the case of multiple arguments, the word specify. The
explanations for all arguments that are returned to you start with the word returns or,
in the case of multiple arguments, the word return. The explanations for all
arguments that you can pass and are returned start with the words specifies and
returns.

• Any pointer to a structure that is used to return a value is designated as such by the
Jeturn suffix as part of its name. All other pointers passed to these functions are
used for reading only. A few arguments use pointers to structures that are used for
both input and output and are indicated by using the _in_out suffix.

• Xlib defines the Boolean values of True and False.

1- 6 Introduction to Xlib

Display Functions 2
Before your program can use a display, you must establish a connection to the X server.
Once you have established a connection, you then can use the Xlib macros and functions
discussed in this chapter to return information about the display. This chapter discusses
how to:

• Open (connect to) the display

• Obtain information about the display, image format, and screen

• Free client -created data

• Close (disconnect from) a display

The chapter concludes with a general discussion of what occurs when the connection to the
X server is closed.

2.1 Opening the Display
To open a connection to the X server that controls a display, use XOpenDisplay.

Display *XOpenDisplay(d~play name)
char *d~play _name i -

Specifies the hardware display name, which determines the display and
communications domain to be used. On a UNIX-based system, if the
display name is NULL, it defaults to the value of the DISPlAY
enviro;ment variable.

On UNIX-based systems, the display name or DISPLAY environment variable is a string
in the format:

hostname

hostname : number. screen number

Specifies the name of the host machine on which the display is
physically attached. You follow the hostname with either a single colon
(:) or a double colon (::).

Display Functions 2 -1

number

screen number

Specifies the number of the display server on that host machine. You
may optionally follow this display number with a period (.). A single
CPU can have more than one display. Multiple displays are usually
numbered starting with zero.

Specifies the screen to be used on that server. Multiple screens can be
controlled by a single X server. The screen number sets an internal
variable that can be accessed by using the Defaul tScreen macro or
the XDefaultScreen function if you are using languages other than
C (see section 2.2.1).

For example, the following would specify screen 2 of display 0 on the machine named mit­
athena:

mit-athena:O.2

The XOpenDisplay function returns a Display structure that serves as the
connection to the X server and that contains all the information about that X server.
XOpenDisplay connects your application to the X server through TCP or UNIX
domain communications protocols. If the hostname is a host machine name and a single
colon (:) separates the hostname and display number, XOpenDisplay connects using
TCP streams, or UNIX domain IPC streams, if possible. If the environment variable
XFORCE INTERNET is set, TCP streams are used. If the hostname is local and a single
colon (:) separates it from the display number, XOpenDisplay connects using UNIX
domain IPC streams. If the hostname is not specified, Xlib uses whatever it believes is the
fastest transport. A single X server can support any or all of these transport mechanisms
simultaneously. A particular Xlib implementation can support many more of these
transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is
defined in < Xll/Xlib. h >. If XOpenDisplay does not succeed, it returns NULL.
After a successful call to XOpenDisplay, all of the screens in the display can be used by
the client. The screen number specified in the display name argument is returned by the
Defaul tScreen macro (or the XDefaul tScreen-function). You can access
elements of the Display and Screen structures only by using the information macros
or functions. For information about using macros and functions to obtain information
from the Display structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section 7.11).

2 -2 Display Functions

2.2 Obtaining Information about the Display, Image
Formats, or Screens

The Xlib library provides a number of useful macros and corresponding functions that
return data from the Display structure. The macros are used for C programming, and
their corresponding function equivalents are for other language bindings. This section
discusses the:

• Display macros

• Image format macros

• Screen macros

All other members of the Display structure (that is, those for which no macros are
defined) are private to Xlib and must not be used. Applications must never directly
modify or inspect these private members of the Display structure.

NOTE

TheXDisplayWidth, XDisplayHeight, XDisplayCells,
XDisplayPlanes, XDisplayWidthMM, and
XDisplayHeightMM functions in the next sections are not named
in the conventional manner. Where these functions are mentioned,
the terms should be interpreted as screen functions instead of
display functions. For example, the XDisplayWidth function actually
deals with screen width, not display width.

2.2.1 Display Macros

Applications should not directly modify any part of the Display and Screen
structures. The members should be considered read-only, although they may change as
the result of other operations on the display.

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both can return.

AllPlanes()

unsigned long XAllPlanes()

Display Functions 2 -3

Both return a value with all bits set to 1 suitable for use in a plane argument to a
procedure.

Both BlackPixel and Whi tePixel can be used in implementing a monochrome
application. These pixel values are for permanently allocated entries in the default
colormap. The actual RGB (red, green, and blue) values are settable on some screens
and, in any case, may not actually be black or white. The names are intended to convey the
expected relative intensity of the colors.

BlackPixel (display, screen_number)

unsigned long XBlackPixel (display, screen -"umber)
Display *display;
int screen_number;

Both return the black pixel value for the specified screen.

WhitePixel (display, screen -"umber)

unsigned long XWhi tePixel (display, screen_number)
Display *display;
int screen_number;

Both return the white pixel value for the specified screen.

ConnectionNumber(display)

int XConnectionNumber(display)
Display *display;

Both return a connection number for the specified display. On a UNIX-based system, this
is the file descriptor of the connection.

DefaultColormap(display, screen-"umber)

Colormap XDefaultColormap(display, screen_number)
Display *display;
int screen _number;

Both return the default colormap ID for allocation on the specified screen. Most routine
allocations of color should be made out of this colormap.

DefaultDepth (display, screen_number)

int XDefaultDepth(display, screen_number)
Display *display;
int screen_number;

2 - 4 Display Functions

Both return the depth (number of planes) of the default root window for the specified
screen. Other depths may also be supported on this screen (see XMatchVisuallnfo).

DefaultGC (display I screen_number)

GC XDefaultGC (display I screen number)
Display *display; -
int screen_number;

Both return the default graphics context for the root window of the specified screen. This
GC is created for the convenience of simple applications and contains the default GC
components with the foreground and background pixel values initialized to the black and
white pixels for the screen, respectively. You can modify its contents freely because it is
not used in any Xlib function. This GC should never be freed.

DefaultRootWindow(display)

Window XDefaultRootWindow (display)
Display *display;

Both return the root window for the default screen.

DefaultScreenOfDisplay(display)

Screen *XDefaultScreenOfDisplay(display)
Display *display;

Both return a pointer to the default screen.

ScreenOfDisplay (display I screen _number)

Screen *XScreenOfDisplay (display I screen_number)
Display *display;
int screen .!lumber;

Both return a pointer to the indicated screen.

DefaultScreen(display)

int XDefaultScreen(display)
Display *display;

Both return the default screen number referenced by the XOpenDisplay function. This
macro or function should be used to retrieve the screen number in applications that will
use only a single screen.

Display Functions 2 - 5

DefaultVisual (display, screen _number)

Visual *XDefaultVisual (display, screen _number)
Display *display;
int screen _number;

Both return the default visual type for the specified screen. For further information about
visual types, see section 3.1.

DisplayCells (display, screen yumber)

int XDisplayCells (display, screen_number)
Display *display;
int screen yumber;

Both return the number of entries in the default colormap.

DisplayPlanes (display, screen_number)

int XDi splayPlanes (display, screen yumber)
Display *display;
int screen _number;

Both return the depth of the root window of the specified screen. For an explanation of
depth, see the glossary.

DisplayString(display)

char *XDisplayString(display)
Display *display;

Both return the string that was passed to XOpenDisplay when the current display was
opened. On UNIX-based systems, if the passed string was NULL, these return the value of
the DISPLAY environment variable when the current display was opened. These are
useful to applications that invoke the fork system call and want to open a new connection
to the same display from the child process as well as for printing error messages.

LastKnownRequestProcessed(display)

unsigned long XLastKnownRequestProcessed(display)
Display *display;

Both extract the full serial number of the last request known by Xlib to have been
processed by the X server. Xlib automatically sets this number when replies, events, and
errors are received.

2 - 6 Display Functions

NextRequest (display)

unsigned long XNextRequest (display)
Display *display;

Both extract the full serial number that is to be used for the next request. Serial numbers
are maintained separately for each display connection.

ProtocolVersion(display)

int XProtocolVersion(display)
Display *display;

Both return the major version number (11) of the X protocol associated with the
connected display.

ProtocolRevision (display)

int XProtocolRevision (display)
Display *display;

Both return the minor protocol revision number of the X server.

QLength (display)

int XQLength(display)
Display *display;

Both return the length of the event queue for the connected display. Note that there may
be more events that have not been read into the queue yet (see XEventsQueued).

RootWindow (display, screen _number)

Window XRootWindow (display, screen _number)
Display *display;
int screen_number;

Both return the root window. These are useful with functions that need a drawable of a
particular screen and for creating top-level windows.

ScreenCount (display)

int XScreenCount (display)
Display *display;

Both return the number of available screens.

Display Functions 2 -7

ServerVendor (display)

char *XServerVendor (display)
Display *display;

Both return a pointer to a null-terminated string that provides some identification of the
owner of the X server implementation.

VendorRelease(display)

int XVendorRelease(display)
Display *display;

Both return a number related to a vendor's release of the X server.

2.2.2 Image Format Macros

Applications are required to present data to the X server in a format that the server
demands. To help simplify applications, most of the work required to convert the data is
provided by Xlib (see sections 6.7 and 10.9).

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both return for the specified server
and screen. These are often used by toolkits as well as by simple applications.

ImageByteOrder(display)

int XlmageByteOrder (display)
Display *display;

Both specify the required byte order for images for each scanline unit in XY format
(bitmap) or for each pixel value in Z format. The macro or function can return either
LSBFirst or MSBFirst.

Bi tmapUni t (display)

int XBitmapUnit(display)
Display *display;

Both return the size of a bitmap's scanline unit in bits. The scanline is calculated in
multiples of this value.

BitmapBitOrder(display)

int XBi tmapBi tOrder (display)
Display *display;

2 -8 Display Functions

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is either
the least -significant or most -significant bit in the unit. This macro or function can return
LSBFirstorMSBFirst.

Bi tmapPad (display)

int XBitmapPad (display)
Display *display;

Each scanline must be padded to a multiple of bits returned by this macro or function.

DisplayHeight (display I screen_number)

int XDisplayHeight (display I screen _number)
Display *display;
int screen _number;

Both return an integer that describes the height of the screen in pixels.

DisplayHeight~(display I screen_number)

int XDisplayHeight~ (display, screen _number)
Display *display;
int screen ...!'umber;

Both return the height of the specified screen in millimeters.

DisplayWidth(display I screen_number)

int XDisplayWidth (display I screen_number)
Display *display;
int screen_number;

Both return the width of the screen in pixels.

DisplayWidt~(display I screen_number)

int XDisplayWidthlt1 (display I screen ...!'umber)
Display *display;
in t screen_number;

Both return the width of the specified screen in millimeters.

Display Functions 2 - 9

2.2.3 Screen Information Macros

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both can return. These macros or
functions all take a pointer to the appropriate screen structure.

BlackPixelOfScreen (screen)

unsigned long XBlackPixelOfScreen(screen)
Screen *screen;

Both return the black pixel value of the specified screen.

WhitePixelOfScreen(screen)

unsigned long XWhitePixelOfScreen(saeen)
Screen *screen;

Both return the white pixel value of the specified screen.

CellsOfScreen(saeen)

int XCellsOfScreen(saeen)
Screen *saeen;

Both return the number of colormap cells in the default colormap of the specified screen.

DefaultColormapOfScreen(saeen)

Colormap XDefaultColormapOfScreen(saeen)
Screen *screen;

Both return the default colormap of the specified screen.

DefaultDepthOfScreen(saeen)

int XDefaultDepthOfScreen(screen)
Screen *saeen;

Both return the depth of the root window.

DefaultGCOfScreen (saeen)

GC XDefaultGCOfScreen(screen)
Screen *saeen;

2 -10 Display Functions

Both return a default graphics context (GC) of the specified screen, which has the same
depth as the root window of the screen. The GC must never be freed.

DefaultVisualOfScreen(screen)

Visual *XDefaultVisualOfScreen(screen)
Screen *screen;

Both return the default visual of the specified screen. For information on visual types, see
section 3.1.

DoesBackingStore(screen)

int XDoesBackingStore(screen)
Screen *screen;

Both return a value indicating whether the screen supports backing stores. The value
returned can be one of WhenMapped, NotUseful, or Always (see section 3.2.4).

DoesSaveUnders(screen)

Bool XDoesSaveUnders(screen)
Screen *screen;

Both return a Boolean value indicating whether the screen supports save unders. If True,
the screen supports save unders. If False, the screen does not support save unders (see
section 3.2.5).

DisplayOfScreen(screen)

Display *XDisplayOfScreen(screen)
Screen *screen;

Both return the display of the specified screen.

EventMaskOfScreen(screen)

long XEventMaskOfScreen(screen)
Screen *screen;

Both return the event mask of the root window for the specified screen at connection setup
time.

Display Functions 2 -11

WidthOfScreen(screen)

int XWidthOfScreen (screen)
Screen *screen i

Both return the width of the specified screen in pixels.

HeightOfScreen(s~en)

int XHeightOfScreen(screen)
Screen *screen;

Both return the height of the specified screen in pixels.

Widthl+1OfScreen (screen)

int XWidthMMOfScreen(screen)
Screen *screen;

Both return the width of the specified screen in millimeters.

HeightMMOfScreen(screen)

int XHeightMMOfScreen(s~en)
Screen *screen;

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreen(screen)

int XMaxCmapsOfScreen(s~en)
Screen *screen i

Both return the maximum number of installed colormaps supported by the specified
screen (see section 7.3).

MinCmapsOfScreen(s~en)

int XMinCmapsOfScreen(s~en)
Screen *screen;

Both return the minimum number of installed colormaps supported by the specified screen
(see section 7.3).

2 -12 Display Functions

PlanesOfScreen (screen)

int XPlanesOfScreen(screen)
Screen *screen;

Both return the depth of the root window.

RootWindowOfScreen(saeen)

Window XRootWindowOfScreen(saeen)
Screen *saeen;

Both return the root window of the specified screen.

2.3 Generating a NoOperation Protocol Request

To execute a NoOperation protocol request, use XNoOp.

XNoOp (display)
Display *display;

display Specifies the connection to the X server.

The XNoOp function sends a NoOperation protocol request to the X server, thereby
exercising the connection.

2.4 Freeing Client-Created Data
To free any in-memory data that was created by an Xlib function, use XFree.

XFree (data)
char *data:

data Specifies a pointer to the data that is to be freed.

The XFree function is a general-purpose Xlih routine that frees the specified data. You
must use it to free any objects that were allocated by Xlih.

Display Functions 2 -13

2.5 Closing the Display
To close a display or disconnect from the X server, use XCloseDisplay.

XCloseDisplay(d~play)

Display *display;

display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the display
specified in the Display structure and destroys all windows, resource IDs (Window,
Font, Pixmap, Colormap, Cursor, and GContext), or other resources that the
client has created on this display, unless the close-down mode of the resource has been
changed (see XSetCloseDownMode). Therefore, these windows, resource IDs, and
other resources should never be referenced again or an error will be generated. Before
exiting, you should call XCloseDisplay explicitly so that any pending errors are
reported as XCloseDisplay performs a final XSync operation.

XCloseDisplay can generate a BadGC error.

2.6 X Server Connection Close Operations

When the X server's connection to a client is closed either by an explicit call to
XCloseDisplay or by a process that exits, the X server performs the following
automatic operations:

• It disowns all selections owned by the client (see XSetSelectionOwner).

• It performs an XUngrabPointer and XUngrabKeyboard if the client has
actively grabbed the pointer or the keyboard.

• It performs an XUngrabServer if the client has grabbed the server.

• It releases all passive grabs made by the client.

• It marks all resources (including colormap entries) allocated by the client either as
permanent or temporary, depending on whether the close-down mode is
RetainPermanent or RetainTemporary. However, this does not prevent
other client applications from explicitly destroying the resources (see
XSetCloseDownMode).

When the close-down mode is DestroyAll, the X server destroys all of a client's
resources as follows:

2 -14 Display Functions

• It examines each window in the client's save-set to determine if it is an inferior
(subwindow) of a window created by the client. (The save-set is a list of other
clients' windows, which are referred to as save-set windows.) If so, the X server
reparents the save-set window to the closest ancestor so that the save-set window is
not an inferior of a window created by the client. The reparenting leaves unchanged
the absolute coordinates (with respect to the root window) of the upper-left outer
corner of the save-set window.

• It performs a MapWindow request on the save-set window if the save-set window is
unmapped. The X server does this even if the save-set window was not an inferior of
a window created by the client.

• It destroys all windows created by the client.

• It performs the appropriate free request on each nonwindow resource created by the
client in the server (for example, Font, Pixmap, Cursor, Colormap, and
GContext).

• It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X server
goes through a cycle of having no connections and having some connections. When the
last connection to the X server closes as a result of a connection closing with the
close_mode of DestroyAll, the X server does the following:

• It resets its state as if it had just been started. The X server begins by destroying all
lingering resources from clients that have terminated in RetainPermanent or
RetainTemporary mode.

• It deletes all but the predefined atom identifiers.

• It deletes all properties on all root windows (see chapter 4).

• It resets all device maps and attributes (for example, key click, bell volume, and
acceleration) as well as the access control list.

• It restores the standard root tiles and cursors.

• It restores the default font path.

• It restores the input focus to state PointerRoot.

However, the X server does not reset if you close a connection with a close-down mode set
to RetainPermanent or RetainTemporary.

Display Functions 2 -15

Window Functions 3
In the X Window System, a window is a rectangular area on the screen that lets you view
graphic output. Client applications can display overlapping and nested windows on one or
more screens that are driven by X servers on one or more machines. Clients who want to
create windows must first connect their program to the X server by calling
XOpenDisp lay. This chapter begins with a discussion of visual types and window
attributes. The chapter continues with a discussion of the Xlib functions you can use to:

• Create windows

• Destroy windows

• Map windows

• Unmap windows

• Configure windows

• Change the stacking order

• Change window attributes

• Translate window coordinates

This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established conventions for
communicating with window managers for it to work well with the various window
managers in use (see section 9.1). Toolkits generally adhere to these conventions for you,
relieving you of the burden. Toolkits also often supersede many functions in this chapter
with versions of their own. Refer to the documentation for the toolkit you are using for
more information.

Window Functions 3 -1

3.1 Visual Types
On some display hardware, it may be possible to deal with color resources in more than
one way. For example, you may be able to deal with a screen of either 12-bit depth with
arbitrary mapping of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the pixel
dedicated to each of red, green, and blue. These different ways of dealing with the visual
aspects of the screen are called visuals. For each screen of the display, there may be a list
of valid visual types supported at different depths of the screen. Because default windows
and visual types are defined for each screen, most simple applications need not deal with
this complexity. Xlib provides macros and functions that return the default root window,
the default depth of the default root window, and the default visual type (see section 2.2.1
and XMatchVisuallnfo).

Xlib uses a Visual structure that contains information about the possible color mapping.
The members of this structure pertinent to this discussion are class, red mask,
green mask, blue mask, bits per rgb, and map entries. The class me~ber specifies one
of the-possible vis~al classes ~fthe screen and c-;n be StaticGray, StaticColor,
TrueColor, GrayScale, PseudoColor, or DirectColor.

The following concepts may serve to make the explanation of visual types clearer. The
screen can be color or grayscale, can have a colormap that is writable or read-only, and can
also have a colormap whose indices are decomposed into separate RGB pieces, provided
one is not on a grayscale screen. This leads to the following diagram:

Undecomposed
Colormap

Decomposed
Colormap

Color
R/O R/W

GrayScale
R/O R/W

+-------------------------------+
IStatic IPseudo IStatic IGray I
I Color I Color IGray IScale I
+-------------------------------+
I True IDirect I
IColor I Color I
+---------------+

Conceptually, as each pixel is read out of video memory for display on the screen, it goes
through a look-up stage by indexing into a colormap. Colormaps can be manipulated
arbitrarily on some hardware, in limited ways on other hardware, and not at all on other
hardware. The visual types affect the colormap and the RGB values in the following ways:

• For PseudoColor, a pixel value indexes a colormap to produce independent RGB
values, and the RGB values can be changed dynamically.

3 -2 Window Functions

• GrayScale is treated the same way as PseudoColor except that the primary
that drives the screen is undefined. Thus, the client should always store the same
value for red, green, and blue in the colormaps.

• For DirectColor, a pixel value is decomposed into separate RGB subfields, and
each subfield separately indexes the colormap for the corresponding value. The
RGB values can be changed dynamically.

• TrueColor is treated the same way as DirectColor except that the colormap
has predefined, read-only RGB values. These RGB values are server-dependent but
provide linear or near-linear ramps in each primary.

• StaticColor is treated the same way as PseudoColor except that the
colormap has predefined, read-only, server-dependent RGB values.

• StaticGray is treated the same way as StaticColor except that the RGB
values are equal for any single pixel value, thus resulting in shades of gray.
StaticGray with a two-entry colormap can be thought of as monochrome.

The red mask, green mask, and blue mask members are only defined for
DirectColor and TrueColor. E-ach has one contiguous set of bits with no
intersections. The bits yer _ rgb member specifies the log base 2 of the number of distinct
color values (individually) of red, green, and blue. Actual RGB values are unsigned 16-bit
numbers. The map entries member defines the number of available colormap entries in a
newly created color~ap. For DirectColor and TrueColor, this is the size of an
individual pixel subfield.

To obtain the visual ID from a Visual, use XVisualIDFromVisual.

VisualID XVisualIDFromVisual(~ual)
Visual *~ual;

visual Specifies the visual type.

The XVisualIDFromVisual function returns the visual ID for the specified visual
type.

Window Functions 3 -3

3.2 Window Attributes

All I npu tOu tpu t windows have a border width of zero or more pixels, an optional
background, an event suppression mask (which suppresses propagation of events from
children), and a property list (see section 4.2). The window border and background can be
a solid color or a pattern, called a tile. All windows except the root have a parent and are
clipped by their parent. If a window is stacked on top of another window, it obscures that
other window for the purpose of input. If a window has a background (almost all do), it
obscures the other window for purposes of output. Attempts to output to the obscured
area do nothing, and no input events (for example, pointer motion) are generated for the
obscured area.

Windows also have associated property lists (see section 4.2).

Both InputOutput and InputOnIy windows have the following common attributes,
which are the only attributes of an InputOnIy window:

• win-gravity

• event -mask

• do-not-propagate-mask

• override-redirect

• cursor

If you specify any other attributes for an InputOnIy window, a BadMatch error
results.

I npu tOnI y windows are used for controlling input events in situations where
InputOutput windows are unnecessary. InputOnIy windows are invisible; can only
be used to control such things as cursors, input event generation, and grabbing; and cannot
be used in any graphics requests. Note that InputOnIy windows cannot have
I npu tOu tpu t windows as inferiors.

Windows have borders of a programmable width and pattern as well as a background
pattern or tile. Pixel values can be used for solid colors. The background and border
pixmaps can be destroyed immediately after creating the window if no further explicit
references to them are to be made. The pattern can either be relative to the parent or
absolute. If ParentReIative, the parent's background is used.

3 - 4 Window Functions

When windows are first created, they are not visible (not mapped) on the screen. Any
output to a window that is not visible on the screen and that does not have backing store
will be discarded. An application may wish to create a window long before it is mapped to
the screen. When a window is eventually mapped to the screen (using XMapWindow), the
X server generates an Expose event for the window if backing store has not been
maintained.

A window manager can override your choice of size, border width, and position for a top­
level window. Your program must be prepared to use the actual size and position of the
top window. It is not acceptable for a client application to resize itself unless in direct
response to a human command to do so. Instead, either your program should use the
space given to it, or if the space is too small for any useful work, your program might ask
the user to resize the window. The border of your top-level window is considered fair
game for window managers.

To set an attribute of a window, set the appropriate member of the
XSetWindowAttributes structure and OR in the corresponding value bitmask in
your subsequent calls to XCreateWindow and XChangeWindowAttributes, or
use one of the other convenience functions that set the appropriate attribute. The symbols
for the value mask bits and the XSetWindowAttributes structure are:

/* Window attribute value mask bits * /

define CWBackPixmap (lL< <0)
define CWBackPixel (lL< < 1)
define CWBorderPixmap (lL< <2)
define CWBorderPixel (lL< <3)
define CWBitGravity (lL< <4)
#define CWWinGravity (lL< <5)
define CWBackingStore (lL< <6)
define CWBackingPlanes (lL< <7)
define CWBackingPixel (lL< <8)
define CWOverrideRedirect (lL< <9)
define CWSaveUnder (lL< <10)
#define CWEventMask (lL< <11)
#define CWDontPropagate (lL< <12)
define CWColormap (lL< <13)
define CWCursor (lL< <14)

Window Functions 3 - 5

1* Values *1

typedef struct
Pixmap background-pixmap; 1* background, None, or ParentRelative *1
unsigned long background-pixel;l* background pixel *1
Pixmap border-pixmap; 1* border of the window or CopyFromParent *1
unsigned long border-pixel; 1* border pixel value *1
int bit gravity; 1* one of bit gravity values *1
int win=gravity; 1* one of the window gravity values *1
int backing store; 1* NotUseful, WbenMapped, Always *1
unsigned lo~g backing-planes; 1* planes to be preserved if possible *1
unsigned long backing-pixe1; /* value to use in restoring planes *1
Bool save under; /* should bits under be saved? (popups) *1
long event mask; /* set of events that should be saved *1
long do_not-propagate_mask; /* set of events that should not propagate *1
Bool override_redirect; /* boolean value for override_redirect *1
Colormap colormap; /* color map to be associated with window *1
Cursor cursor; /* cursor to be displayed (or None) */

XSetWindowAttributes;

The following lists the defaults for each window attribute and indicates whether the
attribute is applicable to I npu tau tpu t and I npu tOnI y windows:

Attribute Default InputOutput InputOnly

background-pbrrnap None Yes No
background-pixel Undefined Yes No
border-pbrrnap CopyFrornParent Yes No
border-pixel Undefined Yes No
bit -gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel zero Yes No
save-under False Yes No
event-mask empty set Yes Yes
do-not -propagate-mask empty set Yes Yes
override-redirect False Yes Yes
colormap CopyFrornParent Yes No
cursor None Yes Yes

3 - 6 Window Functions

3.2.1 Background Attribute

Only InputOutput windows can have a background. You can set the background of an
Inpu tOu tpu t window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be used for a
window's background. This pixmap can be of any size, although some sizes may be faster
than others. The background-pixel attribute of a window specifies a pixel value used to
paint a window's background in a single color.

You can set the background-pixmap to a pixmap, None (default), or
ParentRelative. You can set the background-pixel of a window to any pixel value
(no default). If you specify a background-pixel, it overrides either the default background­
pixmap or any value you may have set in the background-pixmap. A pixmap of an
undefined size that is filled with the background-pixel is used for the background. Range
checking is not performed on the background pixel; it simply is truncated to the
appropriate number of bits.

If you set the background-pixmap, it overrides the default. The background-pixmap and
the window must have the same depth, or a BadMatch error results. If you set
background-pixmap to None, the window has no defined background. If you set the
background-pixmap to ParentRelative:

• The parent window's background-pixmap is used. The child window, however, must
have the same depth as its parent, or a BadMa tch error results.

• If the parent window has a background-pixmap of None, the window also has a
background-pixmap of None.

• A copy of the parent window's background-pixmap is not made. The parent's
background-pixmap is examined each time the child window's background-pixmap is
required.

• The background tile origin always aligns with the parent window's background tile
origin. If the background-pixmap is not ParentRelative, the background tile
origin is the child window's origin.

Setting a new background, whether by setting background-pixmap or background-pixel,
overrides any previous background. The background-pixmap can be freed immediately if
no further explicit reference is made to it (the X server will keep a copy to use when
needed). If you later draw into the pixmap used for the background, what happens is
undefined because the X implementation is free to make a copy of the pixmap or to use
the same pixmap.

Window Functions 3 -7

When no valid contents are available for regions of a window and either the regions are
visible or the server is maintaining backing store, the server automatically tiles the regions
with the window's background unless the window has a background of None. If the
background is None, the previous screen contents from other windows of the same depth
as the window are simply left in place as long as the contents come from the parent of the
window or an inferior of the parent. Otherwise, the initial contents of the exposed regions
are undefined. Expose events are then generated for the regions, even if the
background-pixmap is None (see chapter 8).

3.2.2 Border Attribute

Only InputOutput windows can have a border. You can set the border of an
InputOutput window by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used for a window's
border. The border-pixel attribute of a window specifies a pixmap of undefined size filled
with that pixel be used for a window's border. Range checking is not performed on the
background pixel; it simply is truncated to the appropriate number of bits. The border tile
origin is always the same as the background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be faster than
others) or to CopyFrornParent (default). You can set the border-pixel to any pixel
value (no default).

If you set a border-pixmap, it overrides the default. The border-pixmap and the window
must have the same depth, or a BadMa tch error results. If you set the border-pixmap to
CopyFrornParent, the parent window's border-pixmap is copied. Subsequent changes
to the parent window's border attribute do not affect the child window. However, the child
window must have the same depth as the parent window, or a BadMa tch error results.

The border-pixmap can be freed immediately if no further explicit reference is made to it.
If you later draw into the pixmap used for the border, what happens is undefined because
the X implementation is free either to make a copy of the pixmap or to use the same
pixmap. If you specify a border-pixel, it overrides either the default border-pixmap or any
value you may have set in the border-pixmap. All pixels in the window's border will be set
to the border-pixel. Setting a new border, whether by setting border-pixel or by setting
border-pixmap, overrides any previous border.

Output to a window is always clipped to the inside of the window. Therefore, graphics
operations never affect the window border.

3 - 8 Window Functions

3.2.3 Gravity Attributes

The bit gravity of a window defines which region of the window should be retained when
an InputOutput window is resized. The default value for the bit-gravity attribute is
ForgetGravi ty. The window gravity of a window allows you to define how the
InputOutput or InputOnly window should be repositioned if its parent is resized.
The default value for the win-gravity attribute is NorthWestGravity.

If the inside width or height of a window is not changed and if the window is moved or its
border is changed, then the contents of the window are not lost but move with the window.
Changing the inside width or height of the window causes its contents to be moved or lost
(depending on the bit-gravity of the window) and causes children to be reconfigured
(depending on their win-gravity). For a change of width and height, the (x, y) pairs are
defined:

Gravity Direction

NorthWestGravity
NorthGravity
NorthEastGravity
WestGravity
CenterGravity
EastGravity
SouthWestGravity
SouthGravity
SouthEastGravity

Coordinates

(0,0)
(Width/2, 0)
(Width, 0)
(0, Height/2)
(Width/2, Height/2)
(Width, Height/2)
(0, Height)
(Width/2, Height)
(Width, Height)

When a window with one of these bit -gravity values is resized, the corresponding pair
defines the change in position of each pixel in the window. When a window with one of
these win-gravities has its parent window resized, the corresponding pair defines the
change in position of the window within the parent. When a window is so repositioned, a
Gravi tyNotify event is generated (see chapter 8).

~

A bit-gravity of StaticGravi ty indicates that the contents or origin should not move
relative to the origin of the root window. If the change in size of the window is coupled
with a change in position (x, y), then for bit-gravity the change in position of each pixel is
(-x, -y), and for win-gravity the change in position of a child when its parent is so resized is
(-x, -y). Note that StaticGravity still only takes effect when the width or height of
the window is changed, not when the window is moved.

Window Functions 3 - 9

A bit-gravity of ForgetGravity indicates that the window's contents are always
discarded after a size change, even if a backing store or save under has been requested.
The window is tiled with its background and zero or more Expose events are generated.
If no background is defined, the existing screen contents are not altered. Some X servers
may also ignore the spec·fied bit-gravity and always generate Expose events.

A win-gravity of UnmapGravi ty is like NorthWestGravity (the window is not
moved), except the child is also unmapped when the parent is resized, and an
UnmapNotify event is generated.

3.2.4 Backing Store Attribute

Some implementations of the X server may choose to maintain the contents of
InputOutput windows. If the X server maintains the contents of a window, the off­
screen saved pixels are known as backing store. The backing store advises the X server on
what to do with the contents of a window. The backing-store attribute can be set to
NotUseful (default), WhenMapped, or Always.

A backing-store attribute of NotUseful advises the X server that maintaining contents is
unnecessary, although some X implementations may still choose to maintain contents and,
therefore, not generate Expose events. A backing-store attribute of WhenMapped
advises the X server that maintaining contents of obscured regions when the window is
mapped would be beneficial. In this case, the server may generate an Expose event
when the window is created. A backing-store attribute of Always advises the X server
that maintaining contents even when the window is unmapped would be beneficial. Even if
the window is larger than its parent, this is a request to the X server to maintain complete
contents, not just the region within the parent window boundaries. While the X server
maintains the window's contents, Expose events normally are not generated, but the X
server may stop maintaining contents at any time.

When the contents of obscured regions of a window are being maintained, regions
obscured by noninferior windows are included in the destination of graphics requests (and
source, when the window is the source). However, regions obscured by inferior windows
are not included.

3.2.5 Save Under Flag
Some server implementations may preserve contents of InputOutput windows under
other InputOutput windows. This is not the same as preserving the contents of a
window for you. You may get better visual appeal if transient windows (for example, pop-

. up menus) request that the system preserve the screen contents under them, so the
temporarily obscured applications do not have to repaint.

3 -10 Window Functions

You can set the save-under flag to True or False (default). If save-under is True, the
X server is advised that, when this window is mapped, saving the contents of windows it
obscures would be beneficial.

3.2.6 Backing Planes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planes of an
InputOutput window hold dynamic data that must be preserved in backing store and
during save unders. The default value for the backing-planes attribute is all bits set to 1.
You can set backing pixel to specify what bits to use in planes not covered by backing
planes. The default value for the backing-pixel attribute is all bits set to O. The X server is
free to save only the specified bit planes in the backing store or the save under and is free
to regenerate the remaining planes with the specified pixel value. Any extraneous bits in
these values (that is, those bits beyond the specified depth of the window) may be simply
ignored. If you request backing store or save unders, you should use these members to
minimize the amount of off-screen memory required to store your window.

3.2.7 Event Mask and Do Not Propagate Mask Attributes

The event mask defines which events the client is interested in for this InputOutput or
InputOnly window (or, for some event types, inferiors of that window). The do-not­
propagate-mask attribute defines which events should not be propagated to ancestor
windows when no client has the event type selected in this I npu tOu tpu t or
InputOnly window. Both masks are the bitwise inclusive OR of one or more of the
valid event mask bits. You can specify that no maskable events are reported by setting
NoEventMask (default).

3.2.8 Override Redirect Flag

To control window placement or to add decoration, a window manager often needs to
intercept (redirect) any map or configure request. Pop-up windows, however, often need
to be mapped without a window manager getting in the way. To control whether an
InputOutput or InputOnly window is to ignore these structure control facilities, use
the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this window
should override a SubstructureRedirectMask on the parent. You can set the
override-redirect flag to True or False (default). Window managers use this
information to avoid tampering with pop-up windows (see also chapter 9).

Window Functions 3 -11

3.2.9 Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors of the
InputOutput window. The colormap must have the same visual type as the window, or
a BadMa tch error results. X servers capable of supporting multiple hardware colormaps
can use this information, and window managers can use it for calls to
XlnstallColormap. You can set the colormap attribute to a colormap or to
CopyFromParent (default).

If you set the colormap to CopyFromParent, the parent window's colormap is copied
and used by its child. However, the child window must have the same visual type as the
parent, or a BadMatch error results. The parent window must not have a colormap of
None, or a BadMatch error results. The colormap is copied by sharing the colormap
object between the child and parent, not by making a complete copy of the colormap
contents. Subsequent changes to the parent window's colormap attribute do not affect the
child window.

3.2.10 Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer is in the
InputOutput or InputOnly window. You can set the cursor to a cursor or None
(default).

If you set the cursor to None, the parent's cursor is used when the pointer is in the
InputOutput or InputOnly window, and any change in the parent's cursor will cause
an immediate change in the displayed cursor. By calling XFreeCursor, the cursor can
be freed immediately as long as no further explicit reference to it is made.

3.3 Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply higher-level
functions specifically for creating and placing top-level windows, which are discussed in the
appropriate toolkit documentation. If you do not use a toolkit, however, you must provide
some standard information or hints for the window manager by using the Xlib predefined
property functions (see chapter 9).

If you use Xlib to create your own top-level windows (direct children of the root window),
you must observe the following rules so that all applications interact reasonably across the
different styles of window management:

• You must never fight with the window manager for the size or placement of your
top-level window.

3 -12 Window Functions

• You must be able to deal with whatever size window you get, even if this means that
your application just prints a message like "Please make me bigger" in its window.

• You should only attempt to resize or move top-level windows in direct response to a
user request. If a request to change the size of a top-level window fails, you must be
prepared to live with what you get. You are free to resize or move the children of
top-level windows as necessary. (Toolkits often have facilities for automatic
relayout.)

• If you do not use a toolkit that automatically sets standard window properties, you
should set these properties for top-level windows before mapping them.

XCreateWindow is the more general function that allows you to set specific window
attributes when you create a window. XCreateSimpleWindow creates a window that
inherits its attributes from its parent window.

The X server acts as if InputOnly windows do not exist for the purposes of graphics
requests, exposure processing, and VisibilityNotify events. An InputOnly
window cannot be used as a drawable (that is, as a source or destination for graphics
requests). InputOnly and InputOutput windows act identically in other respects
(properties, grabs, input control, and so on). Extension packages can define other classes
of windows.

To create an unmapped window and set its window attributes, use XCreateWindow.

Window XCreateWindow (display, parent, x, y, width, height, border_width, depth,
class, visual, valuemask, attributes)

Display *display;
Window parent;
int x, y;
unsigned int width, height;
unsigned int border width;
int depth; -
unsigned int class;
Visual *visual
unsigned long valuemask;
XSetWindowAttributes *attributes;

display

parent

Specifies the connection to the X server.

Specifies the parent window.

x
y Specify the x and y coordinates, which are the top-left outside corner of

the created window's borders and are relative to the inside of the parent
window's borders.

Window Functions 3 -13

width
height

border width

depth

class

visual

valuemask

attributes

Specify the width and height, which are the created windows inside
dimensions and do not include the created window's borders. The
dimensions must be nonzero, or a BadVaIue error results.

Specifies the width of the created window's border in pixels.

Specifies the window's depth. A depth of CopyFromParent means
the depth is taken from the parent.

Specifies the created windows class. You can pass InputOutput,
InputOnIy, or CopyFromParent. A class of CopyFromParent
means the class is taken from the parent.

Specifies the visual type. A visual of CopyFromParent means the
visual type is taken from the parent.

Specifies which window attributes are defined in the attributes
argument. This mask is the bitwise inclusive OR of the valid attribute
mask bits. If valuemask is zero, the attributes are ignored and are not
referenced.

Specifies the structure from which the values (as specified by the value
mask) are to be taken. The value mask should have the appropriate bits
set to indicate which attributes have been set in the structure.

The XCreateWindow function creates an unmapped subwindow for a specified parent
window, returns the window ID of the created window, and causes the X server to generate
a CreateNotify event. The created window is placed on top in the stacking order with
respect to siblings.

The border width for an InputOnIy window must be zero, or a BadMatch error
results. Foi" class InputOutput, the visual type and depth must be a combination
supported for the screen, or a BadMa tch error results. The depth need not be the same
as the parent, but the parent must not be a window of class InputOnIy, or a
BadMa tch error results. For an I npu tOnI y window, the depth must be zero, and the
visual must be one supported by the screen. If either condition is not met, a BadMa tch
error results. The parent window, however, may have any depth and class. If you specify
any invalid window attribute for a window, a BadMa tch error results.

The created window is not yet displayed (mapped) on the user's display. To display the
window, call XMapWindow. The new window initially uses the same cursor as its parent.
A new cursor can be defined for the new window by calling XDefineCursor. The
window will not be visible on the screen unless it and all of its ancestors are mapped and it
is not obscured by any of its ancestors.

3 -14 Window Functions

XCreateWindow can generate BadAIIoc, BadColor, BadCursor, BadMatch,
BadPixmap, BadVaIue, and BadWindow errors.

To create an unmapped I npu tOu tpu t subwindow of a given parent window, use
XCreateSimpIeWindow.

Window XCreateSimpleWindow (display I parent I x I y, width I height I border_width I

border I background)
Display *display;
Window parent j
int x I Y;
unsigned int width, height;
unsigned int border width;
unsigned long border;
unsigned long background;

display Specifies the connection to the X server.

Specifies the parent window. parent

x
y

width
height

border width

border

background

Specify the x and y coordinates, which are the top-left outside corner of
the new window's borders and are relative to the inside of the parent
window's borders.

Specify the width and height, which are the created window's inside
dimensions and do not include the created window's borders. The
dimensions must be nonzero, or a BadVaIue error results.

Specifies the width of the created window's border in pixels.

Specifies the border pixel value of the window.

Specifies the background pixel value of the window.

The XCreateSimpIeWindow function creates an unmapped InputOutput
subwindow for a specified parent window, returns the window ID of the created window,
and causes the X server to generate a CreateNotify event. The created window is
placed on top in the stacking order with respect to siblings. Any part of the window that
extends outside its parent window is clipped. The border width for an I npu tOnI y
window must be zero, or a BadMatch error results. XCreateSimpIeWindow inherits
its depth, class, and visual from its parent. All other window attributes, except background
and border, have their default values.

XCreateSimpIeWindow can generate BadAIIoc, BadMatch, BadVaIue, and
BadWindowerrors.

Window Functions 3 -15

3.4 Destroying Windows

Xlib provides functions that you can use to destroy a window or destroy all subwindows of
a window.

To destroy a window and all of its subwindows, use XDestroyWindow.

XDestroyWindow(d~pl~, w)
Display *d~pl~ i
Window Wi

display

w

Specifies the connection to the X server.

Specifies the window.

The XDestroyWindow function destroys the specified window as well as all of its
subwindows and causes the X server to generate a DestroyNotify event for each
window. The window should never be referenced again. If the window specified by the w
argument is mapped, it is unmapped automatically. The ordering of the
DestroyNotify events is such that for any given window being destroyed,
DestroyNotify is generated on any inferiors of the window before being generated on
the window itself. The ordering among siblings and across subhierarchies is not otherwise
constrained. If the window you specified is a root window, no windows are destroyed.
Destroying a mapped window will generate Expose events on other windows that were
obscured by the window being destroyed.

XDestroyWindow can generate a BadWindow error.

To destroy all subwindows of a specified window, use XDes troySubwindows.

XDestroySubwindows(d~pl~, w)
Display *d~pl~ i
Window Wi

display

w

Specifies the connection to the X server.

Specifies the window.

The XDes troySubwindows function destroys all inferior windows of the specified
window, in bottom-to-top stacking order. It causes the X server to generate a
DestroyNotify event for each window. If any mapped subwindows were actually
destroyed, XDestroySubwindows causes the X server to generate Expose events on
the specified window. This is much more efficient than deleting many windows one at a
time because much of the work need be performed only once for all of the windows, rather
than for each window. The subwindows should never be referenced again.

3 -16 Window Functions

XDestroySubwindows can generate a BadWindow error.

3.5 Mapping Windows
A window is considered mapped if an XMapWindow call has been made on it. It may not
be visible on the screen for one of the following reasons:

• It is obscured by another opaque window.

• One of its ancestors is not mapped.

• It is entirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes visible on the
screen. A client receives the Expose events only if it has asked for them. Windows retain
their position in the stacking order when they are unmapped.

A window manager may want to control the placement of subwindows. If
SubstructureRedirectMask has been selected by a window manager on a parent
window (usually a root window), a map request initiated by other clients on a child window
is not performed, and the window manager is sent a MapRequest event. However, if the
override-redirect flag on the child had been set to True (usually only on pop-up menus),
the map request is performed.

A tiling window manager might decide to reposition and resize other client's windows and
then decide to map the window to its final location. A window manager that wants to
provide decoration might reparent the child into a frame first. For further information,
see section 3.2.8 and chapter 8. Only a single client at a time can select for
SubstructureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent window.
Then, any attempt to resize the window by another client is suppressed, and the client
receives a ResizeRequest event.

To map a given window, use XMapWindow.

XMapWindow (display, w)

Display *display i
Window Wi

display

w

Specifies the connection to the X server.

Specifies the window.

Window Functions 3 -17

The XMapWindow function maps the window and all of its subwindows that have had
map requests. Mapping a window that has an unmapped ancestor does not display the
window but marks it as eligible for display when the ancestor becomes mapped. Such a
window is called unviewable. When all its ancestors are mapped, the window becomes
viewable and will be visible on the screen if it is not obscured by another window. This
function has no effect if the window is already mapped.

If the override-redirect of the window is False and if some other client has selected
SubstructureRedirectMask on the parent window, then the X server generates a
MapRequest event, and the XMapWindow function does not map the window.
Otherwise, the window is mapped, and the X server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered, the X
server tiles the window with its background. If the window's background is undefined, the
existing screen contents are not altered, and the X server generates zero or more Expose
events. If backing-store was maintained while the window was unmapped, no Expose
events are generated. If backing-store will now be maintained, a full-window exposure is
always generated. Otherwise, only visible regions may be reported. Similar tiling and
exposure take place for any newly viewable inferiors.

If the window is an InputOutput window, XMapWindow generates Expose events
on each I npu tOu tpu t window that it causes to be displayed. If the client maps and
paints the window and if the client begins processing events, the window is painted twice.
To avoid this, first ask for Expose events and then map the window, so the client
processes input events as usual. The event list will include Expose for each window that
has appeared on the screen. The client's normal response to an Expose event should be
to repaint the window. This method usually leads to simpler programs and to proper
interaction with window managers.

XMapWindow can generate a BadWindow error.

To map and raise a window, use XMapRaised.

XMapRaised (display, w)

Display *display;
Window w;

display

w

Specifies the connection to the X server.

Specifies the window.

The XMapRaised function essentially is similar to XMapWindow in that it maps the
window and all of its subwindows that have had map requests. However, it also raises the
specified window to the top of the stack. For additional information, see XMapWindow.

XMapRaised can generate multiple BadWindow errors.

3 ·18 Window Functions

To map all subwindows for a specified window, use XMapSubwindows.

XMapSubwindows(d~pl~, w)
Display *d~pl~ i
Window wi

display

w

Specifies the connection to the X server.

Specifies the window.

The XMapSubwindows function maps all subwindows for a specified window in top-to­
bottom stacking order. The X server generates Expose events on each newly displayed
window. This may be much more efficient than mapping many windows one at a time
because the server needs to perform much of the work only once, for all of the windows,
rather than for each window.

XMapSubwindows can generate a BadWindow error.

3.6 Unmapping Windows
Xlib provides functions that you can use to unmap a window or all subwindows.

To unmap a window, use XUnmapWindow.

XUrunapWindow (d~play I w)

Display *d~pl~ i
Window Wi

display

w

Specifies the connection to the X server.

Specifies the window.

The XUnmapWindow function unmaps the specified window and causes the X server to
generate an UnrnapNotify event. If the specified window is already unmapped,
XUnrnapWindow has no effect. Normal exposure processing on formerly obscured
windows is performed. Any child window will no longer be visible until another map call is
made on the parent. In other words, the subwindows are still mapped but are not visible
until the parent is mapped. Unmapping a window will generate Expose events on
windows that were formerly obscured by it.

XUnrnapWindow can generate a BadWindow error.

To unmap all subwindows for a specified window, use XUnmapSubwindows.

XUrunapSubwindows (display I w)

Display *d~pl~ i
Window Wi

Window Functions 3 -19

display

w

Specifies the connection to the X server.

Specifies the window.

The XUnmapSubwindows function unmaps all subwindows for the specified window in
bottom-to-top stacking order. It causes the X server to generate an UnrnapNotify event
on each subwindow and Expose events on formerly obscured windows. Using this
function is much more efficient than unmapping multiple windows one at a time because
the server needs to perform much of the work only once, for all of the windows, rather
than for each window.

XUnrnapSubwindows can generate a BadWindow error.

3.7 Configuring Windows

Xlib provides functions that you can use to move a window, resize a window, move and
resize a window, or change a window's border width. To change one of these parameters,
set the appropriate member of the XWindowChanges structure and OR in the
corresponding value mask in subsequent calls to XConfigureWindow. The symbols for
the value mask bits and the XWindowChanges structure are:

j* Configure window value mask bits * j

1* Values *1

typedef struct {
int x, y;

define
define
define
#define
#define
define
define

int width, height;
int border_width;
Window sibling;
int stack mode;

} XWindowChange;;

3 -20 Window Functions

CWX
CWY
CWWidth
CWHeight
CWBorderWidth
CWSibling
CWStackMode

(1< <0)
(1< <1)
(1< <2)
(1< <3)
(1< <4)
(1< <5)
(1< <6)

The x and y members are used to set the window's x and y coordinates, which are relative
to the parent's origin and indicate the position of the upper-left outer corner of the
window. The width and height members are used to set the inside size of the window, not
including the border, and must be nonzero, or a BadValue error results. Attempts to
configure a root window have no effect.

The border width member is used to set the width of the border in pixels. Note that
setting just the border width leaves the outer-left corner of the window in a fixed position
but moves the absolute position of the window's origin. If you attempt to set the border­
width attribute of an InputOnly window nonzero, a BadMatch error results.

The sibling member is used to set the sibling window for stacking operations. The
stack mode member is used to set how the window is to be restacked and can be set to
Above, Below, Toplf, Bottomlf, or Opposite.

If the override-redirect flag of the window is False and if some other client has selected
SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. Otherwise, if
some other client has selected Res izeRedirec tMask on the window and the inside
width or height of the window is being changed, a ResizeRequest event is generated,
and the current inside width and height are used instead. Note that the override-redirect
flag of the window has no effect on Res izeRedirec tMask and that
SubstructureRedirectMask on the parent has precedence over
ResizeRedirectMask on the window.

When the geometry of the window is changed as specified, the window is restacked among
siblings, and a ConfigureNotify event is generated if the state of the window actually
changes. GravityNotify events are generated after ConfigureNotify events. If
the inside width or height of the window has actually changed, children of the window are
affected as specified.

If a window's size actually changes, the window's subwindows move according to their
window gravity. Depending on the window's bit gravity, the contents of the window also
may be moved (see section 3.2.3).

If regions of the window were obscured but now are not, exposure processing is performed
on these formerly obscured windows, including the window itself and its inferiors. As a
result of increasing the width or height, exposure processing is also performed on any new
regions of the window and any regions where window contents are lost.

The restack check (specifically, the computation for Bottomlf, Toplf, and
Oppo site) is performed with respect to the window's final size and position (as
controlled by the other arguments of the request), not its initial position. If a sibling is
specified without a stack_mode, a BadMa tch error results.

If a sibling and a stack_mode are specified, the window is restacked as follows:

Window Functions 3 -21

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

TopIf If the sibling occludes the window, the window is placed at the top of the stack.

Bo t tomI f If the window occludes the sibling, the window is placed at the bottom of the stal

Oppos i te If the sibling occludes the window, the window is placed at the top of the stack.
window occludes the sibling, the window is placed at the bottom of the stack.

If a stack_mode is specified but no sibling is specified, the window is restacked as follows:

Above The window is placed at the top of the stack.

Be low The window is placed at the bottom of the stack.

Top I f If any sibling occludes the window, the window is placed at the top of the stack.

BottomIf If the window occludes any sibling, the window is placed at the bottom of the sta

Oppos i te If any sibling occludes the window, the window is placed at the top of the stack.]
window occludes any sibling, the window is placed at the bottom of the stack.

Attempts to configure a root window have no effect.

To configure a window's size, location, stacking, or border, use XConfigureWindow.

XConfigureWindow (display, w, value mask, values)
Display *display; -
Window W;
unsigned int value mask;
XWindowChanges *vaiues;

display

w

value mask

values

Specifies the connection to the X server.

Specifies the window to be reconfigured.

Specifies which values are to be set using information in the values
structure. This mask is the bitwise inclusive OR of the valid configure
window values bits.

Specifies a pointer to the XWindowChanges structure.

The XConfigureWindow function uses the values specified in the XWindowChanges
structure to reconfigure a window's size, position, border, and stacking order. Values not
specified are taken from the existing geometry of the window.

3 - 22 Window Functions

If a sibling is specified without a stack mode or if the window is not actually a sibling, a
BadMatch error results. Note that the computations for BottomIf, TopIf, and
Opposite are performed with respect to the window's final geometry (as controlled by
the other arguments passed to XConfigureWindow), not its initial geometry. Any
backing store contents of the window, its inferiors, and other newly visible windows are
either discarded or changed to reflect the current screen contents (depending on the
implementation) .

XConfigureWindow can generate BadMatch, BadValue, and BadWindow errors.

To move a window without changing its size, use XMoveWindow.

XMoveWindow (display. w, x, y)
Display *display;
Window w;
int x, y;

display

w

Specifies the connection to the X server.

Specifies the window to be moved.

x
y Specify the x and y coordinates, which define the new location of the top-left

pixel of the window's border or the window itself if it has no border.

The XMoveWindow function moves the specified window to the specified x and y
coordinates, but it does not change the window's size, raise the window, or change the
mapping state of the window. Moving a mapped window mayor may not lose the
window's contents depending on if the window is obscured by nonchildren and if no
backing store exists. If the contents of the window are lost, the X server generates
Expose events. Moving a mapped window generates Expose events on any formerly
obscured windows.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. Otherwise, the
window is moved.

XMoveWindow can generate a BadWindow error.

To change a window's size without changing the upper-left coordinate, use
XResizeWindow.

XResizeWindow(display, w, width, height>
Display *display;
Window w;
unsigned int width, height;

Window Functions 3 -23

display Specifies the connection to the X server.

Specifies the window. w

width
height Specify the width and height, which are the interior dimensions of the window

after the call completes.

The XRes izeWindow function changes the inside dimensions of the specified window,
not including its borders. This function does not change the window's upper-left
coordinate or the origin and does not restack the window. Changing the size of a mapped
window may lose its contents and generate Expose events. If a mapped window is made
smaller, changing its size generates Exp 0 s e events on windows that the mapped window
formerly obscured.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. If either width or
height is zero, a BadValue error results.

XResizeWindow can generate BadValue and BadWindow errors.

To change the size and location of a window, use XMoveResizeWindow.

XMoveResizeWindowCdisplay, w, x, y, width, height)
Display *display;
Window w;
int x, y;
unsigned int width, height;

display Specifies the connection to the X server.

Specifies the window to be reconfigured. w

x
y

width
height

Specify the x and y coordinates, which define the new position of the window
relative to its parent.

Specify the width and height, which define the interior size of the window.

The XMoveResizeWindow function changes the size and location of the specified
window without raising it. Moving and resizing a mapped window may generate an
Expose event on the window. Depending on the new size and location parameters,
moving and resizing a window may generate Expose events on windows that the window
formerly obscured.

3 -24 Window Functions

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. Otherwise, the
window size and location are changed.

XMoveResizeWindow can generate BadValue and BadWindow errors.

To change the border width of a given window, use XSetWindowBorderWidth.

XSetWindowBorderWidth(d~pl~, w, width)
Display *d~pl~ i
Window wi
unsigned int width i

display Specifies the connection to the X server.

Specifies the window. w

width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window's border width to
the specified width.

XSetWindowBorderWidth can generate a BadWindow error.

3.8 Changing Window Stacking Order

Xlib provides functions that you can use to raise, lower, circulate, or restack windows.

To raise a window so that no sibling window obscures it, use XRaiseWindow.

XRaiseWindow(d~pl~, w)
Display *d~pl~ i
Window Wi

display Specifies the connection to the X server.

w Specifies the window.

The XRaiseWindow function raises the specified window to the top of the stack so that
no sibling window obscures it. If the windows are regarded as overlapping sheets of paper
stacked on a desk, then raising a window is analogous to moving the sheet to the top of the
stack but leaving its x and y location on the desk constant. Raising a mapped window may
generate Expose events for the window and any mapped subwindows that were formerly
obscured.

Window Functions 3 -25

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no processing is performed. Otherwise, the window is
raised.

XRaiseWindow can generate a BadWindow error.

To lower a window so that it does not obscure any sibling windows, use XLowerWindow.

XLowerWindow(d~pl~, w)
Display *d~pl~;
Window w;

display

w

Specifies the connection to the X server.

Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of the stack so
that it·does not obscure any sibling windows. If the windows are regarded as overlapping
sheets of paper stacked on a desk, then lowering a window is analogous to moving the
sheet to the bottom of the stack but leaving its x and y location on the desk constant.
Lowering a mapped window will generate Expose events on any windows it formerly
obscured.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureReques t event, and no processing is performed. Otherwise, the window is
lowered to the bottom of the stack.

XLowerWindow can generate a BadWindow error.

To circulate a subwindow up or down, use XCirculateSubwindows.

XCirculateSubwindows (displ~, w, direction)
Display *d~pl~;
Window w;
int direction;

display

w

direction

Specifies the connection to the X server.

Specifies the window.

Specifies the direction (up or down) that you want to circulate the window.
You can pass RaiseLowest or LowerHighest.

3 -26 Window Functions

The XCirculateSubwindows function circulates children of the specified window in
the specified direction. If you specify RaiseLowest, XCirculateSubwindows
raises the lowest mapped child (if any) that is occluded by another child to the top of the
stack. If you specify LowerHighest, XCirculateSubwindows lowers the highest
mapped child (if any) that occludes another child to the bottom of the stack. Exposure
processing is then performed on formerly obscured windows. If some other client has
selected SubstructureRedirectMask on the window, the X server generates a
CirculateRequest event, and no further processing is performed. If a child is
actually restacked, the X server generates a CirculateNotify event.

XCirculateSubwindows can generate BadValue and BadWindow errors.

To raise the lowest mapped child of a window that is partially or completely occluded by
another child, use XCirculateSubwindowsUp.

XCirculateSubwindowsUp(d~pl~, w)
Display *d~pl~;
Window w;

display

w

Specifies the connection to the X server.

Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child of the
specified window that is partially or completely occluded by another child. Completely
unobscured children are not affected. This is a convenience function equivalent to
XCirculateSubwindows with RaiseLowest specified.

XCirculateSubwindowsUp can generate a BadWindow error.

To lower the highest mapped child of a window that partially or completely occludes
another child, use XCirculateSubwindowsDown.

XCirculateSubwindowsDown (display I w)

Display *d~pl~;
Window w;

display

w

Specifies the connection to the X server.

Specifies the window.

The XCirculateSubwindowsDown function lowers the highest mapped child of the
specified window that partially or completely occludes another child. Completely
unobscured children are not affected. This is a convenience function equivalent to
XCirculateSubwindows with LowerHighest specified.

XCirculateSubwindowsDown can generate a BadWindow error.

Window Functions 3 -27

To restack a set of windows from top to bottom, use XRestackWindows.

XRes tackWindows (display, windows, nwindows) i
Display *display i
Window windows [] i
int nwindows i

display Specifies the connection to the X server.

windows Specifies an array containing the windows to be restacked.

nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order specified, from top
to bottom. The stacking order of the first window in the windows array is unaffected, but
the other windows in the array are stacked underneath the first window, in the order of the
array. The stacking order of the other windows is not affected. For each window in the
window array that is not a child of the specified window, a BadMa tch error results.

If the override-redirect attribute of a window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates
ConfigureRequest events for each window whose override-redirect flag is not set,
and no further processing is performed. Otherwise, the windows will be restacked in top
to bottom order.

XRestackWindows can generate a BadWindow error.

3.9 Changing Window Attributes

Xlib provides functions that you can use to set window attributes.
XChangeWindowAttributes is the more general function that allows you to set one
or more window attributes provided by the XSetWindowAttributes structure. The
other functions described in this section allow you to set one specific window attribute,
such as a window's background.

To change one or more attributes for a given window, use
XChangeWindowAttributes.

XChangeWindowAttributes (display, w, valuemask, attributes)
Display *display i
Window wi
unsigned long valuemask i
XSetWindowAttributes *attributes i

display Specifies the connection to the X server.

Specifies the window. w

3 -28 Window Functions

valuemask

attributes

Specifies which window attributes are defined in the attributes argument.
This mask is the bitwise inclusive OR of the valid attribute mask bits. If
valuemask is zero, the attributes are ignored and are not referenced. The
values and restrictions are the same as for XCreateWindow.

Specifies the structure from which the values (as specified by the value
mask) are to be taken. The value mask should have the appropriate bits
set to indicate which attributes have been set in the structure (see section
~~. .

Depending on the valuemask, the XChangeWindowAttributes function uses the
window attributes in the XSetWindowAttributes structure to change the specified
window attributes. Changing the background does not cause the window contents to be
changed. To repaint the window and its background, use XClearWindow. Setting the
border or changing the background such that the border tile origin changes causes the
border to be repainted. Changing the background of a root window to None or
ParentRelative restores the default background pixmap.Changing the border of a
root window to CopyFromParent restores the default border pixmap. Changing the
win-gravity does not affect the current position of the window. Changing the backing-store
of an obscured window to WhenMapped or Always, or changing the backing-planes,
backing-pixel, or save-under of a mapped window may have no immediate effect.
Changing the colormap of a window (that is, defining a new map, not changing the
contents of the existing map) generates a ColormapNotify event. Changing the
colormap of a visible window may have no immediate effect on the screen because the map
may not be installed (see XlnstallColormap). Changing the cursor of a root window
to None restores the default cursor. Whenever possible, you are encouraged to share
colormaps.

Multiple clients can select input on the same window. Their event masks are maintained
separately. When an event is generated, it is reported to all interested clients. However,
only one client at a time can select for SubstructureRedirectMask,
ResizeRedirectMask, and ButtonPressMask. If a client attempts to select any
of these event masks and some other client has already selected one, a BadAccess error
results. There is only one do-not-propagate-mask for a window, not one per client.

XChangeWindowAttributes can generate BadAccess, BadColor,
BadCursor, BadMatch, BadPixmap, BadValue, and BadWindow errors.

To set the background of a window to a given pixel, use XSetWindowBackground.

XSetWindowBackground (display, w, background yixel)
Display *display;
Window w;
unsigned long backgroundyixel;

Window Functions 3 -29

display

w

Specifies the connection to the X server.

Specifies the window.

background yixel Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the window to the
specified pixel value. Changing the background does not cause the window contents to be
changed. XSetWindowBackground uses a pixmap of undefined size filled with the
pixel value you passed. If you try to change the background of an InputOnIy window, a
BadMa tch error results.

XSetWindowBackground can generate BadMatch and BadWindow errors.

To set the background of a window to a given pixmap, use
XSetWindowBackgroundPixmap.

XSetWindowBackgroundPixmap (display, w, background yixmap)
Display *display;
Window w;
Pixmap background yixmap ;

display Specifies the connection to the X server.

Specifies the window. w

backgroundyixmap Specifies the background pixmap, ParentReIative, or None.

The XSetWindowBackgroundPixmap function sets the background pixmap of the
window to the specified pixmap. The background pixmap can immediately be freed if no
further explicit references to it are to be made. If ParentRelative is specified, the
background pixmap of the window's parent is used, or on the root window, the default
background is restored. If you try to change the background of an I npu tOnI y window,
a BadMatch error results. If the background is set to None, the window has no defined
background.

XSetWindowBackgroundPixmap can generate BadMatch, BadPixmap, and
BadWindowerrors.

NOTE

The current contents of the window are not changed by
XSetWindowBackground or
XSetWindowBackgroundPixmap

To change and repaint a window's border to a given pixel, use XSetWindowBorder.

3 -30 Window Functions

XSetWindowBorder (display, w, border yixel)
Display *display;
Window w;
unsigned long border yixel;

display

w

Specifies the connection to the X server.

Specifies the window.

border yixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the pixel value you
specify. Uyou attempt to perform this on an InputOnly window, a BadMatch error
results.

XSetWindowBorder can generate BadMatch and BadWindow errors.

To change and repaint the border tile of a given window, use
XSetWindowBorderPixmap.

XSetWindowBorderPixmap (display, w, border yixmap)
Display *display;
Window w;
Pixmap border yixmap ;

display

w

Specifies the connection to the X server.

Specifies the window.

border yixmap Specifies the border pixmap or CopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the window to
the pixmap you specify. The border pixmap can be freed immediately if no further explicit
references to it are to be made. If you specify CopyFromParent, a copy of the parent
window's border pixmap is used. If you attempt to perform this on an InputOnly
window, a BadMa tch error results.

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and
BadWindow errors.

3.10 Translating Window Coordinates

Applications, mostly window managers, often need to perform a coordinate transformation
from the coordinate space of one window to another window or need to determine which
subwindowa coordinate lies in. XTranslateCoordinates fulfills these needs (and
avoids any race conditions) by asking the X server to perform this operation.

Window Functions 3 ·31

Bool XTranslateCoordinates (display, src w, dest w, src x, src y, dest Y Jeturn ,
dest Y Jeturn, child""jeturn)-

Display *display i
Window src w, dest w i
int src_x, -srcYi -
int *dest _x Jeturn, *dest Y Jeturn i
Window *child Jeturn i

display

src w

dest w

src x
srcy

dest x return
dest y Jeturn

child return

Specifies the connection to the X server.

Specifies the source window.

Specifies the destination window.

Specify the x and y coordinates within the source window.

Return the x and y coordinates within the destination window.

Returns the child if the coordinates are contained in a mapped child of
the destination window.

The XTranslateCoordinates function takes the src x and src y coordinates relative
to the source window's origin and returns these coordinates to dest -x return and
desty_return relative to the destination window's origin. If - -
XTranslateCoordinates returns zero, src wand dest ware on different screens,
and dest x return and dest y return are zero. If the coordinates are contained in a
mapped child of dest_ w, that child is returned to child_return. Otherwise, child_return is
set to None.

XTranslateCoordinates can generate a BadWindow error.

3 -32 Window Functions

Window Information Functions 4
After you connect the display to the X server and create a window, you can use the Xlib
window information functions to:

• Obtain information about a window

• Manipulate property lists

• Obtain and change window properties

• Manipulate selections

4.1 Obtaining Window Information

Xlib provides functions that you can use to obtain information about the window tree, the
window's current attributes, the window's current geometry, or the current pointer
coordinates. Because they are most frequently used by window managers, these functions
all return a status to indicate whether the window still exists.

To obtain the parent, a list of children, and number of children for a given window, use
XQueryTree.

Status XQueryTree (display, w, rootJeturn, parentJeturn, children Jeturn, nchildren Jeturn)
Display *display;
Window w;
Window *root return;
Window *parent return;
Window **chiidren return;
unsigned int *nchildren Jeturn ;

display

w

root return

paTent Jetum

children return

Specifies the connection to the X server.

Specifies the window whose list of children, root, parent, and
number of children you want to obtain.

Returns the root window.

Returns the parent window.

Returns a pointer to the list of children.

Window Information Functions 4 ·1

nchildren return Returns the number of children.

The XQueryTree function returns the root ID, the parent window ID, a pointer to the
list of children windows, and the number of children in the list for the specified window.
The children are listed in current stacking order, from bottommost (first) to topmost
(last). XQueryTree returns zero if it fails and nonzero if it succeeds. To free this list
when it is no longer needed, use XFr e e .

To obtain the current attributes of a given window, use XGetWindowAttributes.

Status XGetWindowAttributes (display, w, window attributes return)
Display *display; --
Window w;
XWindowAttributes *window _attributes Jeturn ;

display

w

window attributes return

Specifies the connection to the X server.

Specifies the window whose current attributes you want to
obtain.

Returns the specified window's attributes in the
XWindowAttributes structure.

The XGetWindowAttributes function returns the current attributes for the specified
window to an XWindowAttributes structure.

typedef struct {
int x, y;
int width, height;
int border_width;
int depth;
Visual *visual;
Window root;
int class;
int bit_gravity;
int win_gravity;
int backing_store;
unsigned long backing-planes;
unsigned long backing-pixel;
Bool save_under;
Colormap colormap;
Bool map_installed;
int map_state;
long all_event_masks;
long your_event_mask;
long do_not-propagate_mask;
Bool override_redir.ect;
Screen *screen;

XWindowAttributes;

4 - 2 Window Information Functions

1* location of window *1
1* width and height of window *1
1* border width of window *1
1* depth of window *1
1* the associated visual structure *1
1* root of screen containing window *1
1* InputOutput, InputOnly*1
1* one of the bit gravity values *1
1* one of the window gravity values *1
1* NotUseful, WbenMapped, Always *1
1* planes to be preserved if possible */
1* value to be used when restoring planes *1
1* boolean, should bits under be saved? *1
1* color map to be associated with window *1
1* boolean, is color map currently installed*1
1* IsUnmapped, IsUnviewable, IsViewable *1
1* set of events all people have interest in*/
1* my event mask *1
1* set of events that should not propagate *1
1* boolean value for override-redirect *1
1* back pointer to correct screen *1

The x and y members are set to the upper-left outer corner relative to the parent window's
origin. The width and height members are set to the inside size of the window, not
including the border. The border width member is set to the window's border width in
pixels. The depth member is set to the depth of the window (that is, bits per pixel for the
object). The visual member is a pointer to the screen's associated Visual structure. The
root member is set to the root window of the screen containing the window. The class
member is set to the window's class and can be either InputOutput or InputOnly.

The bit_gravity member is set to the window's bit gravity and can be one of the following:

ForgetGravity
NorthWestGravity
NorthGravity
NorthEastGravity
WestGravity
CenterGravity

EastGravity
SouthWestGravity
SouthGravity
SouthEastGravity
StaticGravity

The win gravity member is set to the window's window gravity and can be one of the
following:

UnrnapGravity
NorthWestGravity
NorthGravity
NorthEastGravity
WestGravity
CenterGravity

EastGravity
SouthWestGravity
SouthGravity
SouthEastGravity
StaticGravity

For additional information on gravity, see section 3.2.3.

The backing store member is set to indicate how the X server should maintain the
contents of a window and can be WhenMapped, Always, or NotUseful. The
backingylanes member is set to indicate (with bits set to 1) which bit planes of the
window hold dynamic data that must be preserved in backing_stores and during
save _ unders. The backingyixel member is set to indicate what values to use for planes
not set in backingylanes.

The save under member is set to True or False. The colormap member is set to the
colormap for the specified window and can be a colormap ID or None. The
map installed member is set to indicate whether the colormap is currently installed and
can be True or False. The map_state member is set to indicate the state of the window

Window Information Functions 4 - 3

and can be IsUnmapped, I sUnviewab Ie , or IsViewable. IsUnviewable is
used if the window is mapped but some ancestor is unmapped.

The all event masks member is set to the bitwise inclusive OR of all event masks selected
on the Window by all clients. The your event mask member is set to the bitwise inclusive
OR of all event masks selected by the queryhi'"g client. The do _ notyropagate _mask
member is set to the bitwise inclusive OR of the set of events that should not propagate.

The override redirect member is set to indicate whether this window overrides structure
control facilities and can be True or False. Window manager clients should ignore the
window if this member is True.

The screen member is set to a screen pointer that gives you a back pointer to the correct
screen. This makes it easier to obtain the screen information without having to loop over
the root window fields to see which field matches.

XGetWindowAttributes can generate BadDrawable and BadWindow errors.

To obtain the current geometry of a given drawable, use XGe tGeome try.

S t a tus XGetGeometry (display I d I root return I x return I y return I width return I

height return I border width return I - depth return)-
Display *display; - - - -
Drawable d;
Window *root return ;
int *x _return: *Y Jeturn ;
unsigned int *width return I *height return;
unsigned int *border width return; -
unsigned int *depth Jeturn ;-

display

d

root return

x return
y...!etum

width return
height ...!eturn

border width return - -

Specifies the connection to the X server.

Specifies the drawable, which can be a window or a pixmap.

Returns the root window.

Return the x and y coordinates that define the location of the
drawable. For a window, these coordinates specify the upper­
left outer corner relative to its parent's origin. For pixmaps,
these coordinates are always zero.

Return the drawable's dimensions (width and height). For a
window, these dimensions specify the inside size, not including
the border.

Returns the border width in pixels. If the drawable is a pixmap,
it returns zero.

4 - 4 Window Information Functions

depth .Jeturn Returns the depth of the drawable (bits per pixel for the object).

The XGetGeometry function returns the root window and the current geometry of the
drawable. The geometry of the drawable includes the x and y coordinates, width and
height, border width, and depth. These are described in the argument list. It is legal to
pass to this function a window whose class is InputOnly.

To obtain the root window the pointer is currently on and the pointer coordinates relative
to the root's origin, use XQueryPointer.

Bool XQueryPointer (display, w, root_return, child Jeturn, root _x .,Jeturn, root y _return ,
win _x Jeturn, win y _return, mask_return)

Display *display;
Window w;
Window *root return, *child return;
int. *root J jeturn, *root y]eturn ;
int *Win _x_return, *win y Jeturn ;
unsigned int *mask _return ;

display

w

root return

child return

root x return
root Y .Jeturn

win x return
win y..!eturn

mask return

Specifies the connection to the X server.

Specifies the window.

Returns the root window that the pointer is in.

Returns the child window that the pointer is located in, if any.

Return the pointer coordinates relative to the root window's origin.

Return the pointer coordinates relative to the specified window.

Returns the current state of the modifier keys and pointer buttons.

The XQueryPointer function returns the root window the pointer is logically on and
the pointer coordinates relative to the root window's origin. If XQueryPointer returns
F al s e, the pointer is not on the same screen as the specified window, and
XQueryPointer returns None to child return and zero to win x return and
win y return. If XQueryPointer returns True, the pointer coo;dinates returned to
win = x=return and win _y_return are relative to the origin of the specified window. In this
case, XQueryPointer returns the child that contains the pointer, if any, or else None
to child return.

XQueryPointer returns the current logical state of the keyboard buttons and the
modifier keys in mask return. It sets mask return to the bitwise inclusive OR of one or
more of the button or ~odifier key bitmasks to match the current state of the mouse
buttons and the modifier keys.

Window Information Functions 4 -5

Note that the logical state of a device (as seen through Xlib) may lag the physical state if
device event processing is frozen (see section 7.4).

XQueryPointer can generate a BadWindow error.

4.2 Properties and Atoms

A property is a collection of named, typed data. The window system has a set of
predefined properties (for example, the name of a window, size hints, and so on), and
users can define any other arbitrary information and associate it with windows. Each
property has a name, which is an ISO Latin-l string. For each named property, a unique
identifier (atom) is associated with it. A property also has a type, for example, string or
integer. These types are also indicated using atoms, so arbitrary new types can be defined.
Data of only one type may be associated with a single property name. Clients can store
and retrieve properties associated with windows. For efficiency reasons, an atom is used
rather than a character string. XlnternAtom can be used to obtain the atom for
property names.

A property is also stored in one of several possible formats. The X server can store the
information as 8-bit quantities, 16-bit quantities, or 32-bit quantities. This permits the X
server to present the data in the byte order that the client expects.

NOTE

If you define further properties of complex type, you must encode
and decode them yourself. These functions must be carefully written
if they are to be portable. For further information about how to
write a library extension, see appendix C.

The type of a property is defined by an atom, which allows for arbitrary extension in this
type scheme.

Certain property names are predefined in the server for commonly used functions. The
atoms for these properties are defined in < Xll/Xa tom. h >. To avoid name clashes
with user symbols, the {,define name for each atom has the XA prefix. For definitions
of these properties, see section 4.3. For an explanation of the functions that let you get and
set much of the information stored in these predefined properties, see chapter 9.

You can use properties to communicate other information between applications. The
functions described in this section let you define new properties and get the unique atom
IDs in your applications.

4 - 6 Window Information Functions

Although any particular atom can have some client interpretation within each of the name
spaces, atoms occur in five distinct name spaces within the protocol:

• Selections

• Property names

• Property types

• Font properties

• Type of a ClientMessage event (none are built into the X server)

The built -in selection property names are:

PRIMARY SECONDARY

The built-in property names are:

CUT BUFFERO
CUT BUFFERl
CUT BUFFER2
CUT BUFFER3
CUT BUFFER4
CUT BUFFERS
CUT BUFFER6
CUT BUFFER7
RGB BEST MAP - -
RGB BLUE MAP - -
RGB DEFAULT MAP - -
RGB GRAY MAP - -

The built-in property types are:

RGB GREEN MAP - -
RGB RED MAP - -
RESOURCE MANAGER
WM CLASS
WM CLIENT MACHINE - -
WM COMMAND
WM HINTS
WM ICON NAME - -
WM ICON SIZE - -
WM NAME
WM NORMAL HINTS - -
WM ZOOM HINTS - -
WM TRANSIENT FOR - -

Window Information Functions 4 -7

ARC
ATOM
BITMAP
CARDINAL
COLORMAP
CURSOR
DRAWABLE
FONT
INTEGER
PIXMAP

POINT
RGB COLOR MAP - -
RECTANGLE
STRING
VISUALID
WINDOW
WM HINTS
WM SIZE HINTS - -

The built-in font property names are:

MIN SPACE
NORM SPACE
MAX SPACE
END SPACE
SUPERSCRIPT X
SUPERSCRIPT Y
SUBSCRIPT X
SUBSCRIPT Y
UNDERLINE POSITION
UNDERLINE THICKNESS
FONT NAME
FULL NAME

STRIKEOUT DESCENT
STRIKEOUT ASCENT
ITALIC ANGLE
X HEIGHT
QUAD_WIDTH
WEIGHT
POINT SIZE
RESOLUTION
COPYRIGHT
NOTICE
FAMILY NAME
CAP HEIGHT

For further information about font properties, see section 6.5.

To return an atom for a given name, use XlnternAtom.

Atom XlnternAtom(display, atom name, only if exists)
Di splay *display; - - -
char *atom name;
Bool only _if exists ;

display

atom name

Specifies the connection to the X server.

Specifies the name associated with the atom you want returned.

Specifies a Boolean value that indicates whether XI n te rnA tom
creates the atom.

4 -8 Window Information Functions

The XlnternAtorn function returns the atom identifier associated with the specified
atom name string. If only if exists is Fa 1 s e, the atom is created if it does not exist.
Therefore, XlnternAtoIi c~n return None. You should use a null-terminated ISO
Latin-1 string for atom name. Case matters; the strings thing, Thing, and thinG all
designate different atOliis. The atom will remain defined even after the client's connection
closes. It will become undefined only when the last connection to the X server closes.

XInternAtorn can generate BadAlloc and BadValue errors.

To return a name for a given atom identifier, use XGetAtomNarne.

char *XGetAtomName (display, atom)
Display *display;
Atom atom;

display Specifies the connection to the X server.

atom Specifies the atom for the property name you want returned.

The XGe tA tomN arne function returns the name associated with the specified atom. To
free the resulting string, call XFr e e .

XGe tAtomNarne can generate a BadAtorn error.

4.3 Obtaining and Changing Window Properties

You can attach a property list to every window. Each property has a name, a type, and a
value (see section 4.2). The value is an array of 8-bit, 16-bit, or 32-bit quantities, whose
interpretation is left to the clients.

Xlib provides functions that you can use to obtain, change, update, or interchange window
properties. In addition, Xlib provides other utility functions for predefined property
operations (see chapter 9).

To obtain the type, format, and value of a property of a given window, use
XGetWindowProperty.

Window Information Functions 4 - 9

int XGetWindowProperty (display, w, property, long offset, long length, delete, req type,
actual_type _return, actual Jonnat Jeturn ~ nitems _return, bytes_after _return ,
prop Jeturn)

Display *display;
Window w;
Atom property ;
long long offset, long length;
Boo 1 delete; -
Atom req_type;
Atom *actual type return;
int *actualJonnai _return ;
uns igned long *nitems return;
uns igned long *bytes Jifter Jeturn ;
unsigned char **prop Jeturn;

display Specifies the connection to the X server.

w

property

Specifies the window whose property you want to obtain.

Specifies the property name.

long}ength

delete

actual Jonnat ..!etum

nitems return

Specifies the offset in the specified property (in 32-bit
quantities) where the data is to be retrieved.

Specifies the length in 32-bit multiples of the data to be
retrieved.

Specifies a Boolean value that determines whether the
property is deleted.

Specifies the atom identifier associated with the property type
or AnyPropertyType.

Returns the atom identifier that defines the actual type of the
property.

Returns the actual format of the property.

Returns the actual number of 8-bit, 16-bit, or 32-bit items
stored in the prop_return data.

Returns the number of bytes remaining to be read in the
property if a partial read was performed.

prop ...!etum Returns a pointer to the data in the specified format.

The XGetWindowProperty function returns the actual type of the property; the actual
format of the property; the number of 8-bit, 16-bit, or 32-bit items transferred; the number
of bytes remaining to be read in the property; and a pointer to the data actually returned.
XGetWindowProperty sets the return arguments as follows:

4 -10 Window Information Functions

• If the specified property does not exist for the specified window,
XGetWindowProperty returns None to actual type return and the value zero
to actual format return and bytes after return. The nitems return argument is..
empty. I~ this cciSe, the delete argument is ignored. -

• If the specified property exists but its type does not match the specified type,
XGetWindowProperty returns the actual property type to actual type return,
the actual property format (never zero) to actual_format_return, and the property
length in bytes (even if the actual format return is 16 or 32) to bytes after return.
It also ignores the delete argumeii't. The ;items_return argument is emptY.

• If the specified property exists and either you assign AnyPropertyType to the
re<L type argument or the specified type matches the actual property type,
XGetWindowProperty returns the actual property type to actual type return
and the actual property format (never zero) to actual format return. It also returns
a value to bytes _ after_return and nitems _return, by defining the following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

1 = 4 * long_offset
T = N-I
L = MINIMUM(T,4 * long length)
A = N - (I + L)

The returned value starts at byte index I in the property (indexing from zero), and its
length in bytes is L. If the value for long offset causes L to be negative, a
BadVal ue error results. The value of bYtes after return is A, giving the number of
trailing unread bytes in the stored property. - -

XGetWindowProperty always allocates one extra byte in prop return (even if the
property is zero length) and sets it to ASCII null so that simple properties consisting of
characters do not have to be copied into yet another string before use. If delete is True
and bytes_after _return is zero, XGetWindowProperty deletes the property from the
window and generates a PropertyNotify event on the window.

The function returns Success if it executes successfully. To free the resulting data, use
XFree.

XGetWindowProperty can generate BadAtom, BadValue, and BadWindow
errors.

To obtain a given window's property list, use XListProperties.

Atom *XListProperties (display, w, num 'prop Jeturn)
Display *display;
Window w;
int *num 'prop _return ;

Window Information Functions 4 -11

display Specifies the connection to the X server.

w Specifies the window whose property list you want to obtain.

num yrop ..!etum Returns the length of the properties array.

The XListProperties function returns a pointer to an array of atom properties that
are defined for the specified window or returns NULL if no properties were found. To
free the memory allocated by this function, use XFree.

XListProperties can generate a BadWindow error.

To change a property of a given window, use XChangeProperty.

XChangeProperty (display, w, property, type, format, mode, data, nelements)
Display *display;
Window w;
Atom property, type;
int format;
int mode;
unsigned char *data;
int nelements;

display Specifies the connection to the X server.

w

property

type

Jonnat

mode

data

Specifies the window whose property you want to change.

Specifies the property name.

Specifies the type of the property. The X server does not interpret the type
but simply passes it back to an application that later calls
XGetWindowProperty.

Specifies whether the data should be viewed as a list of 8-bit, 16-bit, or 32-
bit quantities. Possible values are 8, 16, and 32. This information allows the
X server to correctly perform byte-swap operations as necessary. If the
format is 16-bit or 32-bit, you must explicitly cast your data pointer to a
(char *) in the call to XChangeProperty.

Specifies the mode of the operation. You can pass PropModeReplace,
PropModePrepend,orPropModeAppend.

Specifies the property data.

nelements Specifies the number of elements of the specified data format.

The XChangeProperty function alters the property for the specified window and
causes the X server to generate a PropertyNotify event on that window.
XChangeProperty performs the following:

4 -12 Window Information Functions

• If mode is PropModeReplace, XChangeProperty discards the previous
property value and stores the new data .

• If mode is PropModePrepend or PropModeAppend, XChangeProperty
inserts the specified data before the beginning of the existing data or onto the end of
the existing data, respectively. The type and format must match the existing property
value, or a BadMa tch error results. If the property is undefined, it is treated as
defined with the correct type and format with zero-length data.

The lifetime of a property is not tied to the storing client. Properties remain until explicitly
deleted, until the window is destroyed, or until the server resets. For a discussion of what
happens when the connection to the X server is closed, see section 2.5. The maximum size
of a property is server dependent and can vary dynamically depending on the amount of
memory the server has available. (If there is insufficient space, a BadAlloc error
results.)

XChangeProperty can generate BadAlloc, BadAtom, BadMatch, BadValue,
and BadWindow errors.

To rotate a window's property list, use XRotateWindowProperties.

XRotateWindowProperties (display, w, properties, num "prop, npositio11S)
Display *display;
Window w;
Atom properties [] ;
int num "prop;
int npositions;

display

w

properties

numyrop

npositions

Specifies the connection to the X server.

Specifies the window.

Specifies the array of properties that are to be rotated.

Specifies the length of the properties array.

Specifies the rotation amount.

The XRotateWindowProperties function allows you to rotate properties on a
window and causes the X server to generate PropertyNotify events. If the property
names in the properties array are viewed as being numbered starting from zero and if
there are num yrop property names in the list, then the value associated with property
name I becomes the value associated with property name (I + npositions) mod N for all 1
from zero to N - 1. The effect is to rotate the states by npositions places around the virtual
ring of property names (right for positive npositions, left for negative npositions). If
npositions mod N is nonzero, the X server generates a PropertyNotify event for each

Window Information Functions 4 -13

property in the order that they are listed in the array. If an atom occurs more than once in
the list or no property with that name is defined for the window, a BadMa tch error
results. If a BadAtom or BadMatch error results, no properties are changed.

XRotateWindowProperties can generate BadAtom, BadMatch, and
BadWindowerrors.

To delete a property on a given window, use XDeleteProperty.

XDeleteProperty (display, w, property)
Display "'display i
Window Wi

Atom property i

display

w

property

Specifies the connection to the X server.

Specifies the window whose property you want to delete.

Specifies the property name.

The XDeleteProperty function deletes the specified property only if the property was
defined on the specified window and causes the X server to generate a
PropertyNotify event on the window unless the property does not exist.

XDeleteProperty can generate BadAtom and BadWindow errors.

4.4 Selections

Selections are one method used by applications to exchange data. By using the property
mechanism, applications can exchange data of arbitrary types and can negotiate the type of
the data. A selection can be thought of as an indirect property with a dynamic type. That
is, rather than having the property stored in the X server, the property is maintained by
some client (the owner). A selection is global in nature (considered to belong to the user
but be maintained by clients) rather than being private to a particular window subhierarchy
or a particular set of clients.

Xlib provides functions that you can use to set, get, or request conversion of selections.
This allows applications to implement the notion of current selection, which requires that
notification be sent to applications when they no longer own the selection. Applications
that support selection often highlight the current selection and so must be informed when
another application has acquired the selection so that they can unhighlight the selection.

4 -14 Window Information Functions

When a client asks for the contents of a selection, it specifies a selection target type. This
target type can be used to control the transmitted representation of the contents. For
example, if the selection is "the last thing the user clicked on" and that is currently an
image, then the target type might specify whether the contents of the image should be sent
in XY format or Z format.

The target type can also be used to control the class of contents transmitted, for example,
asking for the "looks" (fonts, line spacing, indentation, and so forth) of a paragraph
selection, not the text of the paragraph. The target type can also be used for other
purposes. The protocol does not constrain the semantics.

To set the selection owner, use XSetSelectionOwner.

XSetSelectionOwner (display, selection, owner, time)
Display *display;
Atom selection;
Window owner;
Time time;

display

selection

Specifies the connection to the X server.

Specifies the selection atom.

owner

time

Specifies the owner of the specified selection atom. You can pass a window
or None.

Specifies the time. You can pass either a timestamp or CurrentTime.

The XSetSelectionOwner function changes the owner and last-change time for the
specified selection and has no effect if the specified time is earlier than the current last­
change time of the specified selection or is later than the current X server time.
Otherwise, the last-change time is set to the specified time, with CurrentTime replaced
by the current server time. If the owner window is specified as None, then the owner of
the selection becomes None (that is, no owner). Otherwise, the owner of the selection
becomes the client executing the request.

If the new owner (whether a client or None) is not the same as the current owner of the
selection and the current owner is not None, the current owner is sent a
SelectionClear event. If the client that is the owner of a selection is later terminated
(that is, its connection is closed) or if the owner window it has specified in the request is
later destroyed, the owner of the selection automatically reverts to None, but the last­
change time is not affected. The selection atom is uninterpreted by the X server.
XGetSelectionOwner returns the owner window, which is reported in
SelectionRequest and SelectionClear events. Selections are global to the X
server.

XSetSelectionOwner can generate BadAtom and BadWindow errors.

Window Information Functions 4 -15

To return the selection owner, use XGetSelectionOwner.

Window XGetSelectionOwner (display, selection)
Display *display;
Atom selection;

display Specifies the connection to the X server.

selection Specifies the selection atom whose owner you want returned.

The XGetSelectionOwner function returns the windowID associated with the
window that currently owns the specified selection. If no selection was specified, the
function returns the constant None. If None is returned, there is no owner for the
selection.

XGetSelectionOwner can generate a BadAtom error.

To request conversion of a selection, use XConvertSelection.

XConvertSelection (display, selection, target, property, requestor, time)
Display *display;
Atom selection, target;
Atom property;
Window requestor;
Time time;

display

selection

target

property

requestor

time

Specifies the connection to the X server.

Specifies the selection atom.

Specifies the target atom.

Specifies the property name. You also can pass None.

Specifies the requestor.

Specifies the time. You can pass either a timestamp or CurrentTime.

XConvertSelection requests that the specified selection be converted to the
specified target type:

• If the specified selection has an owner, the X server sends a SelectionRequest
event to that owner.

• If no owner for the specified selection exists, the X server generates a
SelectionNotify event to the requestor with property None.

In either event, the arguments are passed on unchanged. There are two predefined
selection atoms: PRIMARY and SECONDARY.

XConvertSelection can generate BadAtom and BadWindow errors.

4 -16 Window Information Functions

Graphics Resource Functions 5
After you connect your program to the X server by calling XOpenDisplay, you can use
the Xlib graphics resource functions to:

• Create, copy, and destroy colormaps

• Allocate, modify, and free color cells

• Read entries in a colormap

• Create and free pixmaps

• Create, copy, change, and destroy graphics contexts

A number of resources are used when performing graphics operations in X. Most
information about performing graphics (for example, foreground color, background color,
line style, and so on) are stored in resources called graphics contexts (GC). Most graphics
operations (see chapter 6) take a GC as an argument. Although in theory it is possible to
share GCs between applications, it is expected that applications will use their own GCs
when performing operations. Sharing of GCs is highly discouraged because the library may
cache GC state.

Each X window always has an associated colormap that provides a level of indirection
between pixel values and colors displayed on the screen. Many of the hardware displays
built today have a single colormap, so the primitives are written to encourage sharing of
colormap entries between applications. Because colormaps are associated with windows,
X will support displays with multiple colormaps and, indeed, different types of colormaps.
If there are not sufficient colormap resources in the display, some windows may not be
displayed in their true colors. A client or window manager can control which windows are
displayed in their true colors if more than one colormap is required for the color resources
the applications are using.

Off-screen memory or pixmaps are often used to define frequently used images for later
use in graphics operations. Pixmaps are also used to define tiles or patterns for use as
window backgrounds, borders, or cursors. A single bit -plane pixmap is sometimes referred
to as a bitmap.

Note that some screens have very limited off-screen memory. Therefore, you should
regard off-screen memory as a precious resource.

Graphics Resource Functions 5 -1

Graphics operations can be performed to either windows or pixmaps, which collectively
are called drawables. Each drawable exists on a single screen and can only be used on that
screen. GCs can also only be used with drawables of matching screens and depths.

5.1 Colormap Functions

Xlib provides functions that you can use to manipulate a colormap. This section discusses
how to:

• Create, copy, and destroy a colormap

• Allocate, modify, and free color cells

• Read entries in a colormap

The following functions manipulate the representation of color on the screen. For each
possible value that a pixel can take in a window, there is a color cell in the colormap. For
example, if a window is 4 bits deep, pixel values 0 through 15 are defined. A colormap is a
collection of color cells. A color cell consists of a triple of red, green, and blue. As each
pixel is read out of display memory, its value is taken and looked up in the colormap. The
values of the cell determine what color is displayed on the screen. On a multiplane display
with a black-and-white monitor (with grayscale but not color), these values can be
combined to determine the brightness on the screen.

Screens always have a default colormap, and programs typically allocate cells out of this
colormap. You should not write applications that monopolize color resources. On a
screen that either cannot load the colormap or cannot have a fully independent colormap,
only certain kinds of allocations may work. Depending on the hardware, one or more
colormaps may be resident (installed) at one time. To install a colormap, use
XlnstallColorrnap. The DefaultColorrnap macro returns the default colormap.
The Defaul tVisual macro returns the default visual type for the specified screen.
Colormaps are local to a particular screen. Possible visual types are StaticGray,
GrayScale, StaticColor,PseudoColor,TrueColor,orDirectColor (see
section 3.1).

The functions discussed in this section operate on an XColor structure, which contains:

typedef struct {
unsigned long pixel; /* pixel value */
unsigned short red, green, blue;/* rgb values */
char flags; /* DaRed, DoGreen, DoBlue */
char pad;

} XColor;

5 -2 Graphics Resource Functions

The red, green, and blue values are scaled between 0 and 65535. Full color brightness is a
value of 65535, independent of the number of bits actually used in the display hardware.
Half brightness in a color is a value of 32767, and off is o. This representation gives
uniform results for color values across different screens. In some functions, the flags
member controls which of the red, green, and blue members is used and can be one or
more of DoRed, DoGreen, and DoBlue.

The members of the Visual structure that are pertinent to the discussion of
XCreateColorrnap are class, red mask, green mask, blue mask, and map entries.
The class member specifies the screen class and can be GrayScale, PseudoColor,
DirectColor, StaticColor, StaticGray, or TrueColor. The red mask,
green mask, and blue mask members specify the color mask values. The map entries
member specifies the ~umber of color map entries. The class member constant
determines whether the initial values for map entries are defined. If the class member is
GrayScale, PseudoColor, or DirectColor, the initial values for map entries
are undefined. However, if the class member is StaticColor, StaticGray, or
TrueColor, map entries has initial values that are defined. However, these values are
specific to the visual type and are not defined by the X server.

The class member constant also determines the constant you can pass to the alloc
argument:

• If the class member is StaticGray, StaticColor, or TrueColor, you must
pass AllocNone. Otherwise, a BadMatch error is generated .

• If the class member is any other class, you can pass AllocN one. In this case, the
color map has no values defined for map entries. This allows you and other clients
to allocate the entries in the color map. You can also pass AllocA11. In this case,
XCreateColormap allocates the entire color map as writable. The initial values
of all map entries are undefined. You cannot free any of these map entries with a
call to the function XFreeColors. -

When using AllocAll for a color map class of GrayScale or PseudoColor,
the processing simulates a call to the function XAllocColorCells, where
XAllocColorCells returns all pixel values from zero to N - 1. The value N
represents the map_entries value in the specified Visual structure. For a color
map class of DirectColor, the processing simulates a call to the function
XAllocColorPlanes, where XAllocColorPlanes returns a pixel value of
zero and rmask, gmask, and bmask values containing the same bits as the red mask,
green_mask, and blue_mask members in the specified Visual structure. -

Graphics Resource Functions 5 -3

The introduction of color alters the view a programmer should take when dealing with a
bitmap display. For example, when printing text, you write a pixel value, which is defined
as a specific color, rather than setting or clearing bits. Hardware will impose limits (the
number of significant bits, for example) on these values. Typically, one allocates color cells
or sets of color cells. If read-only, the pixel values for these colors can be shared among
multiple applications, and the RGB values of the cell cannot be changed. If read/write,
they are exclusively owned by the program, and the color cell associated with the pixel
value may be changed at will.

5.1.1 Creating, Copying, and Destroying Colormaps

To create a colormap for a screen, use XCreateColormap.

Colormap XCreateColormap (display, w, visual, alloc)
Display *display;
Window w;
Visual *visual;
int alloc;

display Specifies the connection to the X server.

w

visual

alloc

Specifies the window on whose screen you want to create a colormap.

Specifies a pointer to a visual type supported on the screen. If the visual type
is not one supported by the screen, a BadMa tch error results.

Specifies the colormap entries to be allocated. You can pass AllocNone or
AllocAll.

The XCreateColormap function creates a colormap of the specified visual type for the
screen on which the specified window resides and returns the colormap ID associated with
it. Note that the specified window is only used to determine the screen.

The initial values of the colormap entries are undefined for the visual classes
GrayScale, PseudoColor, and DirectColor. For StaticGray,
StaticColor, and TrueColor, the entries have defined values, but those values are
specific to the visual and are not defined by X. For S ta t icGr ay, S ta t iceo lor, and
TrueColor, alloc must be AllocNone, or a BadMatch error results. For the other
visual classes, if alloc is AllocNone, the colormap initially has no allocated entries, and
clients can allocate them. For information about the visual types, see section 3.1.

If alloe is AllocAll, the entire colormap is allocated writable. The initial values of all
allocated entries are undefined. For GrayScale and PseudoColor, the effect is as if
an XAllocColorCells call returned all pixel values from zero to N - 1, where N is the
colormap entries value in the specified visual. For DirectColor, the effect is as if an

5 - 4 Graphics Resource Functions

XAllocColorPlanes call returned a pixel value of zero and red_mask, green_mask,
and blue mask values containing the same bits as the corresponding masks in the specified
visual. However, in all cases, none of these entries can be freed by using XFreeColors.

XCreateColorrnap can generate BadAlloc, BadMatch, BadValue, and
BadWindow errors.

To create a new colormap when the allocation out of a previously shared colormap has
failed because of resource exhaustion, use XCopyColorrnapAndFree.

Colormap XCopyColormapAndFree(d~pl~, colonn~)
Display *display;
Colormap colonn~;

display Specifies the connection to the X server.

colonnap Specifies the colormap.

The XCopyCo 10 rrnapAndFree function creates a colormap of the same visual type and
for the same screen as the specified colormap and returns the new colormap ID. It also
moves all of the client's existing allocatiqn from the specified colormap to the new
colormap with their color values intact and their read-only or writable characteristics intact
and frees those entries in the specified colormap. Color values in other entries in the new
colormap are undefined. If the specified colormap was created by the client with alloc set
to AllocAll, the new colormap is also created with AllocAll, all color values for all
entries are copied from the specified colormap, and then all entries in the specified
colormap are freed. If the specified colormap was not created by the client with
AllocAll, the allocations to be moved are all those pixels and planes that have been
allocated by the client using XAllocColor, XAllocNarnedColor,
XAllocColorCells, or XAllocColorPlanes and that have not been freed since
they were allocated.

XCopyColorrnapAndFree can generate BadAlloc and BadColor errors.

To set the colormap of a given window, use XSetWindowColorrnap.

XSetWindowColormap (display, w, colonnap)
Display *d~play;
Window w;
Colormap colonn~;

display

w

colonnap

Specifies the connection to the X server.

Specifies the window.

Specifies the colormap.

Graphics Resource Functions 5 . 5

The XS e tW i ndowCo 1 0 rma p function sets the specified colormap of the specified
window. The colormap must have the same visual type as the window, or a BadMa tch
error results.

XSetWindowColormap can generate BadColor, BadMatch, and BadWindow
errors.

To destroy a colormap, use XFreeColormap.

XFreeColormap (display, colonnap)
Display *display i
Colormap colonnap i

display

colonnap

Specifies the connection to the X server.

Specifies the colormap that you want to destroy.

The XFreeColormap function deletes the association between the colormap resource
ID and the colormap and frees the colormap storage. However, this function has no effect
on the default colormap for a screen. If the specified colormap is an installed map for a
screen, it is uninstalled (see XUnins tallColormap). If the specified colormap is
defined as the colormap for a window (by XCreateWindow, XSetWindowColormap,
or XChangeWindowAttributes), XFreeColormap changes the colormap
associated with the window to None and generates a ColormapNotify event. X does
not define the colors displayed for a window with a colormap of None.

XFreeColormap can generate a BadColor error.

5.1.2 Allocating, Modifying, and Freeing Color Cells

There are two ways of allocating color cells: explicitly as read-only entries by pixel value or
read/write, where you can allocate a number of color cells and planes simultaneously. The
read/write cells you allocate do not have defined colors until set with XStoreColor or
XS toreColors.

To determine the color names, the X server uses a color database. Although you can
change the values in a read/write color cell that is allocated by another application, this is
considered "antisocial" behavior.

To allocate a read-only color cell, use XAllocCo lor.

Status XAllocColor (display, colormap, screen _in_out)
Display *display i
Colormap colonnap i
XColor *screen _in_out i

display Specifies the connection to the X server.

5 - 6 Graphics Resource Functions

c%nnap Specifies the colormap.

screen in out Specifies and returns the values actually used in the colormap.

The XAllocColor function allocates a read-only colormap entry corresponding to the
closest RGB values supported by the hardware. XAllocColor returns the pixel value of
the color closest to the specified RGB elements supported by the hardware and returns the
RGB values actually used. The corresponding colormap cell is read-only. In addition,
XAll oc Color returns nonzero if it succeeded or zero if it failed. Read-only colormap
cells are shared among clients. When the last client de allocates a shared cell, it is
deallocated. XAllocColor does not use or affect the flags in the XColor structure.

XAllocColor can generate a BadColor error.

To allocate a read-only color cell by name and return the closest color supported by the
hardware, use XAllocNamedColor.

Sta tus XAllocN amedCo lor (display, colormap, color_name, screen _ deLretum, exact_de! Jetum)
Display *display;
Colormap colormap;
char *color name;
XCo lor *screen _de! Jetum, *exact _de! Jetum ;

display

colonnap

color name

screen _de! ..!etum

exact_de! ..!etum

Specifies the connection to the X server.

Specifies the colormap.

Specifies the color name string (for example, red) whose color
definition structure you want returned.

Returns the closest RGB values provided by the hardware.

Returns the exact RGB values.

The XAllocNamedColor function looks up the named color with respect to the screen
that is associated with the specified colormap. It returns both the exact database definition
and the closest color supported by the screen. The allocated color cell is read-only. You
should use the ISO Latin-l encoding; uppercase and lowercase do not matter.

XAllocNamedColor can generate a BadColor error.

To look up the name of a color, use XLookupColor.

Status XLookupColor (display, colormap, color_name, exact_de! Jetum, screen _ defJetum)
Display *display;
Colormap colormap;
char *color name;
XColor *exact _deL return, *screen _deL return ;

display Specifies the connection to the X server.

Graphics Resource Functions 5 -7

colormap

color name

exact_de! ..!etum

screen _de! ..!etum

Specifies the colormap.

Specifies the color name string (for example, red) whose color
definition structure you want returned.

Returns the exact RGB values.

Returns the closest RGB values provided by the hardware.

The XLookupColor function looks up the string name of a color with respect to the
screen associated with the specified colormap. It returns both the exact color values and
the closest values provided by the screen with respect to the visual type of the specified
colormap. You should use the ISO Latin-l encoding; uppercase and lowercase do not
matter. XLookupColor returns nonzero if the name existed in the color database or
zero if it did not exist.

To allocate read/write color cell and color plane combinations for a PseudoColor
model, use XAllocColorCells.

Status XAllocColorCells (display, colormap, contig, plane_masksJeturn, nplanes,
pixels Jeturn, npixels)

Display *display;
Colormap colormap;
Bool contig;
unsigned long plane masks return [] ;
unsigned int nplanes; -
unsigned long pixels return [] ;
unsigned int npixels-:'

display

colormap

contig

plane _mask ..!etum

nplanes

pixels ..!etum

npixels

Specifies the connection to the X server.

Specifies the colormap.

Specifies a Boolean value that indicates whether the planes must
be contiguous. .

Returns an array of plane masks.

Specifies the number of plane masks that are to be returned in the
plane masks array.

Returns an array of pixel values.

Specifies the number of pixel values that are to be returned in the
pixels_return array.

5 - 8 Graphics Resource Functions

The XAllocColorCells function allocates read/write color cells. The number of
colors must be positive and the number of planes nonnegative, or a BadValue error
results. If ncolors and nplanes are requested, then ncolors pixels and nplane plane masks
are returned. No mask will have any bits set to 1 in common with any other mask or with
any of the pixels. By ORing together each pixel with zero or more masks, ncolors * 2np1anes

distinct pixels can be produced. All of these are allocated writable by the request. For
GrayScale or PseudoColor, each mask has exactly one bit set to 1. For
DirectColor, each has exactly three bits set to 1. If contig is True and if all masks are
ORed together, a single contiguous set of bits set to 1 will be formed for GrayScale or
PseudoColor and three contiguous sets of bits set to 1 (one within each pixel subfield)
for DirectColor. The RGB values of the allocated entries are undefined.
XAllocColorCells returns nonzero if it succeeded or zero if it failed.

XAllocColorCells can generate BadColor and BadValue errors.

To allocate read/write color resources for a Direc tColor model, use
XAllocColorPlanes.

Status XAllecCelerPlanes (display, colormap, contig, pixels return, ncolors, nreds, ngreens,
nblues, rmask ..!eturn, gmask ..!eturn, bmask ..!eturn)

Display *display i
Colormap colormap i
Beel contig i
unsigned long pixels return [] i
int ncolors i -

int nreds, ngreens, nblues i
unsigned long *rmask ..!eturn, *gmask ..!eturn, *bmask ..!eturn i

display

c%nnap

contig

nc%rs

nreds
ngreens
nb/ues

Specifies the connection to the X server.

Specifies the colormap.

Specifies a Boolean value that indicates whether the planes must be
contiguous.

Returns an array of pixel values. XAllocColorPlanes returns the
pixel values in this array.

Specifies the number of pixel values that are to be returned in the
pixels_return array.

Specify the number of red, green, and blue planes. The value you pass
must be nonnegative.

Graphics Resource Functions 5 - 9

nnask return
gmaskJeturn
bmask return Return bit masks for the red, green, and blue planes.

The specified ncolors must be positive; and nreds, ngreens, and nblues must be
nonnegative, or a BadVa 1 ue error results. If ncolors colors, nreds reds, ngreens greens,
and nblues blues are requested, ncolors pixels are returned; and the masks have nreds,
ngreens, and nblues bits set to 1, respectively. If contig is True, each mask will have a
contiguous set of bits set to 1. No mask will have any bits set to 1 in common with any
other mask or with any of the pixels. For D i rec tco lor, each mask will lie within the
corresponding pixel subfield. By DRing together subsets of masks with each pixel value,
ncolors * 2(nreds +ngreens +nblues) distinct pixel values can be produced. All of these are
allocated by the request. However, in the colormap, there are only ncolors * ~ds
independent red entries, ncolors * 2"greens independent green entries, and ncolors * 2"'blues

independent blue entries. This is true even for PseudoColor. When the colormap entry
of a pixel value is changed (using XStoreColors, XStoreColor, or
XStoreNamedColor), the pixel is decomposed according to the masks, and the
corresponding independent entries are updated. XAllocColorPlanes returns
nonzero if it succeeded or zero if it failed.

XAllocColorPlanes can generate BadColor and BadValue errors.

To store RGB values into colormap cells, use XStoreColors.

XStoreColors (display, colormap, color, ncolors)
Display *display;
Colormap colormap;
XColor color [] ;
int ncolors;

display

colonnap

color

Specifies the connection to the X server.

Specifies the colormap.

Specifies an array of color definition structures to be stored.

ncolors Specifies the number of XColor structures in the color definition array.

The XStoreColors function changes the colormap entries of the pixel values specified
in the pixel members of the XColor structures. You specify which color components are
to be changed by setting DoRed, DoGreen, or DoBlue in the flags member of the
XColor structures. If the colormap is an installed map for its screen, the changes are
visible immediately. XStoreColors changes the specified pixels if they are allocated
writable in the colormap by any client, even if one or more pixels generates an error. If a
specified pixel is not a valid index into the colormap, a BadValue error results. If a
specified pixel either is unallocated or is allocated read-only, a BadAccess error results.
If more than one pixel is in error, the one that gets reported is arbitrary.

5 -10 Graphics Resource Functions

XStoreColors can generate BadAccess, BadColor, and BadValue errors.

To store an RGB value in a single colormap cell, use XStoreColor.

XStoreColor (display, colonnap, color)
Display *display;
Colormap colonnap;
XColor *color;

display

colormap

color

Specifies the connection to the X server.

Specifies the colormap.

Specifies the pixel and RGB values.

The XStoreColor function changes the colormap entry of the pixel value specified in
the pixel member of the XColor structure. You specified this value in the pixel member
of the XColor structure. This pixel value must be a read/write cell and a valid index into
the colormap. If a specified pixel is not a valid index into the colormap, a BadValue
error results. XStoreColor also changes the red, green, or blue color components.
You specify which color components are to be changed by setting DoRed, DoGreen, or
DoBlue in the flags member of the XColor structure. If the colormap is an installed
map for its screen, the changes are visible immediately.

XStoreColor can generate BadAccess, BadColor, and BadValue errors.

To set the color of a pixel to a named color, use XStoreNamedColor.

XStoreNamedColor (display, colonnap, color, pixel, flags)
Display *display;
Colormap colonnap;
char *color;
unsigned long pixel;
int flags;

Specifies the connection to the X server.

Specifies the colormap.

display

coJormap

color

pixel

flags

Specifies the color name string (for example, red).

Specifies the entry in the colormap.

Specifies which red, green, and blue components are set.

Graphics Resource Functions 5 -11

The XStoreNamedColor function looks up the named color with respect to the screen
associated with the colormap and stores the result in the specified colormap. The pixel
argument determines the entry in the colormap. The flags argument determines which of
the red, green, and blue components are set. You can set this member to the bitwise
inclusive OR of the bits DoRed, DoGreen, and DoBlue. If the specified pixel is not a
valid index into the colormap, a BadValue error results. If the specified pixel either is
unallocated or is allocated read-only, a BadAccess error results. You should use the
ISO Latin-l encoding; uppercase and lowercase do not matter.

XStoreNamedColor can generate BadAccess, BadColor, BadName, and
BadValue errors.

To free colormap cells, use XFreeColors.

XFreeColors (display, colonnap, pixels, npixels, planes)
Display *display;
Colormap colonnap;
unsigned long pixels [] ;
int npixels;
unsigned long planes;

display Specifies the connection to the X server.

colonnap Specifies the colormap.

pixels Specifies an array of pixel values that map to the cells in the specified
colormap.

npixels Specifies the number of pixels.

planes Specifies the planes you want to free.

The XFreeColors function frees the cells represented by pixels whose values are in the
pixels array. The planes argument should not have any bits set to 1 in common with any of
the pixels. The set of all pixels is produced by DRing together subsets of the planes
argument with the pixels. The request frees all of these pixels that were allocated by the
client (using XAllocColor, XAllocNamedColor, XAllocColorCells, and
XAllocColorPlanes). Note that freeing an individual pixel obtained from
XAllocColorPlanes may not actually allow it to be reused until all of its related
pixels are also freed.

All specified pixels that are allocated by the client in the colormap are freed, even if one or
more pixels produce an error. If a specified pixel is not a valid index into the colormap, a
BadValue error results. If a specified pixel is not allocated by the client (that is, is
unallocated or is only allocated by another client), a BadAccess error results. If more
than one pixel is in error, the one that gets reported is arbitrary.

XFreeColors can generate BadAccess, BadColor, and BadValue errors.

5 -12 Graphics Resource Functions

5.1.3 Reading Entries in a Colormap

The XQueryColor and XQueryColors functions return the RGB values stored in the
specified colormap for the pixel value you pass in the pixel member of the XColor
structure(s). The values returned for an unallocated entry are undefined. These functions
also set the flags member in the XColor structure to all three colors. If a pixel is not a
valid index into the specified colormap, a BadValue error results. If more than one pixel
is in error, the one that gets reported is arbitrary.

To query the RGB values of a single specified pixel value, use XQueryColor.

XQueryColor (display, colormap, deLin _out)
Display *display;
Colormap colormap;
XColor *deLin_out;

display

colormap

def_in_out

Specifies the connection to the X server.

Specifies the colormap.

Specifies and returns the RGB values for the pixel specified in the
structure.

The XQueryColor function returns the RGB values for each pixel in the XColor
structures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColor can generate BadColor and BadValue errors.

To query the RGB values of an array of pixels stored in color structures, use
XQueryColors.

XQueryColors (display, colormap, defs _in_out, ncolors)
Display *display;
Colormap colormap;
XColor defs in out [] ;
int ncolors;- -

display

colormap

defs _in_out

ncolors

Specifies the connection to the X server.

Specifies the colormap.

Specifies and returns an array of color definition structures for the pixel
specified in the structure.

Specifies the number of XColor structures in the color definition array.

The XQueryColors function returns the RGB values for each pixel in the XColor
structures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColors can generate BadColor and BadValue errors.

Graphics Resource Functions 5 -13

5.2 Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created. Pixmaps are off­
screen resources that are used for various operations, for example, defining cursors as
tiling patterns or as the source for certain raster operations. Most graphics requests can
operate either on a window or on a pixmap. A bitmap is a single bit-plane pixmap.

To create a pixmap of a given size, use XCreatePixmap.

Pixmap XCreatePixmap (display, d, width, height, depth)
Display *display;
Drawable d;
unsigned int width, height;
unsigned int depth;

display

d

width
height

depth

Specifies the connection to the X server.

Specifies which screen the pixmap is created on.

Specify the width and height, which define the dimensions of the pixmap.

Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and depth you
specified and returns a pixmap ID that identifies it. It is valid to pass an InputOnly
window to the drawable argument. The width and height arguments must be nonzero, or a
BadValue error results. The depth argument must be one of the depths supported by
the screen of the specified drawable, or a BadValue error results.

The server uses the specified drawable to determine on which screen to create the pixmap.
The pixmap can be used only on this screen and only with other drawables of the same
depth (see XCopyPlane for an exception to this rule). The initial contents of the pixmap
are undefined.

XCreatePixmap can generate BadAlloc, BadDrawable, and BadValue errors.

To free all storage associated with a specified pixmap, use XFreePixmap.

XFreePixmap (display, pixmap)
Di splay *display;
Pixmap pixmap ;

display

pixmap

Specifies the connection to the X server.

Specifies the pixmap.

5 -14 Graphics Resource Functions

The XFreePixmap function first deletes the association between the pixmap ID and the
pixmap. Then, the X server frees the pixmap storage when there are no references to it.
The pixmap should never be referenced again.

XFreePixmap can generate a BadPixmap error.

5.3 Manipulating Graphics Context/State
Most attributes of graphics operations are stored in Graphic Contexts (GCs). These
include line width, line style, plane mask, foreground, background, tile, stipple, clipping
region, end style, join style, and so on. Graphics operations (for example, drawing lines)
use these values to determine the actual drawing operation. Extensions to X may add
additional components to GCs. The contents of a GC are private to Xlih.

Xlib implements a write-back cache for all elements of a GC that are not resource IDs to
allow Xlib to implement the transparent coalescing of changes to GCs. For example, a call
to XSetForeground of a GC followed by a call to XSetLineAttributes results in
only a single-change GC protocol request to the server. GCs are neither expected nor
encouraged to be shared between client applications, so this write-back caching should
present no problems. Applications cannot share GCs without external synchronization.
Therefore, sharing GCs between applications is highly discouraged.

To set an attribute of a GC, set the appropriate member of the XGCValues structure and
OR in the corresponding value bitmask in your subsequent calls to XCreateGC. The
symbols for the value mask bits and the XGCValues structure are:

Graphics Resource Functions 5 -15

/* GC attribute value mask bits * /

define GCFunction (IL< <0)
define GCPlaneMask (IL< <1)
#define GCForeground (IL< <2)
define GCBackground (IL< <3)
define GCLineWidth (IL< <4)
define GCLineStyle (IL< <5)
define GCCapStyle (IL< <6)
define GCJoinStyle (IL< <7)
define GCFillStyle (IL< <8)
define GCFillRule (IL< <9)
define GCTile (IL< <10)
define GCStipple (IL< <11)
#define GCTileStipXOrigin (IL< <12)
#define GCTileStipYOrigin (IL< <13)
define GCFont (IL< <14)
define GCSubwindowMode (IL< <15)
#define GCGraphicsExposures (IL< <16)
#define GCClipXOrigin (IL< <17)
define GCClipYOrigin (IL< <18)
define GCClipMask (IL< <19)
#define GCDashOffset (IL< <20)
define GCDashList (IL< <21)
define GCArcMode (IL< <22)

5 -16 Graphics Resource Functions

/* Values */

typedef struct
int function;
unsigned long plane_mask;
unsigned long foreground;
unsigned long background;
int line_width;
int line_style;
int cap_style;
int join_style;
int fill_style;
int fill_rule;
int arc_mode;
Pixmap tile;
Pixmap stipple;
int ts_x_origin;
int ts_y_origin;
Font font;
int subwindow_mode;
Baal graphics_exposures;
int clip_x_origin;
int clip_y_origin;
Pixmap clip_mask;
int dash_offset;
char dashes;

XGCValues;

The default GC values are:

/* logical operation */
/* plane mask */
/* foreground pixel */
/* background pixel */
/* line width (in pixels) */
/* LineSolid, LineOnOffDash, LineDoubleDash */
/* CapNotLast, CapButt, CapRound, CapProjecting */
/* JoinMiter, JoinRound, JoinBevel */
/* FillSolid, FillTiled, FillStippled FillOpaqueStippled'
/* EvenOddRule, WindingRule */
/* ArcChord, ArcPieSlice */
/* tile pixmap for tiling operations */
/* stipple 1 plane pixmap for stippling */
/* offset for tile or stipple operations */

/* default text font for text operations */
/* ClipByChildren, Includelnferiors */
/* boolean, should exposures be generated */
/* origin for clipping */

/* bitmap clipping; other calls for rects */
/* patterned/dashed line information */

Graphics Resource Functions 5 -17

Component

function
plane mask
foreg;ound
background
line width
line=style
cap style
join-style
fill style
fill-rule
arc mode
tile-

stipple
ts _x_origin
ts y origin
fo;t-
subwindow mode
graphics exposures
clip x origin
clip -y - origin
clip-~ask
dash offset
dashes

Default

GXcopy
All ones
o
1
o
LineSolid
CapButt
JoinMiter
FillSolid
EvenOddRule
ArcPieSlice
Pixmap of unspecified size filled with foreground pixel
(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this pixmap)
Pixmap of unspecified size filled with ones
o
o
< implementation dependent>
ClipByChildren
True
o
o
None
o
4 (that is, the list [4,4])

Note that foreground and background are not set to any values likely to be useful in a
window.

The function attributes of a GC are used when you update a section of a drawable (the
destination) with bits from somewhere else (the source). The function in a GC defines how
the new destination bits are to be computed from the source bits and the old destination
bits. GXcopy is typically the most useful because it will work on a color display, but
special applications may use other functions, particularly in concert with particular planes
of a color display. The 16 GC functions, defined in < XII/X. h >, are:

5 -18 Graphics Resource Functions

Function Name Hex Code Operation

GXclear 0x0 0
GXand Ox1 srcAND dst
GXandReverse 0x2 src AND NOT dst
GXcopy 0x3 src
GXandlnverted Ox4 (NOT src) AND dst
GXnoop 0x5 dst
GXxor 0x6 srcXOR dst
GXor Ox7 src OR dst
GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst
GXinvert Oxa NOTdst
GXorReverse Oxb src OR (NOT dst)
GXcopyInverted Oxc NOTsrc
GXorInverted Oxd (NOT src) OR dst
GXnand Oxe (NOT src) OR (NOT dst)
GXset Oxf 1

Many graphics operations depend on either pixel values or planes in a GC. The planes
attribute is of type long, and it specifies which planes of the destination are to be modified,
one bit per plane. A monochrome display has only one plane and will be the least­
significant bit of the word. As planes are added to the display hardware, they will occupy
more significant bits in the plane mask.

In graphics operations, given a source and destination pixel, the result is computed bitwise
on corresponding bits of the pixels. That is, a Boolean operation is performed in each bit
plane. The plane mask restricts the operation to a subset of planes. A macro constant
AIIPlanes ca;be used to refer to all planes of the screen simultaneously. The result is
computed by the following:

«src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask»

Range checking is not performed on the values for foreground, background, or
plane_mask. They are simply truncated to the appropriate number of bits. The line-width
is measured in pixels and either can be greater than or equal to one (wide line) or can be
the special value zero (thin line).

Graphics Resource Functions 5 -19

Wide lines are drawn centered on the path described by the graphics request. Unless
otherwise specified by the join-style or cap-style, the bounding box of a wide line with
endpoints [xl, yl], [x2, y2] and width w is a rectangle with vertices at the following real
coordinates:

[xl-(w*sn/2), yl+(w*cs/2)], [xl+(w*sn/2), yl-(w*cs/2)],
[x2-(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of the line. A
pixel is part of the line and so is drawn if the center of the pixel is fully inside the bounding
box (which is viewed as having infinitely thin edges). If the center of the pixel is exactly on
the bounding box, it is part of the line if and only if the interior is immediately to its right
(x increasing direction). Pixels with centers on a horizontal edge are a special case and are
part of the line if and only if the interior or the boundary is immediately below (y
increasing direction) and the interior or the boundary is immediately to the right (x
increasing direction).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified, device­
dependent algorithm. There are only two constraints on this algorithm.

1. If a line is drawn unclipped from [xl,yl] to [x2,y2] and if another line is drawn
unclipped from [xl + dx,yl + dy] to [x2+ dx,y2+ dy], a point [x,y] is touched by drawing
the first line if and only if the point [x+dx,y+dy] is touched by drawing the second
line.

2. The effective set of points comprising a line cannot be affected by clipping. That is, a
point is touched in a clipped line if and only if the point lies inside the clipping region
and the point would be touched by the line when drawn unclipped.

A wide line drawn from [xl,yl] to [x2,y2] always draws the same pixels as a wide line drawn
from [x2,y2] to [xl,yl], not counting cap-style and join-style. It is recommended that this
property be true for thin lines, but this is not required. A line-width of zero may differ
from a line-width of one in which pixels are drawn. This permits the use of many
manufacturers' line drawing hardware, which may run many times faster than the more
precisely specified wide lines.

In general, drawing a thin line will be faster than drawing a wide line of width one.
However, because of their differe~t drawing algorithms, thin lines may not mix well
aesthetically with wide lines. If it is desirable to obtain precise and uniform results across
all displays, a client should always use a line-width of one rather than a line-width of zero.

The line-style defines which sections of a line are drawn:

5 -20 Graphics Resource Functions

Li ne Sol i d The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even dashes are filled differently
than the odd dashes (see fill-style) with CapButt style used where even.
odd dashes meet.

LineOnOffDash Only the even dashes are drawn, and cap-style applies to all internal ends
the individual dashes, except CapNotLast is treated as CapButt.

The cap-style defines how the endpoints of a path are drawn:

CapNotLast This is equivalent to CapButt except that for a line-width of zero the fina
endpoint is not drawn.

CapButt The line is square at the endpoint (perpendicular to the slope of the line)
with no projection beyond.

CapRound The line has a circular arc with the diameter equal to the line-width, centefl
on the endpoint. (This is equivalent to CapButt for line-width of zero).

CapProj ecting The line is square at the end, but the path continues beyond the endpoint f(
a distance equal to half the line-width. (This is equivalent to CapButt fOJ
line-width of zero).

The join-style defines how corners are drawn for wide lines:

J 0 inMi ter The outer edges of two lines extend to meet at an angle. However, if the
angle is less than 11 degrees, then a J o inBeve 1 join-style is used instead.

J oinRound The corner is a circular arc with the diameter equal to the line-width,
centered on the joinpoint.

J oinBevel The corner has CapButt endpoint styles with the triangular notch filled.

For a line with coincident endpoints (x1=x2, y1=y2), when the cap-style is applied to both
endpoints, the semantics depends on the line-width and the cap-style:

Graphics Resource Functions 5 -21

CapNotLast thin

CapButt thin

CapRound thin

CapProjecting thin

CapButt wide

CapRound wide

CapProjecting wide

The results are device-dependent, but the desired effect is that
nothing is drawn.

The results are device-dependent, but the desired effect is that a
single pixel is drawn.

The results are the same as for CapButt/thin.

The results are the same as for Butt/thin.

Nothing is drawn.

The closed path is a circle, centered at the endpoint, and with the
diameter equal to the line-width.

The closed path is a square, aligned with the coordinate axes,
centered at the endpoint, and with the sides equal to the line-widl

For a line with coincident endpoints (xl=x2, yl=y2), when the join-style is applied at one
or both endpoints, the effect is as if the line was removed from the overall path. However,
if the total path consists of or is reduced to a single point joined with itself, the effect is the
same as when the cap-style is applied at both endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of whatever
destination drawable is specified in a graphics request. The tile pixmap must have the
same root and depth as the GC, or a BadMa tch error results. The stipple pixmap must
have depth one and must have the same root as the GC, or a BadMa tch error results.
For stipple operations where the fill-style is FillStippled but not
FillOpaqueStippled, the stipple pattern is tiled in a single plane and acts as an
additional clip mask to be ANDed with the clip-mask. Although some sizes may be faster
to use than others, any size pixmap can be used for tiling or stippling.

The fill-style defines the contents of the source for line, text, and fill requests. For all text
and fill requests (for example, XDrawText, XDrawText16, XFillRectangle,
XFillPolygon, and XFillArc); for line requests with line-style LineSolid (for
example, XDrawLine, XDrawSegments, XDrawRectangle, XDrawArc); and for
the even dashes for line requests with line-style LineOnOffDash or
LineDoubleDash, the following apply:

5 -22 Graphics Resource Functions

FillSolid Foreground

FillTiled Tile

FillOpaqueStippled A tile with the same width and height as stipple, but with
background everywhere stipple has a zero and with foreground
everywhere stipple has a one

FillStippled Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are controlled by
the fill-style in the following manner:

FillSolid Background

FillTiled Same as for even dashes

FillOpaqueStippled Same as for even dashes

FillStippled Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If the pixmap is
later used as the destination for a graphics request, the change might or might not be
reflected in the GC. If the pixmap is used simultaneously in a graphics request both as a
destination and as a tile or stipple, the results are undefined.

For optimum performance, you should draw as much as possible with the same GC
(without changing its components). The costs of changing GC components relative to
using different GCs depend upon the display hardware and the server implementation. It
is quite likely that some amount of GC information will be cached in display hardware and
that such hardware can only cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns that can be set
with XSetDashes. Specifying a value of N is equivalent to specifying the two-element
list [N, N] in XSetDashes. The value must be nonzero, or a BadValue error results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set to a
pixmap, it must have depth one and have the same root as the GC, or a BadMa tch error
results. If clip-mask is set to None, the pixels are always drawn regardless of the clip
origin. The clip-mask also can be set by calling the XSetClipRectangles or
XSetRegion functions. Only pixels where the clip-mask has a bit set to 1 are drawn.
Pixels are not drawn outside the area covered by the clip-mask or where the clip-mask has
a bit set to O. The clip-mask affects all graphics requests. The clip-mask does not clip
sources. The clip-mask origin is interpreted relative to the origin of whatever destination
drawable is specified in a graphics request.

Graphics Resource Functions 5 -23

You can set the subwindow-mode to ClipByChildren or Includelnferiors.
For ClipByChildren, both source and destination windows are additionally clipped by
all viewable InputOutput children. For Includelnferiors, neither source nor
destination window is clipped by inferiors. This will result in including subwindow contents
in the source and drawing through subwindow boundaries of the destination. The use of
Includelnferiors on a window of one depth with mapped inferiors of differing
depth is not illegal, but the semantics are undefined by the core protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in XFillPolygon
requests and can be set to EvenOddRule or WindingRule. For EvenOddRule, a
point is inside if an infinite ray with the point as origin crosses the path an odd number of
times. For WindingRule, a point is inside if an infinite ray with the point as origin
crosses an unequal number of clockwise and counterclockwise directed path segments. A
clockwise directed path segment is one that crosses the ray from left to right as observed
from the point. A counterclockwise segment is one that crosses the ray from right to left
as observed from the point. The case where a directed line segment is coincident with the
ray is uninteresting because you can simply choose a different ray that is not coincident
with a segment.

For both EvenOddRule and WindingRule, a point is infinitely small, and the path is
an infinitely thin line. A pixel is inside if the center point of the pixel is inside and the
center point is not on the boundary. If the center point is on the boundary, the pixel is
inside if and only if the polygon interior is immediately to its right (x increasing direction).
Pixels with centers on a horizontal edge are a special case and are inside if and only if the
polygon interior is immediately below (y increasing direction).

The arc-mode controls filling in the XFillArcs function and can be set to
ArcPieSlice or ArcChord. For ArcPieSlice, the arcs are pie-slice filled. For
ArcChord, the arcs are chord filled.

The graphics-exposure flag controls GraphicsExpose event generation for
XCopyArea and XCopyPlane requests (and any similar requests defined by
extensions) .

To create a new GC that is usable on a given screen with a depth of drawable, use
XCreateGC.

GC XCreateGC (display, d, valuemask, values)
Display *display;
Drawable d;
unsigned long valuemask;
XGCValues *values;

display

d

Specifies the connection to the X server.

Specifies the drawable.

5 ·24 Graphics Resource Functions

valuemask

values

Specifies which components in the GC are to be set using the information in
the specified values structure. This argument is the bitwise inclusive OR of
one or more of the valid GC component mask bits.

Specifies any values as specified by the valuemask.

The XCreateGC function creates a graphics context and returns a GC. The GC can be
used with any destination drawable having the same root and depth as the specified
drawable. Use with other drawables results in a BadMatch error.

XCreateGC can generate BadAlloc, BadDrawable, BadFont, BadMatch,
BadPixmap, and BadValue errors.

To copy components from a source GC to a destination GC, use XCopyGC.

XCopyGC (display, src, valuemask, dest)
Display *display;
GC src, dest;
unsigned long valuemask;

display

src

Specifies the connection to the X server.

Specifies the components of the source GC.

valuemask Specifies which components in the GC are to be copied to the destination
GC. This argument is the bitwise inclusive OR of one or more of the valid
GC component mask bits.

dest Specifies the destination GC.

The XCopyGC function copies the specified components from the source GC to the
destination GC. The source and destination GCs must have the same root and depth, or a
BadMatch error results. The valuemask specifies which component to copy, as for
XCreateGC.

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors.

To change the components in a given GC, use XChangeGC.

XChangeGC (display, gc, valuemask, values)
Display *display;
GC gc;
unsigned long valuemask;
XGCValues *values;

display

gc

Specifies the connection to the X server.

Specifies the GC.

Graphics Resource Functions 5 -25

valuemask

values

Specifies which components in the GC are to be changed using information
in the specified values structure. This argument is the bitwise inclusive OR
of one or more of the valid GC component mask bits.

Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask for the
specified GC. The values argument contains the values to be set. The values and
restrictions are the same as for XCrea teGC. Changing the clip-mask overrides any
previous XSetClipRectangles request on the context. Changing the dash-offset or
dash-list overrides any previous XSetDashes request on the context. The order in which
components are verified and altered is server-dependent. If an error is generated, a subset
of the components may have been altered.

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch, BadPixmap,
and BadValue errors.

To free a given GC, use XFreeGC.

XFreeGC(display, gc)
Di splay *display;
GC gc;

display

gc

Specifies the connection to the X server.

Specifies the GC.

The XFreeGC function destroys the specified GC as well as all the associated storage.

XFreeGC can generate a BadGC error.

To obtain the GContext resource ID for a given GC, use XGContextFromGC.

GContext XGContextFromGC(gc)
GC gc;

gc Specifies the GC for which you want the resource ID.

5.4 Using GC Convenience Routines

This section discusses how to set the:

• Foreground, background, plane mask, or function components

• Line attributes and dashes components

• Fill style and fill rule components

5 -26 Graphics Resource Functions

• Fill tile and stipple components

• Font component

• Clip region component

• Arc mode, subwindow mode, and graphics exposure components

5.4.1 Setting the Foreground, Background, Function, or Plane Mask

To set the foreground, background, plane mask, and function components for a given GC,
use XSetState.

XSetState (display, gc, fore?found, background, function, plane_mask)
Display *display;
GC gc;
unsigned long fore?found, back ?found ;
int function;
unsigned long plane_mask;

display Specifies the connection to the X server.

gc Specifies the GC.

foreground Specifies the foreground you want to set for the specified GC.

background Specifies the background you want to set for the specified GC.

[unction Specifies the function you want to set for the specified GC.

plane _mask Specifies the plane mask.

XSetState can generate BadAlloc, BadGC, and BadValue errors.

To set the foreground of a given GC, use XSetForeground.

XSetForeground (display, gc, fore?found)
Display *display;
GC gc;
unsigned long fore?found;

display

gc

foreground

Specifies the connection to the X server.

Specifies the GC.

Specifies the foreground you want to set for the specified GC.

XSetForeground can generate BadAlloc and BadGC errors.

To set the background of a given GC, use XSetBackground.

Graphics Resource Functions 5 -27

XSetBackground (display, gc, background)
Display *display;
GC gc;
unsigned long backg,round;

display

gc

background

Specifies the connection to the X server.

Specifies the GC.

Specifies the background you want to set for the specified GC.

XSetBackground can generate BadAlloc and BadGe errors.

To set the display function in a given GC, use XSetFunction.

XSetFunction (display, gc, function)
Display *display;
GC gc;
int function;

display

gc

function

Specifies the connection to the X server.

Specifies the GC.

Specifies the function you want to set for the specified GC.

XSetFunction can generate BadAlloc, BadGe, and BadValue errors.

To set the plane mask of a given GC, use XSetPlaneMask.

XSetPlaneMask (display, gc, plane_mask)
Display *display;
GC gc;
unsigned long plane_mask;

display Specifies the connection to the X server.

gc Specifies the GC.

plane_mask Specifies the plane mask.

XSetPlaneMask can generate BadAlloc and BadGe errors.

5.4.2 Setting the Line Attributes and Dashes

To set the line drawing components of a given GC, use XSetLineAttributes.

5 -28 Graphics Resource Functions

XSetLineAttributes (display, gc, line_width, line_style, cap_style, join_style)
Display *display i
GC gci
unsigned int line width i
int line_style i -

int cap_style i
int join _style i

display

gc

line width

join_style

Specifies the connection to the X server.

Specifies the GC.

Specifies the line-width you want to set for the specified GC.

Specifies the line-style you want to set for the specified GC. You can pass
LineSolid, LineOnOff Dash, or LineDoubleDash.

Specifies the line-style and cap-style you want to set for the specified GC.
You can pass CapNotLast, CapButt, CapRound, or
CapProj ecting.

Specifies the line join-style you want to set for the specified GC. You can
pass JoinMiter, JoinRound, or JoinBevel.

XSetLineAttributes can generate BadAlloc, BadGC, and BadValue errors.

To set the dash-offset and dash-list for dashed line styles of a given GC, use
XSe tDashes.

XSetDashes (display, gc, dash _offset, dash Jist, n)
Display *display i

display

gc

GC gci
int dash offset i
char dash _list [] i
int ni

Specifies the connection to the X server.

Specifies the GC.

dash _offset Specifies the phase of the pattern for the dashed line-style you want to set
for the specified GC.

dash list

n

Specifies the dash-list for the dashed line-style you want to set for the
specified GC.

Specifies the number of elements in dash_list.

Graphics Resource Functions 5 -29

The XSetDashes function sets the dash-offset and dash-list attributes for dashed line
styles in the specified GC. There must be at least one element in the specified dash list,
or a BadValue error results. The initial and alternating elements (second, fourth, and so
on) of the dash list are the even dashes, and the others are the odd dashes. Each element
specifies a dash-length in pixels. All of the elements must be nonzero, or a BadValue
error results. Specifying an odd-length list is equivalent to specifying the same list
concatenated with itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels into the dash­
list the pattern should actually begin in any single graphics request. Dashing is continuous
through path elements combined with a join-style but is reset to the dash-offset each time a
cap-style is applied at a line endpoint.

The unit of measure for dashes is the same for the ordinary coordinate system. Ideally, a
dash length is measured along the slope of the line, but implementations are only required
to match this ideal for horizontal and vertical lines. Failing the ideal semantics, it is
suggested that the length be measured along the major axis of the line. The major axis is
defined as the x axis for lines drawn at an angle of between -45 and + 45 degrees or
between 315 and 225 degrees from the x axis. For all other lines, the major axis is the y
axis.

XSetDashes can generate BadAlloc, BadGC, and BadValue errors.

5.4.3 Setting the Fill Style and Fill Rule

To set the fill-style of a given GC, use XSetFillStyle.

XSetFillStyle (display, gc, fill style)
Display *display; -
GC gc;
int fill_style;

display Specifies the connection to the X server.

Specifies the GC.

Specifies the fill-style you want to set for the specified GC. You can pass
FillSolid,FillTiled,FillStippled,or
FillOpaqueStippled.

XSetFillStyle can generate BadAlloc, BadGC, and BadValue errors.

To set the fill-rule of a given GC, use XSetFillRule.

XSetF illRule (display, gc, fillJule)
Display *display;
GC gc;
int fill JUle ;

5 -30 Graphics Resource Functions

display Specifies the connection to the X server.

Specifies the GC.

Specifies the fill-rule you want to set for the specified GC. You can pass
EvenOddRuIe or WindingRuIe.

XSetFiIIRuIe can generate BadAIIoc, BadGC, and BadVaIue errors.

5.4.4 Setting the Fill Tile and Stipple

Some displays have hardware support for tiling or stippling with patterns of specific sizes.
Tiling and stippling operations that restrict themselves to those specific sizes run much
faster than such operations with arbitrary size patterns. Xlib provides functions that you
can use to determine the best size, tile, or stipple for the display as well as to set the tile or
stipple shape and the tile or stipple origin.

To obtain the best size of a tile, stipple, or cursor, use XQueryBestSize.

Status XQueryBestSize(display, class, which_screen, width, height, width...!etum, height...!etum)
Display *display;
int class;
Drawable which screen;
unsigned int width, height;
unsigned int *width_retum, *height...!etum;

display

class

which screen

width
height

width return
height ..!eturn

Specifies the connection to the X server.

Specifies the class that you are interested in. You can pass
TiIeShape,CursorShape,orStippleShape.

Specifies any drawable on the screen.

Specify the width and height.

Return the width and height of the object best supported by the display
hardware.

The XQue ry Be s t S i z e function returns the best or closest size to the specified size.
For CursorShape, this is the largest size that can be fully displayed on the screen
specified by which screen. For TiIeShape, this is the size that can be tiled fastest. For
StippIeShape,this is the size that can be stippled fastest. For CursorShape, the
drawable indicates the desired screen. For TiIeShape and StippIeShape, the
drawable indicates the screen and possibly the window class and depth. An I npu tOnI y
window cannot be used as the drawable for TiIeShape or StippIeShape, or a
BadMa tch error results.

Graphics Resource Functions 5 -31

XQueryBestSize can generate BadDrawable, Bac1Match, and BadValue errors.

To obtain the best fill tile shape, use XQueryBestTile.

Status XQueryBestTile (display, which screen, width, height, widthJeturn, height_return)
Display *display; -
Drawable which screen;
unsigned int width, height;
unsigned int *widthJeturn, *height_return;

display

which screen

width
height

width return
height Jeturn

Specifies the connection to the X server.

Specifies any drawable on the screen.

Specify the width and height.

Return the width and height of the object best supported by the display
hardware.

The XQueryBestTile function returns the best or closest size, that is, the size that can
be tiled fastest on the screen specified by which screen. The drawable indicates the screen
and possibly the window class and depth. If an InputOnly window is used as the
drawable, a Bac1Ma tch error results.

XQueryBestTile can generate BadDrawable and Bac1Match errors.

To obtain the best stipple shape, use XQueryBestStipple.

Status XQueryBestStipple(display, which_screen, width, height, widthJeturn, height_return)
Display *display;
Drawable which screen;
unsigned int width, height;
unsigned int *width Jeturn, *heightJeturn;

display

which screen

width
height

width return
height Jeturn

Specifies the connection to the X server.

Specifies any drawable on the screen.

Specify the width and height.

Return the width and height of the object best supported by the display
hardware.

5 -32 Graphics Resource Functions

The XQueryBestStipple function returns the best or closest size, that is, the size that
can be stippled fastest on the screen specified by which screen. The drawable indicates
the screen and possibly the window class and depth. If"in InputOnly window is used as
the drawable, a BadMa tch error results.

XQueryBestStipple can generate BadDrawable and BadMatch errors.

To set the fill tile of a given GC, use XS e tTi 1 e .

XSetTile(display, ge, tile)
Display *display;
GC ge;
Pixmap tile;

display

gc

Specifies the connection to the X server.

Specifies the GC.

tile Specifies the fill tile you want to set for the specified GC.

The tile and GC must have the same depth, or a BadMa tch error results.

XSetTile can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.

To set the stipple of a given GC, use XSetStipple.

XSetStipple (display, ge, stipple)
Display *display;
GC ge;
Pixmap stipple;

Specifies the connection to the X server.

Specifies the GC.

display

gc

stipple Specifies the stipple you want to set for the specified GC.

Stipple depth is 1. The stipple and GC must be on the same screen, or a BadMa tch error
results.

XSetStipple can generate BadAlloc, BadGC, BadMatch, and BadPixmap
errors.

To set the tile or stipple origin of a given GC, use XSetTSOrigin.

XSetTSOrigin(display, ge, ts x origin, tsy_origin)
Display *display; - -
GC ge;
int ts_x_origin, tsy_origin;

display Specifies the connection to the X server.

Graphics Resource Functions 5 -33

gc Specifies the GC.

ts x origin
ts y =origin Specify the x and y coordinates of the tile and stipple origin.

When graphics requests call for tiling or stippling, the parent's origin will be interpreted
relative to whatever destination drawable is specified in the graphics request.

XSetTSOrigin can generate BadAlloc and BadGC error.

5.4.5 Setting the Current Font

To set the current font of a given GC, use XSetFont.

XSetFont (display, gc, font)
Display *display;
GC gc;
Font font;

display

gc

Specifies the connection to the X server.

Specifies the GC.

font Specifies the font.

XSetFont can generate BadAlloc, BadFont, and BadGC errors.

5.4.6 Setting the Clip Region

Xlib provides functions that you can use to set the clip-origin and the clip-mask or set the
clip-mask to a list of rectangles.

To set the clip-origin of a given GC, use XSetClipOrigin.

XSetCHpOrigin (display, gc, clip _x_origin, clip y _origin)
Display *display;
GC gc;
int clip _x_origin, clip y _origin;

display

gc

clip _x_origin
clip y _origin

Specifies the connection to the X server.

Specifies the GC.

Specify the x and y coordinates of the clip-mask origin.

The clip-mask origin is interpreted relative to the origin of whatever destination drawable
is specified in the graphics request.

XSetClipOrigin can generate BadAlloc and BadGC errors.

5 -34 Graphics Resource Functions

To set the clip-mask of a given GC to the specified pixmap, use XSetClipMask.

XSetClipMask (display, gc, pixmap)
Display *display;
GC gc;
Pixmap pixmap ;

display

gc

Specifies the connection to the X server.

Specifies the GC.

pixmap Specifies the pixmap or None.

If the clip-mask is set to None, the pixels are are always drawn (regardless of the clip­
origin).

XSetClipMask can generate BadAlloc, BadGC, BadMatch, and BadValue
errors.

To set the clip-mask of a given GC to the specified list of rectangles, use
XSetClipRectangles.

XSetClipRectangles (display, gc, clip x origin, clip y _origin, rectangles, n, ordering)
Display *display; - -
GC gc;
int clip _x_origin, clip y _origin;
XRectangle rectangles [] ;
int n;
int ordering;

display

gc

clip _x_origin
clip y _origin

rectangles

n

ordering

Specifies the connection to the X server.

Specifies the GC.

Specify the x and y coordinates of the clip-mask origin.

Specifies an array of rectangles that define the clip-mask.

Specifies the number of rectangles.

Specifies the ordering relations on the rectangles. You can pass
Unsorted,YSorted,YXSorted,orYXBanded.

The XSetClipRectangles function changes the clip-mask in the specified GC to the
specified list of rectangles and sets the clip origin. The output is clipped to remain
contained within the rectangles. The clip-origin is interpreted relative to the origin of
whatever destination drawable is specified in a graphics request. The rectangle coordinates
are interpreted relative to the clip-origin. The rectangles should be nonintersecting, or the

Graphics Resource Functions 5 -35

graphics results will be undefined. Note that the list of rectangles can be empty, which
effectively disables output. This is the opposite of passing None as the clip-mask in
XCreateGC, XChangeGC, and XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with the
ordering argument. This may provide faster operation by the server. If an incorrect
ordering is specified, the X server may generate a BadMatch error, but it is not required
to do so. If no error is generated, the graphics results are undefined. Unsorted means
the rectangles are in arbitrary order. YSorted means that the rectangles are
nondecreasing in their Yorigin. YXSorted additionally constrains YSorted order in
that all rectangles with an equal Y origin are nondecreasing in their X origin. YXBanded
additionally constrains YXSorted by requiring that, for every possible Y scanline, all
rectangles that include that scanline have an identical Y origins and Y extents.

XSetClipRectangles can generate BadAlloc, BadGC, BadMatch, and
BadValue errors.

Xlib provides a set of basic functions for performing region arithmetic. For information
about these functions, see chapter 10.

5.4.7 Setting the Arc Mode, Subwindow Mode, and Graphics
Exposure

To set the arc mode of a given GC, use XSetArcMode.

XSetArcMode(d~play, ge, arc_mode)
Di splay *display;
GC ge;
int arc_mode;

display Specifies the connection to the X server.

gc Specifies the GC.

arc mode Specifies the arc mode. You can pass ArcChord or ArcPieSlice.

XSetArcMode can generate BadAlloc, BadGC, and BadValue errors.

To set the subwindow mode of a given GC, use XSetSubwindowMode.

XSetSubwindowMode (display, gc, subwindow mode)
Display *display; -
GC ge;
in t subwindow _mode;

display

gc

Specifies the connection to the X server.

Specifies the GC.

5 -36 Graphics Resource Functions

subwindow mode Specifies the subwindow mode. You can pass ClipByChildren or
Includelnferiors.

XSetSubwindowMode can generate BadAlloc, BadGC, and BadValue errors.

To set the graphics-exposures flag of a given GC, use XSetGraphicsExposures.

XSetGraphicsExpasures (display, gc, graphics exposures)
Display *display i -
GC gci
Baal graphics_exposures i

display

gc

graphics _ exposures

Specifies the connection to the X server.

Specifies the GC.

Specifies a Boolean value that indicates whether you want
GraphicsExpose and NoExpose events to be reported
when calling XCopyArea and XCopyPlane with this GC.

XSetGraphicsExposures can generate BadAlloc, BadGC, and BadValue
errors.

Graphics Resource Functions 5 -37

Graphics Functions
Once you have connected the display to the X server, you can use the Xlib graphics
functions to:

• Clear and copy areas

• Draw points, lines, rectangles, and arcs

• Fill areas

• Manipulate fonts

• Draw text

• Transfer images between clients and the server

• Manipulate cursors

If the same drawable and GC is used for each call, Xlib batches back-to-back calls to
XDrawPoint,XDrawLine,XDrawRectangle,XFillArc,and
XFillRectangle. Note that this reduces the number of requests sent to the server.

6.1 Clearing Areas

6

Xlib provides functions that you can use to clear an area or the entire window. Because
pixmaps do not have defined backgrounds, they cannot be filled by using the functions
described in this section. Instead, to accomplish an analogous operation on a pixmap, you
should use XFillRectangle, which sets the pixmap to a known value.

To clear a rectangular area of a given window, use XGlearArea.

XClearArea (display, w, x, y, width, height, exposures)
Display *display;
Window w;
int x, y;
unsigned int width, height;
Baal exposures;

display Specifies the connection to the X server.

Specifies the window. w

Graphics Functions 6 -1

x
y

width
height

exposures

Specify the x and y coordinates, which are relative to the origin of the
window and specify the upper-left corner of the rectangle.

Specify the width and height, which are the dimensions of the rectangle.

Specifies a Boolean value that indicates if Expose events are to be
generated.

The XCIearArea function paints a rectangular area in the specified window according
to the specified dimensions with the window's background pixel or pixmap. The
subwindow-mode effectively is CIipByChildren. If width is zero, it is replaced with
the current width of the window minus x. If height is zero, it is replaced with the current
height of the window minus y. If the window has a defined background tile, the rectangle
clipped by any children is filled with this tile. If the window has background None, the
contents of the window are not changed. In either case, if exposures is True, one or more
Expose events are generated for regions of the rectangle that are either visible or are
being retained in a backing store. If you specify a window whose class is I npu tOnI y, a
BadMatch error results.

XCIearArea can generate BadMatch, BadVaIue, and BadWindow errors.

To clear the entire area in a given window, use XCIearWindow.

XClearWindow (display, w)

Di splay *display;
Window w;

display

w

Specifies the connection to the X server.

Specifies the window.

The XCIearWindow function clears the entire area in the specified window and is
equivalent to XCIearArea (display, w, 0, 0, 0, 0, False). If the window has a defined
background tile, the rectangle is tiled with a plane-mask of all ones and GXcopy function.
If the window has background None, the contents of the window are not changed. If you
specify a window whose class is I npu tOnI y, a BadMa tch error results.

XCIearWindow can generate BadMatch and BadWindow errors.

6 -2 Graphics Functions

6.2 Copying Areas

Xlib provides functions that you can use to copy an area or a bit plane.

To copy an area between drawables of the same root and depth, use XCopyArea.

XC::.;'{JyArea (display, src, dest, gc, src _x, src y, width, height, dest_x, desty)
Display *display;
Drawable src, dest;
GC gc;
int src_x, srcy;
unsigned int width, height i
int dest_x, destYi

display Specifies the connection to the X server.

src
dest

gc

src x
srcy

width
height

dest x

Specify the source and destination rectangles to be combined.

Specifies the GC.

Specify the x and y coordinates, which are relative to the origin of the source
rectangle and specify its upper-left corner.

Specify the width and height, which are the dimensions of both the source and
destination rectangles.

dest y Specify the x and y coordinates, which are relative to the origin of the
destination rectangle and specify its upper-left corner.

The XCopyArea function combines the specified rectangle of src with the specified
rectangle of dest. The drawables must have the same root and depth, or a BadMa tch
error results.

If regions of the source rectangle are obscured and have not been retained in backing store
or if regions outside the boundaries of the source drawable are specified, those regions are
not copied. Instead, the following occurs on all corresponding destination regions that are
either visible or are retained in backing store. If the destination is a window with a
background other than None, corresponding regions of the destination are tiled with that
background (with plane-mask of all ones and GXcopy function). Regardless of tiling or
whether the destination is a window or a pixmap, if graphics-exposures is True, then
GraphicsExpose events for all corresponding destination regions are generated. If

Graphics Functions 6 -3

graphics-exposures is True but no GraphicsExpose events are generated, a
NoExpose event is generated. Note that by default graphics-exposures is True in new
GCs.

This function uses these GC components: function, plane-mask, subwindow-mode,
graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyArea can generate BadDrawable, BadGC, and BadMatch errors.

To copy a single bit plane of a given drawable, use XCopyPlane.

XCopyPlane (display, src, dest, gc, src _x, src y, width, height, dest _x, dest y, plane)
Display *display;
Drawable src, dest;
GC gc;
int src _x, src y ;
unsigned int width, height;
int dest _x, dest y ;
unsigned long plane;

display Specifies the connection to the X server.

src
dest

gc

src x
srcy

width
height

dest x

Specify the source and destination rectangles to be combined.

Specifies the GC.

Specify the x and y coordinates, which are relative to the origin of the source
rectangle and specify its upper-left corner.

Specify the width and height, which are the dimensions of both the source and
destination rectangles.

dest y Specify the x and y coordinates, which are relative to the origin of the
destination rectangle and specify its upper-left corner.

plane Specifies the bit plane. You must set exactly one bit to 1.

The XCopyPlane function uses a single bit plane of the specified source rectangle
combined with the specified GC to modify the specified rectangle of dest. The drawables
must have the same root but need not have the same depth. If the drawables do not have
the same root, a BadMa tch error results. If plane does not have exactly one bit set to 1
and the values of planes must be less than 2n , where n is the depth of scr, a BadValue
error results.

6 - 4 Graphics Functions

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of dest and
with a size specified by the source region. It uses the foregroundjbackground pixels in the
GC (foreground everywhere the bit plane in src contains a bit set to 1, background
everywhere the bit plane in src contains a bit set to 0) and the equivalent of a CopyArea
protocol request is performed with all the same exposure semantics. This can also be
thought of as using the specified region of the source bit plane as a stipple with a fill-style
of FillOpaqueStippled for filling a rectangular area of the destination.

This function uses these GC components: function, plane-mask, foreground, background,
subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyPlane can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

6.3 Drawing Points, Lines, Rectangles, and Arcs

Xlib provides functions that you can use to draw:

• A single point or multiple points

• A single line or multiple lines

• A single rectangle or multiple rectangles

• A single arc or multiple arcs

Some of the functions described in the following sections use these structures:

typedef struct {
short xl, yl, x2, y2;

} XSegment;

typedef struct {
short x, y;

} XPoint;

typedef struct {
short x, y;
unsigned short width, height;

} XRectangle;

Graphics Functions 6 - 5

typedef struct {
short x, y;
unsigned short width, height;
short anglel, angle2;

} XArc;
/* Degrees multiplied by 64 */

All X and y members are signed integers. The width and height members are 16-bit
unsigned integers. You should be careful not to generate coordinates and sizes out of the
16-bit ranges, because the protocol only has 16-bit fields for these values.

6.3.1 Drawing Single and Multiple Points

To draw a single point in a given drawable, use XDrawPoint.

XDrawPoint (display, d, gc, x, y)
Display *display;
Drawable d;
GC gc;
int x, y;

display

d

gc

x
y

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

Specify the x and y coordinates where you want the point drawn.

To draw multiple points in a given drawable, use XDrawPoints.

XDrawPoints (display, d, gc, points, npoints, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;
int npoints;
int mode;

display

d

gc

points

npoints

mode

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

Specifies a pointer to an array of points.

Specifies the number of points in the array.

Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

6 - 6 Graphics Functions

The XDrawPoint function uses the foreground pixel and function components of the
GC to draw a single point into the specified drawable; XDrawPoints draws multiple
points this way. CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the previous
point. XDrawPoints draws the points in the order listed in the array.

Both functions use these GC components: function, plane-mask, foreground, subwindow­
mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generate BadDrawable, BadGC, and BadMatch errors.
XDrawPoints can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

6.3.2 Drawing Single and Multiple Lines

To draw a single line between two points in a given drawable, use XDrawLine.

XDrawLine (display, d, gc, xl, yl, x2, y2)
Display *display;
Drawable d;
GC gc;
int xl, yl, x2, y2;

display

d

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC. gc

xl
yl
x2
y2 Specify the points (xl, yl) and (x2, y2) to be connected.

To draw multiple lines in a given drawable, use XDrawLines.

XDrawLines (display, d, gc, points, npoints, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;
int npoints;
int mode;

display

d

Specifies the connection to the X server.

Specifies the drawable.

gc Specifies the GC.

Graphics Functions 6 -7

points

npoints

mode

Specifies a pointer to an array of points.

Specifies the number of points in the array.

Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

To draw multiple, unconnected lines in a given drawable, use XDrawSegments.

XDrawSegments (display, d, gc, segments, nsegments)
Display *display;
Drawable d;
GC gc;
XSegment *segments;
int nsegments;

display

d

gc

segments

nsegmen ts

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

Specifies a pointer to an array of segments.

Specifies the number of segments in the array.

The XDrawLine function uses the components of the specified GC to draw a line
between the specified set of points (xl, yl) and (x2, y2). It does not perform joining at
coincident endpoints. For any given line, XDrawLine does not draw a pixel more than
once. If lines intersect, the intersecting pixels are drawn multiple times.

The XDrawLines function uses the components of the specified GC to draw npoints-l
lines between each pair of points (point[i], point[i + 1]) in the array of XPoint structures.
It draws the lines in the order listed in the array. The lines join correctly at all
intermediate points, and if the first and last points coincide, the first and last lines also join
correctly. For any given line, XDrawLines does not draw a pixel more than once. If thin
(zero line-width) lines intersect, the intersecting pixels are drawn multiple times. If wide
lines intersect, the intersecting pixels are drawn only once, as though the entire
PolyLine protocol request were a single, filled shape. CoordModeOrigin treats all
coordinates as relative to the origin, and CoordModePrevious treats all coordinates
after the first as relative to the previous point.

The XDrawSegments function draws multiple, unconnected lines. For each segment,
XDrawSegments draws a line between (xl, yl) and (x2, y2). It draws the lines in the
order listed in the array of XSegment structures and does not perform joining at
coincident endpoints. For any given line, XDrawSegments does not draw a pixel more
than once. If lines intersect, the intersecting pixels are drawn multiple times.

6 -8 Graphics Functions

All three functions use these GC components: function, plane-mask, line-width, line-style,
cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. The
XDrawLines function also uses the join-style GC component. All three functions also
use these GC mode-dependent components: foreground, background, tile, stipple, tile­
stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawLine, XDrawLines, and XDrawSegments can generate BadDrawable,
BadGe, and BadMatch errors. XDrawLines also can generate BadValue errors.

6.3.3 Drawing Single and Multiple Rectangles

To draw the outline of a single rectangle in a given drawable, use XDrawRectangle.

XDrawRectangle (display, d, gc, x, y, width, height)
Display *display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;

display

d

Specifies the connection to the X server.

Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which specify the upper-left corner of the

rectangle.

width
height Specify the width and height, which specify the dimensions of the rectangle.

To draw the outline of multiple rectangles in a given drawable, use XDrawRec tangles.

XDrawRectangles (display, d, gc, rectangles, nrectangles)
Display*display ;
Drawable d;
GC gc;
XRectangle rectangles [] ;
int nrectangles;

display

d

gc

rectangles

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

Specifies a pointer to an array of rectangles.

Graphics Functions 6 - 9

nrectangles Specifies the number of rectangles in the array.

The XDrawRectangle and XDrawRectangles functions draw the outlines of the
specified rectangle or rectangles as if a five-point PolyLine protocol request were
specified for each rectangle:

[x,y] [x+width,y] [x+width,y+ height] [x,y+ height] [x,y]

For the specified rectangle or rectangles, these functions do not draw a pixel more than
once. XDrawRectangles draws the rectangles in the order listed in the array. If
rectangles intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, line-width, line-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also
use these GC mode-dependent components: foreground, background, tile, stipple, tile­
stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawRectangle and XDrawRectangles can generate BadDrawable, BadGe,
and BadMatch errors.

6.3.4 Drawing Single and Multiple Arcs

To draw a single arc in a given drawable, use XDrawArc.

XDr awAre (display I d I gc I X I Y I width I height I angleJ I angle2)
Display *display j

Drawable dj
GC gc;
int x, Y;
unsigned int width I height;
int angleJ I angle2;

display

d

Specifies the connection to the X server.

Specifies the drawable.

gc

x
y

width
height

angle 1

Specifies the GC.

Specify the x and y coordinates, which are relative to the origin of the drawable
and specify the upper-left corner of the bounding rectangle.

Specify the width and height, which are the major and minor axes of the arc.

Specifies the start of the arc relative to the three-o'clock position from the
center, in units of degrees multiplied by 64.

6 -10 Graphics Functions

angle2 Specifies the path and extent of the arc relative to the start of the arc, in units
of degrees multiplied by 64.

To draw multiple arcs in a given drawable, use XDrawArcs.

XDrawArcs (display, d, gc, arcs, narcs)
Display *display;
Drawable d;
GC gc;
XArc *arcs;
int narcs;

display

d

Specifies the connection to the X server.

Specifies the drawable.

gc

arcs

narcs

Specifies the GC.

Specifies a pointer to an array of arcs.

Specifies the number of arcs in the array.

XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws multiple
circular or elliptical arcs. Each arc is specified by a rectangle and two angles. The center
of the circle or ellipse is the center of the rectangle, and the major and minor axes are
specified by the width and height. Positive angles indicate counterclockwise motion, and
negative angles indicate clockwise motion. If the magnitude of angle2 is greater than 360
degrees, XDrawArc or XDrawArcs truncates it to 360 degrees.

For an arc specified as [x, y, width, height, angle 1, angle 2], the origin of the major and

minor axes is at [x + width ,y + height], and the infinitely thin path describing the entire
2 2

. 1 11·· h h· 1· [x height] d r ·d h height] ClfC e or e Ipse mtersects t e onzonta axIS at ,y + 2 an LX + WI t ,y + 2

d . h· I . r width] d r width h .. 1.] Th an mtersects t e verhca axIS at LX + -2-' y an LX + -2-' y + elgnt. ese

coordinates can be fractional and so are not truncated to discrete coordinates. The path
should be defined by the ideal mathematical path. For a wide line with line-width Iw, the
bounding outlines for filling are given by the two infinitely thin paths consisting of all
points whose perpendicular distance from the path of the circle/ellipse is equal to Iw /2
(which may be a fractional value). The cap-style and join-style are applied the same as for
a line corresponding to the tangent of the circle/ellipse at the endpoint.

For an arc specified as [x, y, width, height, angle 1, angle 2], the angles must be specified
in the effectively skewed coordinate system of the ellipse (for a circle, the angles and
coordinate systems are identical). The relationship between these angles and angles
expressed in the normal coordinate system of the screen (as measured with a protractor) is
as follows:

Graphics Functions 6 -11

skewed-angle = atan[tan(nOrmal-angle)* Wi~thJ + adjust
heIght

The skewed-angle and normal-angle are expressed in radians (rather than in degrees

scaled by 64) in the range [0, 21r] and where atan returns a value in the range [;, ;] and

adjust is:

o

11'

for normal-angle in the range [0, -i)
for normal-angle in the range li, ~]
for normal-angle in the range [~, 2n:J

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more than once. If
two arcs join correctly and if the line-width is greater than zero and the arcs intersect,
XDrawArc and XDrawArcs do not draw a pixel more than once. Otherwise, the
intersecting pixels of intersecting arcs are drawn multiple times. Specifying an arc with one
endpoint and a clockwise extent draws the same pixels as specifying the other endpoint and
an equivalent counterclockwise extent, except as it affects joins.

If the last point in one arc coincides with the first point in the following arc, the two arcs
will join correctly. If the first point in the first arc coincides with the last point in the last
arc, the two arcs will join correctly. By specifying one axis to be zero, a horizontal or
vertical line can be drawn. Angles are computed based solely on the coordinate system
and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask, line-width, line-style,
cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.
They also use these GC mode-dependent components: foreground, background, tile,
stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawArc and XDrawArcs can generate BadDrawable, BadGe, and BadMatch
errors.

6.4 Filling Areas
Xlib provides functions that you can use to fill:

• A single rectangle or multiple rectangles

• A single polygon

• A single arc or multiple arcs

6 - 12 Graphics Functions

6.4.1 Filling Single and Multiple Rectangles

To fill a single rectangular area in a given drawable, use XFillRectangle.

XFillRectangle (display, d, gc, x, y, width, height)
Display *display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;

display

d

Specifies the connection to the X server.

Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the drawable

and specify the upper-left corner of the rectangle.

width
height Specify the width and height, which are the dimensions of the rectangle to be

filled.

To fill multiple rectangular areas in a given drawable, use XFillRectangles.

XFillRectangles (display, d, gc, rectangles, nrectangles)
Display *display;
Drawable d;
GC gc;
XRectangle *rectangles;
int nrectangles;

display

d

gc

rectangles

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

Specifies a pointer to an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XFillRectangle and XFillRectangles functions fill the specified rectangle
or rectangles as if a four-point FillPolygon protocol request were specified for each
rectangle:

[X,y] [x+width,Y] [x+width,y+height] [x,y+height]

Graphics Functions 6 -13

Each function uses the x and y coordinates, width and height dimensions, and GC you
specify.

XFillRectangles fills the rectangles in the order listed in the array. For any given
rectangle, XFillRectangle and XFillRectangles do not draw a pixel more than
once. If rectangles intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, subwindow­
mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent
components: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y­
origin.

XFillRectangle and XFillRectangles can generate BadDrawable, BadGC,
and BadMa tch errors.

6.4.2 Filling a Single Polygon

To fill a polygon area in a given drawable, use XFillPolygon.

XF i llPolygon (display, d, gc, points, npoints, shape, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;
int npoints;
int shape;
int mode;

display

d

gc

points

npoints

shape

mode

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

Specifies a pointer to an array of points.

Specifies the number of points in the array.

Specifies a shape that helps the server to improve performance. You can pass
Cornplex,Convex,orNonconvex.

Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

6 -14 Graphics Functions

XFillPolygon fills the region closed by the specified path. The path is closed
automatically if the last point in the list does not coincide with the first point.
XFillPolygon does not draw a pixel of the region more than once.
CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the previous
point.

Depending on the specified shape, the following occurs:

• If shape is Complex, the path may self-intersect.

• If shape is Convex, the path is wholly convex. If known by the client, specifying
Convex can improve performance. If you specify Convex for a path that is not
convex, the graphics results are undefined.

• If shape is Nonconvex, the path does not self-intersect, but the shape is not wholly
convex. If known by the client, specifying Nonconvex instead of Complex may
improve performance. If you specify Nonconvex for a self-intersecting path, the
graphics results are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: function, plane-mask, fill-style, fill-rule,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode­
dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, and
tile-stipple-y-origin.

XFillPolygon can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

6.4.3 Filling Single and Multiple Arcs

To fill a single arc in a given drawable, use XFillArc.

XFi llArc (display, d, gc, x, y, width, height, angle!, angle2)
Display *display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;
int angleJ, angle2;

display

d

Specifies the connection to the X server.

Specifies the drawable.

gc Specifies the GC.

Graphics Functions 6 -15

x
y

width
height

ang/e1

ang/e2

Specify the x and y coordinates, which are relative to the origin of the drawable
and specify the upper-left corner of the bounding rectangle.

Specify the width and height, which are the major and minor axes of the arc.

Specifies the start of the arc relative to the three-o'clock position from the
center, in units of degrees multiplied by 64.

Specifies the path and extent of the arc relative to the start of the arc, in units
of degrees multiplied by 64.

To fill multiple arcs in a given drawable, use XFillArcs.

XFillArcs (display, d, ge, ares, nares)
Di splay *display;
Drawable d;
GC ge;
XArc *ares;
int nares;

display

d

Specifies the connection to the X server.

Specifies the drawable.

gc Specifies the GC.

arcs Specifies a pointer to an array of arcs.

narcs Specifies the number of arcs in the array.

For each arc, XFillArc or XFillArcs fills the region closed by the infinitely thin path
described by the specified arc and, depending on the arc-mode specified in the GC, one or
two line segments. For ArcChord, the single line segment joining the endpoints of the
arc is used. For ArcPieSlice, the two line segments joining the endpoints of the arc
with the center point are used. XFillArcs fills the arcs in the order listed in the array.
For any given arc, XFillArc and XFillArcs do not draw a pixel more than once. If
regions intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, arc-mode,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XFillArc and XFillArcs can generate BadDrawable, BadGC, and BadMatch
errors.

6 -16 Graphics Functions

6.5 Font Metrics
A font is a graphical description of a set of characters that are used to increase efficiency
whenever a set of small, similar sized patterns are repeatedly used.

This section discusses how to:

• Load and free fonts

• Obtain and free font names

• Set and retrieve the font search path

• Compute character string sizes

• Return logical extents

• Query character string sizes

The X server loads fonts whenever a program requests a new font. The server can cache
fonts for quick lookup. Fonts are global across all screens in a server. Several levels are
possible when dealing with fonts. Most applications simply use XLoadQueryFont to
load a font and query the font metrics.

Characters in fonts are regarded as masks. Except for image text requests, the only pixels
modified are those in which bits are set to 1 in the character. This means that it makes
sense to draw text using stipples or tiles (for example, many menus gray-out unusable
entries).

The XFontStruet structure contains all of the information for the font and consists of
the font-specific information as well as a pointer to an array of XCharStruet structures
for the characters contained in the font. The XFontStruet, XFontProp, and
XCharS true t structures contain:

typedef struct {
short lbearing;
short rbearing;
short width;
short ascent;
short descent;
unsigned short attributes;

} XCharStruct;

typedef struct {
Atom name;
unsigned long card32;

} XFontProp;

/* origin to left edge of raster */
/* origin to right edge of raster */
/* advance to next char's origin */
1* baseline to top edge of raster *1
1* baselirie to bottom edge of raster *1
1* per char flags (not predefined) *1

Graphics Functions 6 -17

typedef struct {
unsigned char byte1;
unsigned char byte2;

} XChar2b;

typedef struct {
XExtData *ext_data;
Font fid;
unsigned direction;
unsigned min_char_or_byte2;
unsigned max_char_or_byte2;
unsigned min_byte1;
unsigned max_byte1;
Bool all_chars_exist;
unsigned default_char;
int n_properties;
XFontProp *properties;
XCharStruct min_bounds;
XCharStruct max_bounds;
XCharStruct *per_char;
int ascent;
int descent;

} XFontStruct;

1* normal 16 bit characters are two bytes *1

1* hook for extension to hang data *i
1* Font id for this font *1
1* hint about the direction font is painted *1
1* first character *1
1* last character *1
1* first row that exists *1
1* last row that exists *1
1* flag if all characters have nonzero size *1
1* char to print for undefined character *1
1* how many properties there are *1
1* pointer to array of additional properties *1
1* minimum bounds over all existing char *1
1* maximum bounds over all existing char *1
1* first_char to last_char information *1
1* logical extent above baseline for spacing *1
1* logical decent below baseline for spacing *1

X supports single byte/character, two bytes/character matrix, and 16-bit character text
operations. Note that any of these forms can be used with a font, but a single
byte/character text request can only specify a single byte (that is, the first row of a 2-byte
font). You should view 2-byte fonts as a two-dimensional matrix of defined characters:
byte1 specifies the range of defined rows and byte2 defines the range of defined columns
of the font. Single byte/character fonts have one row defined, and the byte2 range
specified in the structure defines a range of characters.

The bounding box of a character is defined by the XCharStruet of that character.
When characters are absent from a font, the default char is used. When fonts have all
characters of the same size, only the information in the XFontStruet min and max
bounds are used.

The members of the XFon tS true t have the following semantics:

• The direction member can be either FontLeftToRight or
FontRightToLeft. It is just a hint as to whether most XCharStruet
elements have a positive (FontLeftToRight) or a negative
(FontRightToLeft) character width metric. The core protocol defines no
support for vertical text.

6 -18 Graphics Functions

• If the min bytel and max bytel members are both zero, min char or byte2
specifies the linear character index corresponding to the first element of the
per char array, and max char or byte2 specifies the linear character index of the
last-element. - --

If either min bytel or max bytel are nonzero, both min char or byte2 and
max char or- byte2 are less than 256, and the 2-byte chcrracte; index values
corresponding to the per_char array element N (counting from 0) are:

bytel = N ID + min bytel
byte2 = N\D + min = char_or _ byte2

where:

D = max char or byte2 - min char or byte2 + 1
I = integer divTsio; - --
\ = integer modulus

• If the per char pointer is NULL, all glyphs between the first and last character
indexes i~lusive have the same information, as given by both min_bounds and
max bounds.

• If all chars exist is True, all characters in the per char array have nonzero
bounding b"Z>xes. -

• The default_char member specifies the character that will be used when an
undefined or nonexistent character is printed. The default char is a 16-bit character
(not a 2-byte character). For a font using 2-byte matrix fo~mat, the default char has
bytel in the most -significant byte and byte2 in the least -significant byte. If the
default char itself specifies an undefined or nonexistent character, no printing is
perfortiied for an undefined or nonexistent character.

• The min bounds and max bounds members contain the most extreme values of each
individuai XCharS true t-component over all elements of this array (and ignore
nonexistent characters). The bounding box of the font (the smallest rectangle
enclosing the shape obtained by superimposing all of the characters at the same
origin [x,yD has its upper-left coordinate at:

[x + min_bounds.lbearing, y - max_bounds.ascent]

Its width is:

max_bounds.rbearing - min_bounds.lbearing

Its height is:

max_bounds. ascent + max_bounds.descent

Graphics Functions 6 -19

• The ascent member is the logical extent of the font above the baseline that is used
for determining line spacing. Specific characters may extend beyond this.

• The descent member is the logical extent of the font at or below the baseline that is
used for determining line spacing. Specific characters may extend beyond this.

• If the baseline is at Y -coordinate y, the logical extent of the font is inclusive between
the Y-coordinate values (y - font.ascent) and (y + font.descent - 1). Typically, the
minimum interline spacing between rows of text is given by ascent + descent.

For a character origin at [x,y], the bounding box of a character (that is, the smallest
rectangle that encloses the character's shape) described in terms of XCharStruct
components is a rectangle with its upper-left corner at:

[x + Ibearing, y - ascent]

Its width is:

rbearing - Ibearing

Its height is:

ascent + descent

The origin for the next character is defined to be:

[x + width, y]

The lbearing member defines the extent of the left edge of the character ink from the
origin. The rbearing member defines the extent of the right edge of the character ink from
the origin. The ascent member defines the extent of the top edge of the character ink
from the origin. The descent member defines the extent of the bottom edge of the
character ink from the origin. The width member defines the logical width of the
character.

Note that the baseline (the y position of the character origin) is logically viewed as being
the scanline just below nondescending characters. When descent is zero, only pixels with
Y -coordinates less than yare drawn, and the origin is logically viewed as being coincident
with the left edge of a nonkerned character. When lbearing is zero, no pixels with X­
coordinate less than x are drawn. Any of the XCharS true t metric members could be
negative. If the width is negative, the next character will be placed to the left of the current
origin.

6 - 20 Graphics Functions

The X protocol does not define the interpretation of the attributes member in the
XCharS true t structure. A nonexistent character is represented with all members of its
XCharS true t set to Zero.

A font is not guaranteed to have any properties. The interpretation of the property value
(for example, long or unsigned long) must be derived from a priori knowledge of the
property. When possible, fonts should have at least the properties listed in the following
table. With atom names, uppercase and lowercase matter. The following built -in property
atoms can be found in <Xll/Xatom.h>:

Graphics Functions 6 -21

Property Name

MIN SPACE

NORM SPACE

MAX SPACE

END SPACE

SUPERSCRIPT X
SUPERSCRIPT Y

SUBSCRIPT X
SUBSCRIPT Y

UNDERLINE POSmON

UNDERLINE THICKNESS

STRIKEOUT ASCENT
STRIKEOUT DESCENT

ITALIC ANGLE

X HEIGHT

QUAD WIDTH

CAP HEIGHT

6 -22 Graphics Functions

Type

unsigned

unsigned

unsigned

unsigned

int

Description

The minimum interword spacing, in pixels.

The normal interword spacing, in pixels.

The maximum interword spacing, in pixels.

The additional spacing at the end of sentences, in pixt

Offset from the character origin where superscripts sl
begin, in pixels. If the origin is at [x,y], then superscri
should begin at
[x + SUPERSCRIPT_X, Y - SUPERSCRIPT _ Y].

int Offset from the character origin where subscripts sho
begin, in pixels. If the origin is at [x,y], then subscript
should begin at
[x + SUPERSCRIPT_X, Y + SUPERSCRIPT _ Y].

int Y offset from the baseline to the top of an underline,
pixels. If the baseline is Y -coordinate y, then the top
underline is at
(y + UNDERLINE _POSmON).

unsigned Thickness of the underline, in pixels.

int Vertical extents for boxing or voiding characters, in pi
If the baseline is at Y -coordinate y, then the top of th,
strikeout box is at
(y - STRIKEOUT_ASCENT),
and the height of the box is
(STRIKEOUT_ASCENT + STRIKEOUT_DESCENT).

int The angle of the dominant staffs of characters in the j
degrees scaled by 64, relative to the three-o'clock pos
from the character origin, with positive indicating
counterclockwise motion (as in XDr aWAre).

int 1 ex as in TeX, but expressed in units of pixels. OfteIl
height of lowercase x.

int 1 em as in TeX, but expressed in units of pixels. Ofte
width of the digits 0-9.

int Y offset from the baseline to the top of the capital let
ignoring accents, in pixels. If the baseline is at Y -coo
y, then the top of the capitals is at

(y - CAP_HEIGHT).

WEIGHT unsigned The weight or boldness of the font, expressed as a vah
between 0 and 1000.

POINT SIZE unsigned The point size of this font at the ideal resolution, expn
in 1/10 points.

RESOLUTION unsigned The number of pixels per point, expressed in 1/100, at
which this font was created.

6.5.1 Loading and Freeing Fonts

Xlib provides functions that you can use to load fonts, get font information, unload fonts,
and free font information. A few font functions use a GContext resource ID or a font
ID interchangeably.

To load a given font, use XLoadFont.

Font XLoadFont(d~play, name)
Display *display;
char *namej

display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated string.

The XLoadFont function loads the specified font and returns its associated font ID. The
name should be ISO Latin-1 encoding; uppercase and lowercase do not matter. If
XLoadFont was unsuccessful at loading the specified font, a BadName error results.
Fonts are not associated with a particular screen and can be stored as a component of any
GC. When the font is no longer needed, call XUnloadFont.

XLoadFont can generate BadAlloc and BadName errors.

To return information about an available font, use XQueryFont.

XFontStruct *XQueryFont (display, font ID)
Display *display j -
XID fontJDj

display

font_ID

Specifies the connection to the X server.

Specifies the font ID or the GContext ID.

Graphics Functions 6 -23

The XQueryFont function returns a pointer to the XFontStruct structure, which
contains information associated with the font. You can query a font or the font stored in a
GC. The font ID stored in the XFontStruct structure will be the GContext ID, and
you need to be careful when using this ID in other functions (see XGContextFrornGC).
To free this data, use XFreeFontlnfo.

To perform a XLoadFont and XQueryFont in a single operation, use
XLoadQueryFont.

XFontStruct *XLoadQueryFont (display, name)
Display *display;
char *name;

display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated string.

The XLoadQueryFont function provides the most common way for accessing a font.
XLoadQueryFont both opens (loads) the specified font and returns a pointer to the
appropriate XFontStruct structure. If the font does not exist, XLoadQueryFont
returns NULL.

XLoadQueryFont can generate a BadAlloc error.

To unload the font and free the storage used by the font structure that was allocated by
XQueryFont or XLoadQueryFont, use XFreeFont.

XFreeFont (display, font strnct)
Display *display;­
XFontStruct *font_strnct;

display

fOllt _strnct

Specifies the connection to the X server.

Specifies the storage associated with the font.

The XFreeFont function deletes the association between the font resource ID and the
specified font and frees the XFontStruct structure. The font itself will be freed when
no other resource references it. The data and the font should not be referenced again.

XFreeFont can generate a BadFont error.

To return a given font property, use XGetFontProperty.

Baal XGetFontProperty (font strnct, atom, value Jetum)
XFontStruct *font strnct;
Atom atom; -
unsigned long *value Jetum;

Specifies the storage associated with the font.

6 -24 Graphics Functions

atom

value return

Specifies the atom for the property name you want returned.

Returns the value of the font property.

Given the atom for that property, the XGetFontProperty function returns the value of
the specified font property. XGetFontProperty also returns False if the property
was not defined or True if it was defined. A set of predefined atoms exists for font
properties, which can be found in < Xll/Xa tom. h >. This set contains the standard
properties associated with a font. Although it is not guaranteed, it is likely that the
predefined font properties will be present.

To unload a font that was loaded by XLoadFont, use XUnloadFont.

XUnloadFont (display I font)
Display *display;
Font font;

display

font

Specifies the connection to the X server.

Specifies the font.

The XUnloadFont function deletes the association between the font resource ID and
the specified font. The font itself will be freed when no other resource references it. The
font should not be referenced again.

XUnloadFont can generate a BadFont error.

6.5.2 Obtaining and Freeing Font Names and Information

You obtain font names and information by matching a wildcard specification when
querying a font type for a list of available sizes and so on.

To return a list of the available font names, u~e XListFonts.

char **XListFonts (display I pattern I maxnames I actual_countJetum)
Display *display;
char *pattern;
int maxnames;
int * actual_count Jetum ;

display

pattern

maxnames

actual count return - -

Specifies the connection to the X server.

Specifies the null-terminated pattern string that can contain
wildcard characters.

Specifies the maximum number of names to be returned.

Returns the actual number of font names.

Graphics Functions 6 -25

The XListFonts function returns an array of available font names (as controlled by the
font search path; see XSetFontPath) that match the string you passed to the pattern
argument. The string should be ISO Latin-I; uppercase and lowercase do not matter.
Each string is terminated by an ASCII null. The pattern string can contain any characters,
but each asterisk (*) is a wildcard for any number of characters, and each question mark
(1) is a wildcard for a single character. The client should call XFreeFontNames when
finished with the result to free the memory.

To free a font name array, use XFreeFontNames.

XFreeFontNames(l~t)
char *l~t [] ;

list Specifies the array of strings you want to free.

The XFreeFontNames function frees the array and strings returned by XListFonts
orXListFontsWithlnfo.

To obtain the names and information about available fonts, use
XListFontsWithlnfo.

char **XListFontsWithlnfo (d~play, pattern, maxnames, count..!eturn, infO ..!eturn)
Display *display;
char *pattern;
int maxnames;
int *count return;
XFontStruct **info ..!eturn ;

display

pattern

m axn ames

count return

Specifies the connection to the X server.

Specifies the null-terminated pattern string that can contain wildcard
characters.

Specifies the maximum number of names to be returned.

Returns the actual number of matched font names.

info Jeturn Returns a pointer to the font information.

The XLis tFontsWi thlnfo function returns a list of font names that match the
specified pattern and their associated font information. The list of names is limited to size
specified by maxnames. The information returned for each font is identical to what
XLoadQueryFont would return except that the per-character metrics are not returned.
The pattern string can contain any characters, but each asterisk (*) is a wildcard for any
number of characters, and each question mark (1) is a wildcard for a single character. To
free the allocated name array, the client should call XFreeFontNames. To free the the
font information array, the client should call XFreeFontlnfo.

6 -26 Graphics Functions

To free the the font information array, use XFreeFontlnfo.

XFreeFontInfo(names, free info, actual_count)
char **names; -
XFontStruct *free info;
int actual_count; -

names

free_info

Specifies the list of font names returned by XListFontsWithlnfo.

Specifies the pointer to the font information returned by
XListFontsWithlnfo.

actual count Specifies the actual number of matched font names returned by
XListFontsWithlnfo.

6.5.3 Setting and Retrieving the Font Search Path

To set the font search path, use XSetFontPath.

XSetFontPath (display, directories, ndirs)
Display *display;
char **directories;
int ndirs;

display Specifies the connection to the X server.

directories Specifies the directory path used to look for a font. Setting the path to
the empty list restores the default path defined for the X server.

ndirs Specifies the number of directories in the path.

The XSetFontPath function defines the directory search path for font lookup. There is
only one search path per X server, not one per client. The interpretation of the strings is
operating system dependent, but they are intended to specify directories to be searched in
the order listed. Also, the contents of these strings are operating system dependent and
are not intended to be used by client applications. Usually, the X server is free to cache
font information internally rather than having to read fonts from files. In addition, the X
server is guaranteed to flush all cached information about fonts for which there currently
are no explicit resource IDs allocated. The meaning of an error from this request is
operating system dependent.

XSetFontPath can generate a BadValue error.

To get the current font search path, use XGetFontPath.

Graphics Functions 6 -27

char **XGetFontPath (display, npaths _ retum)
Display *display;
int *npaths Jetum ;

display

npaths ..!etum

Specifies the connection to the X server.

Returns the number of strings in the font path array.

The XGetFontPath function allocates and returns an array of strings containing the
search path. When it is no longer needed, the data in the font path should be freed by
using XFreeFontPath.

To free data returned by XGetFontPath, use XFreeFontPath.

XFreeFontPath (list)
char **list;

list Specifies the array of strings you want to free.

The XFreeFontPath function frees the data allocated by XGetFontPath.

6.5.4 Computing Character String Sizes

Xlib provides functions that you can use to compute the width, the logical extents, and the
server information about 8-bit and 2-byte text strings. The width is computed by adding
the character widths of all the characters. It does not matter if the font is an 8-bit or 2-byte
font. These functions return the sum of the character metrics, in pixels.

To determine the width of an 8-bit character string, use XTextWidth.

int XTextWidth (font struct, string, count)
XFontStruct *font struct;
char *string; -
int count;

font _struct

string

Specifies the font used for the width computation.

Specifies the character string.

count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, use XTextWidth16.

int XTextWidth16 (font struct, string, count)
XFontStruct *folu_struct;
XChar2b *string;
int count;

6 -28 Graphics Functions

font struct

string

Specifies the font used for the width computation.

Specifies the character string.

count Specifies the character count in the specified string.

6.5.5 Computing Logical Extents

To compute the bounding box of an 8-bit character string in a given font, use
XTextExtents.

XTextExtents (font struct, string, nchars, direction return, font ascent return,
font descent return, overall_return) - --

string

XFontStruct - *font jtlUct ;
char *string;
int nchars;
int *direction return;
int *font ascent return, *font descent return;
XCharStruct *overall..!etum; - -

Specifies a pointer to the XFontStruet structure.

Specifies the character string.

nchars

direction return

Specifies the number of characters in the character string.

Returns the value of the direction hint (FontLeftToRight
or FontRightToLeft).

font_ascent ...!eturn

font _descent ...!eturn

Returns the font ascent.

Returns the font descent.

overall return Returns the overall size in the specified XCharS true t
structure.

To compute the bounding box of a 2-byte character string in a given font, use
XTextExtents16.

XT extExt en ts 16 (font _struct, string, nchars, direction ..!etum, font_ascent ..!etum ,
font descent return, overall return)

XFontStruct *[ont_struct; -
XChar2b *string;
int nchars;
int *direction return;
int *font ascent return, *font descent return;
XCharStruct *Overall..!etum; - -

Graphics Functions 6 -29

string

nchars

Specifies a pointer to the XFontStruct structure.

Specifies the character string.

direction return

Specifies the number of characters in the character string.

Returns the value of the direction hint (FontLeftToRight
or FontRightToLeft).

Returns the font ascent.

Returns the font descent.

overall return Returns the overall size in the specified XCharStruct
structure.

The XTextExtents and XTextExtents16 functions perform the size computation
locally and, thereby, avoid the round-trip overhead of XQueryTextExtents and
XQueryTextExtents16. Both functions return an XCharStruct structure, whose
members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the
string. The descent member is set to the maximum of the descent metrics. The width
member is set to the sum of the character-width metrics of all characters in the string. For
each character in the string, let W be the sum of the character-width metrics of all
characters preceding it in the string. Let L be the left-side-bearing metric of the character
plus W. Let R be the right -side-bearing metric of the character plus W. The lbearing
member is set to the minimum L of all characters in the string. The rbearing member is
set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b
structure is interpreted as a 16-bit number with byte1 as the most -significant byte. If the
font has no defined default character, undefined characters in the string are taken to have
all zero metrics.

6.5.6 Querying Character String Sizes

To query the server for the bounding box of an 8-bit character string in a given font, use
XQueryTextExtents.

XQueryTextExtents (display, font JD, string, nchars, direction Jeturn, font_ascent Jeturn,
font descent return, overall return)

Display *display; - - -
xro fontJD;
char *string;
int nchars;
int *direction return;
int *font ascent return, *font descent return ;
XCharStruct *overalIJeturn; - -

6 -30 Graphics Functions

display

font_ID

string

nchars

direction return

font_ascent Jeturn

font_descent Jeturn

overall return

Specifies the connection to the X server.

Specifies either the font ID or the GContext ID that contains
the font.

Specifies the character string.

Specifies the number of characters in the character string.

Returns the value of the direction hint (FontLeftToRight
or FontRightToLeft).

Returns the font ascent.

Returns the font descent.

Returns the overall size in the specified XCharStruct
structure.

To query the server for the bounding box of a 2-byte character string in a given font, use
XQueryTextExtents16.

XQueryTextExtents16(display, font ID, string, nchars, direction return, font ascent return,
font_desCent ..!eturn, overall..!eturn) - --

Display *display;
XID font ID;
XChar2b - *string;
int nchars;
int *direction return;
int *font ascent return, *font descent return ;
XCharStruct *overaJI..!eturn; - -

display

font_ID

string

nchars

direction return

font_ascent Jeturn

font _descent_return

overall return

Specifies the connection to the X server.

Specifies either the font ID or the GContext ID that contains
the font.

Specifies the character string.

Specifies the number of characters in the character string.

Returns the value of the direction hint (FontLeftToRight
or FontRightToLeft).

Returns the font ascent.

Returns the font descent.

Returns the overall size in the specified XCharStruct
structure.

Graphics Functions 6 -31

The XQueryTextExtents and XQueryTextExtents16 functions return the
bounding box of the specified 8-bit and 16-bit character string in the specified font or the
font contained in the specified GC. These functions query the X server and, therefore,
suffer the round-trip overhead that is avoided by XTextExtents and
XTextExtents16. Both functions return a XCharStruct structure, whose members
are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the
string. The descent member is set to the maximum of the descent metrics. The width
member is set to the sum of the character-width metrics of all characters in the string. For
each character in the string, let W be the sum of the character-width metrics of all
characters preceding it in the string. Let L be the left -side-bearing metric of the character
plus W. Let R be the right -side-bearing metric of the character plus W. The lbearing
member is set to the minimum L of all characters in the string. The rbearing member is
set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b
structure is interpreted as a 16-bit number with byte1 as the most -significant byte. If the
font has no defined default character, undefined characters in the string are taken to have
all zero metrics.

XQueryTextExtents and XQueryTextExtents16 can generate BadFont and
BadGe errors.

6.6 Drawing Text

This section discusses how to draw:

• Complex text

• Text characters

• Image text characters

The fundamental text functions XDrawText and XDrawText16 use the following
structures.

typedef struct {
char *chars;
int nchars;
int delta;
Font font;

} XTextItem;

6 - 32 Graphics Functions

1* pointer to string *1
1* number of characters *1
1* delta between strings *1
1* Font to print it in, None don't change *1

typedef struct {
XChar2b *chars;
int nchars;

/* pointer to two-byte characters */
/* number of characters */

int delta; /* delta between strings */
Font font; /* font to print it in, None don't change */

} XTextItem16;

If the font member is not None, the font is changed before printing and also is stored in
the GC. If an error was generated during text drawing, the previous items may have been
drawn. The baseline of the characters are drawn starting at the x and y coordinates that
you pass in the text drawing functions.

For example, consider the background rectangle drawn by XDrawlmageString. If you
want the upper-left corner of the background rectangle to be at pixel coordinate (x,y), pass
the (x,y + ascent) as the baseline origin coordinates to the text functions. The ascent is the
font ascent, as given in the XFontS true t structure. If you want the lower-left corner of
the background rectangle to be at pixel coordinate (x,y), pass the (x,y - descent + 1) as the
baseline origin coordinates to the text functions. The descent is the font descent, as given
in the XFontStruet structure.

6.6.1 Drawing Complex Text

To draw 8-bit characters in a given drawable, use XDrawText.

XDr awT ext (display, d, gc, x, y, items, nitems)
Display *display;
Drawable d;
GC gc;
int x, y;
XTextltem *items;
int nitems;

display

d

Specifies the connection to the X server.

Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the specified

drawable and define the origin of the first character.

items Specifies a pointer to an array of text items.

nitems Specifies the number of text items in the array.

To draw 2-byte characters in a given drawable, use XDrawText16.

Graphics Functions 6 -33

XDrawText16 (display, d, gc, x, y, items, nitems)
Display *display;
Drawable d;
GC gc;
int x, y;
XTextItem16 *items;
int nitems;

display

d

Specifies the connection to the X server.

Specifies the drawable.

gc

x
y

items

Specifies the GC.

Specify the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.

Specifies a pointer to an array of text items.

nitems Specifies the number of text items in the array.

The XDrawText16 function is similar to XDrawText except that it uses 2-byte or 16-bit
characters. Both functions allow complex spacing and font shifts between counted strings.

Each text item is processed in turn. A font member other than None in an item causes
the font to be stored in the GC and used for subsequent text. A text element delta specifies
an additional change in the position along the x axis before the string is drawn. The delta is
always added to the character origin and is not dependent on any characteristics of the
font. Each character image, as defined by the font in the GC, is treated as an additional
mask for a fill operation on the drawable. The drawable is modified only where the font
character has a bit set to 1. If a text item generates a BadFont error, the previous text
items may have been drawn.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b
structure is interpreted as a 16-bit number with byte1 as the most -significant byte.

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XDrawText and XDrawText16 can generate BadDrawable, BadFont, BadGe,
and BadMa tch errors.

6 -34 Graphics Functions

6.6.2 Drawing Text Characters

To draw 8-bit characters in a given drawable, use XDrawString.

XDrawString (display, d, gc, x, y, string, length)
Display *display;
Drawable d;
GC gc;
int x, y;
char *string;
int length;

display

d

Specifies the connection to the X server.

Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the specified

drawable and define the origin of the first character.

string

length

Specifies the character string.

Specifies the number of characters in the string argument.

To draw 2-byte characters in a given drawable, use XDrawString16.

XDrawString16 (display, d, gc, x, y, string, length)
Display *display;
Drawable d;
GC gc;
int x, y;
XChar2b *string;
int length;

display

d

Specifies the connection to the X server.

Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the specified

drawable and define the origin of the first character.

string

length

Specifies the character string.

Specifies the number of characters in the string argument.

Graphics Functions 6 -35

Each character image, as defined by the font in the GC, is treated as an additional mask
for a fill operation on the drawable. The drawable is modified only where the font
character has a bit set to 1. For fonts defined with 2-byte matrix indexing and used with
XDrawString16, each byte is used as a byte2 with a bytel of zero.

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-sti pple-y-origin.

XDrawString and XDrawString16 can generate BadDrawable, BadGe, and
BadMa teh errors.

6.6.3 Drawing Image Text Characters

Some applications, in particular terminal emulators, need to print image text in which both
the foreground and background bits of each character are painted. This prevents annoying
flicker on many displays.

To draw 8-bit image text characters in a given drawable, use XDrawlrnageString.

XDrawlmageString (display I d I gc I X I Y I string I length)
Display *display;
Drawable d;
GC gc;
int x, Y;
char *string;
int length;

display

d

Specifies the connection to the X server.

Specifies the drawable.

gc

x
y

string

length

Specifies the GC.

Specify the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.

Specifies the character string.

Specifies the number of characters in the string argument.

To draw2-byte image text characters in a given drawable, use XDrawlrnageString16.

6 -36 Graphics Functions

XDrawlmageString16 (display I d I gc I X I Y I string I length)
Display *display;
Drawable d;
GC gc;
int x, y;
XChar2b *string;
int length;

display

d

Specifies the connection to the X server.

Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the specified

drawable and define the origin of the first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

The XDrawlrnageString16 function is similar to XDrawlrnageString except that
it uses 2-byte or 16-bit characters. Both functions also use both the foreground and
background pixels of the GC in the destination.

The effect is first to fill a destination rectangle with the background pixel defined in the
GC and then to paint the text with the foreground pixel. The upper-left corner of the filled
rectangle is at:

[X, y - font-ascent]

The width is:

overall-width

The height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as would be returned by
XQueryTextExtents using gc and string. The function and fill-style defined in the GC
are ignored for these functions. The effective function is GXcopy, and the effective fill­
style is FillSolid.

For fonts defined with 2-byte matrix indexing and used with XDrawlrnageString, each
byte is used as a byte2 with a byte1 of zero.

Graphics Functions 6 -37

Both functions use these GC components: plane-mask, foreground, background, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawlmageString and XDrawlmageString16 can generate BadDrawable,
BadGe, and BadMatch errors.

6.7 Transferring Images between Client and Server

Xlib provides functions that you can use to transfer images between a client and the server.
Because the server may require diverse data formats, Xlib provides an image object that
fully describes the data in memory and that provides for basic operations on that data. You
should reference the data through the image object rather than referencing the data
directly. However, some implementations of the Xlib library may efficiently deal with
frequently used data formats by replacing functions in the procedure vector with special
case functions. Supported operations include destroying the image, getting a pixel, storing
a pixel, extracting a subimage of an image, and adding a constant to an image (see chapter
10).

All the image manipulation functions discussed in this section make use of the Xlmage
data structure, which describes an image as it exists in the client's memory.

typedef struct _Xlmage {
int width, height;
int xoffset;
int format;
char *data;
int byte_order;
int bitmap_unit;
int bitmap_bit_order;
int bitmapyad;
int depth;
int bytesyer_line;
int bitsyeryixel;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;

1* size of image *1
1* number of pixels offset in X direction *1
1* XYBitmap, XYPixmap, ZPixmap *1
/* pointer to image data *1
/* data byte order, LSBFirst, MSBFirst *1
/* quant. of scanline 8, 16, 32 *1
1* LSBFirst, MSBFirst *1
1* 8, 16, 32 either XY or ZPixmap *1
1* depth of image *1
1* accelerator to next scanline *1
1* bits per pixel (ZPixmap) *1
1* bits in z arrangement *1

char *obdata; /* hook for the object routines to hang on *1
struct funcs { 1* image manipulation routines *1

} f;
} Xlmage;

struct _Xlmage *(*create_image)();
int (*destroy_image)();
unsigned long (*getyixel)();
int (*putyixel)();
struct _Xlmage *(*sub_image)();
int (*addyixel)();

6 -38 Graphics Functions

You may request that height, width, or xoffset be changed when the image is sent to the
server. That is, you may send a subset of the image. All other members are characteristics
of both the image and the server, and should not be changed. If these members differ
between the image and the server, XPutlrnage makes the appropriate conversions. The
first byte of the first scanline of plane n is located at the address (data + (n * height *
bytes yer _line)).

To combine an image in memory with a rectangle of a drawable on the display, use
XPutlrnage.

XPutlmage (display, d, gc, image, src:, src y, dest:, dest y, width, height)
Display *display;

display

d

gc

image

src x

srcy

dest x
desty

width
height

Drawable d;
GC gc;
Xlmage *image;
int src _x, src y ;
int dest _x, dest y ;
unsigned int width, height;

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

Specifies the image you want combined with the rectangle.

Specifies the offset in X from the left edge of the image defined by the
Xlrnage data structure.

Specifies the offset in Y from the top edge of the image defined by the
Xlrnage data structure.

Specify the x and y coordinates, which are relative to the origin of the drawable
and are the coordinates of the subimage.

Specify the width and height of the subimage, which define the dimensions of
the rectangle.

The XPutlrnage function combines an image in memory with a rectangle of the specified
drawable. If XYBi trnap format is used, the depth must be one, or a BadMatch error
results. The foreground pixel in the GC defines the source for the one bits in the image,
and the background pixel defines the source for the zero bits. For XYPixrnap and
ZPixrnap, the depth must match the depth of the drawable, or a BadMatch error
results. The section of the image defined by the src x, src y, width, and height arguments
is drawn on the specified part of the drawable. - -

Graphics Functions 6 -39

This function uses these GC components: function, plane-mask, subwindow-mode, clip-x­
origin, clip-y-origin, and clip-mask. It also uses these GC mode-dependent components:
foreground and background.

XPutImage can generate BadDrawable, BadGe, BadMatch, and BadValue
errors.

To return the contents of a rectangle in a given drawable on the display, use XGe t Image.
This function specifically supports rudimentary screen dumps.

Xlmage *XGetlmage(display, d, x, y, width, height, plane_mask, format)
Display *display;

display

d

x
y

width
height

Drawable d;
int x, y;
unsigned int width, height;
long plane mask;
int format;

Specifies the connection to the X server.

Specifies the drawable.

Specify the x and y coordinates, which are relative to the origin of the
drawable and define the upper-left corner of the rectangle.

Specify the width and height of the subimage, which define the dimensions
of the rectangle.

plane_mask

Jonnat

Specifies the plane mask.

Specifies the format for the image. You can pass XYBi tmap,
XYPixmap, or ZPixmap.

The XGetImage function returns a pointer to an XI mage structure. This structure
provides you with the contents of the specified rectangle of the drawable in the format you
specify. If the format argument is XYPixmap, the image contains only the bit planes you
passed to the plane mask argument. If the plane mask argument only requests a subset of
the planes of the display, the depth of the returned image will be the number of planes
requested. If the format argument is ZPixmap, XGetlmage returns as zero the bits in
all planes not specified in the plane mask argument. The function performs no range
checking on the values in plane_mask and ignores extraneous bits.

XGe t Image returns the depth of the image to the depth member of the Xlmage
structure. The depth of the image is as specified when the drawable was created, except
when getting a subset of the planes in XYPixmap format, when the depth is given by the
number of bits set to 1 in plane_mask.

6 - 40 Graphics Functions

If the drawable is a pixmap, the given rectangle must be wholly contained within the
pixmap, or a BadMa tch error results. If the drawable is a window, the window must be
viewable, and it must be the case that if there were no inferiors or overlapping windows,
the specified rectangle of the window would be fully visible on the screen and wholly
contained within the outside edges of the window, or a BadMa tch error results. Note
that the borders of the window can be included and read with this request. If the window
has backing-store, the backing-store contents are returned for regions of the window that
are obscured by noninferior windows. If the window does not have backing-store, the
returned contents of such obscured regions are undefined. The returned contents of
visible regions of inferiors of a different depth than the specified windows depth are also
undefined. The pointer cursor image is not included in the returned contents.

XGetImage can generate BadDrawable, BadMatch, and BadValue errors.

To copy the contents of a rectangle on the display to a location within a preexisting image
structure, use XGetSubImage.

Xlmage *XGetSubImage(display, d, x, y, width, height, plane_mask, [onnat, dest_image, dest_x,
desty>

Display *display;
Drawable d;
int x, y;
unsigned int width, height;
unsigned long plane mask;
int [onnat; -
XImage *dest image;
int dest _x, dest y ;

display

d

Specifies the connection to the X server.

Specifies the drawable.

x
y

width
height

plane_mask

format

Specify the x and y coordinates, which are relative to the origin of the
drawable and define the upper-left corner of the rectangle.

Specify the width and height of the subimage, which define the dimensions
of the rectangle.

Specifies the plane mask.

Specifies the format for the image. You can pass XYBi tmap,
XYPixmap,orZPixmap.

Specify the destination image.

Graphics Functions 6 - 41

dest x
dest y Specify the x and y coordinates, which are relative to the origin of the

destination rectangle, specify its upper-left corner, and determine where
the subimage is placed in the destination image.

The XGetSubImage function updates dest image with the specified subimage in the
same manner as XGetImage. If the format argument is XYPixmap, the image contains
only-the bit planes you passed to the plane mask argument. If the format argument is
ZPixmap, XGetSubImage returns as ze-;:o the bits in all planes not specified in the
plane mask argument. The function performs no range checking on the values in
plane-mask and ignores extraneous bits. As a convenience, XGe tSub Image returns a
pointer to the same XImage structure specified by dest image.

The depth of the destination XImage structure must be the same as that of the drawable.
If the specified subimage does not fit at the specified location on the destination image,
the right and bottom edges are clipped. If the drawable is a pixmap, the given rectangle
must be wholly contained within the pixmap, or a BadMa tch error results. If the
drawable is a window, the window must be viewable, and it must be the case that if there
were no inferiors or overlapping windows, the specified rectangle of the window would be
fully visible on the screen and wholly contained within the outside edges of the window, or
a BadMa tch error results. If the window has backing-store, then the backing-store
contents are returned for regions of the window that are obscured by noninferior windows.
If the window does not have backing-store, the returned contents of such obscured regions
are undefined. The returned contents of visible regions of inferiors of a different depth
than the specified window's depth are also undefined.

XGetSubImage can generate BadDrawable, BadGe, BadMatch, and BadValue
errors.

6.8 Cursors

This section discusses how to:

• Create a cursor

• Change or destroy a cursor

• Define the cursor for a window

Each window can have a different cursor defined for it. Whenever the pointer is in a
visible window, it is set to the cursor defined for that window. If no cursor was defined for
that window, the cursor is the one defined for the parent window.

6 - 42 Graphics Functions

From X's perspective, a cursor consists of a cursor source, mask, colors, and a hotspot.
The mask pixmap determines the shape of the cursor and must be a depth of one. The
source pixmap must have a depth of one, and the colors determine the colors of the
source. The hotspot defines the point on the cursor that is reported when a pointer event
occurs. There may be limitations imposed by the hardware on cursors as to size and
whether a mask is implemented. XQueryBes tCursor can be used to find out what
sizes are possible. It is intended that most standard cursors will be stored as a special font.

6.8.1 Creating a Cursor

Xlib provides functions that you can use to create a font, bitmap, or glyph cursor.

To create a cursor from a standard font, use XCreateFontCursor.

#include <Xll/cursorfont.h>

Cursor XCreateFontCursor(d~pl~, s~)
Display *displ~;
unsigned int shape;

display

shape

Specifies the connection to the X server.

Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor. Applications
are encouraged to use this interface for their cursors because the font can be customized
for the individual display type. The shape argument specifies which glyph of the standard
fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colors of a
cursor are a black foreground and a white background (see XRecolorCursor). For
further information about cursor shapes, see appendix B.

XCreateFontCursor can generate BadAlloc and BadValue errors.

To create a cursor from two bitmaps, use XCreatePixmapCursor.

Cursor XCreatePixmapCursor (d~pl~, source, mask, foreground_color, background_color, x, y)
Display *displ~;
Pixmap source;
Pixmap mask;
XColor *foreground color;
XColor *background color;
unsigned int x, y;-

display

source

Specifies the connection to the X server.

Specifies the shape of the source cursor.

Graphics Functions 6 -43

mask

foreground_color

background _color

x
y

Specifies the cursor's source bits to be displayed or None.

Specifies the RGB values for the foreground of the source.

Specifies the RGB values for the background of the source.

Specify the x and y coordinates, which indicate the hotspot relative
to the source's origin.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID
associated with it. The foreground and background RGB values must be specified using
foreground color and background color, even if the X server only has a StaticGray or
GrayScal~ screen. The foreground color is used for the pixels set to lin the source,
and the background color is used for the pixels set to O. Both source and mask, if
specified, must have depth one (or a BadMatch error results) but can have any root.
The mask argument defines the shape of the cursor. The pixels set to 1 in the mask define
which source pixels are displayed, and the pixels set to 0 define which pixels are ignored. If
no mask is given, all pixels of the source are displayed. The mask, if present, must be the
same size as the pixmap defined by the source argument, or a BadMa tch error results.
The hotspot must be a point within the source, or a BadMatch error results.

The components of the cursor can be transformed arbitrarily to meet display limitations.
The pixmaps can be freed immediately if no further explicit references to them are to be
made. Subsequent drawing in the source or mask pixmap has an undefined effect on the
cursor. The X server might or might not make a copy of the pixmap.

XCreatePixmapCursor can generate BadAlloc and BadPixmap errors.

To create a cursor from font glyphs, use XCreateGlyphCursor.

Cursor XCreateGlyphCursor (display, source Jont, mask Jont, source_char, mask_char,
foreground_color, background_color)

Display *display;
Font source Jont, mask Jont ;
unsigned int source char, mask char;
XColor *foreground color; -
XColor *background_ color;

display

sourceJont

maskJont

source char

mask char

foreground_color

Specifies the connection to the X server.

Specifies the font for the source glyph.

Specifies the font for the mask glyph or None.

Specifies the character glyph for the source.

Specifies the glyph character for the mask.

Specifies the RGB values for the foreground of the source.

6 - 44 Graphics Functions

background_color Specifies the RGB values for the background of the source.

The XCreateGlyphCursor function is similar to XCreatePixmapCursor except
that the source and mask bitmaps are obtained from the specified font glyphs. The
source char must be a defined glyph in source font, or a BadValue error results. If
mask font is given, mask char must be a defin~d glyph in mask font, or a BadValue
error ~esults. The mask font and character are optional. The Origins of the source char
and mask char (if defined) glyphs are positioned coincidentally and define the hotspot.
The source char and mask char need not have the same bounding box metrics, and there
is no restriction on the placement of the hotspot relative to the bounding boxes. If no
mask char is given, all pixels of the source are displayed. You can free the fonts
immediately by calling XFreeFont if no further explicit references to them are to be
made.

For 2-byte matrix fonts, the 16-bit value should be formed with the byte1 member in the
most -significant byte and the byte2 member in the least -significant byte.

XCreateGlyphCursor can generate BadAlloc, BadFont, and BadValue errors.

6.8.2 Changing and Destroying Cursors

Xlib provides functions that you can use to change the cursor color, destroy the cursor, and
determine the best cursor size.

To change the color of a given cursor, use XRecolorCursor.

XRecolorCursor (display, cursor, foreground_color, background_color)
Display *display;
Cursor cursor;
XColor *foreground _color, *background _color;

display

cursor

Specifies the connection to the X server.

Specifies the cursor.

foreground _color

background _color

Specifies the RGB values for the foreground of the source.

Specifies the RGB values for the background of the source.

The XRecolorCursor function changes the color of the specified cursor, and if the
cursor is being displayed on a screen, the change is visible immediately.

XRecolorCursor can generate a BadCursor error.

To free (destroy) a given cursor, use XFreeCursor.

XFreeCursor (display, cursor)
Display *display;
Cursor cursor;

Graphics Functions 6 - 45

display Specifies the connection to the X server.

cursor Specifies the cursor.

The XFreeCursor function deletes the association between the cursor resource ID and
the specified cursor. The cursor storage is freed when no other resource references it.
The specified cursor ID should not be referred to again.

XFreeCursor can generate a BadCursor error.

To determine useful cursor sizes, use XQueryBes tCursor.

Status XQueryBestCursor(display, d, width, height, width_return, height_return)
Display *display;
Drawable d;
unsigned int width, height;
unsigned int *widthJetum, *heightJetum;

display

d

width
height

width return
height ..!eturn

Specifies the connection to the X server.

Specifies the drawable, which indicates the screen.

Specify the width and height of the cursor that you want the size
information for.

Return the best width and height that is closest to the specified width
and height.

Some displays allow larger cursors than other displays. The XQueryBestCursor
function provides a way to find out what size cursors are actually possible on the display. It
returns the largest size that can be displayed. Applications should be prepared to use
smaller cursors on displays that cannot support large ones.

XQueryBestCursor can generate a BadDrawable error.

6.8.3 Defining the Cursor

Xlib provides functions that you can use to define or un define the cursor that should be
displayed in a window.

To define which cursor will be used in a window, use XDefineCursor.

XDefineCursor (display, w, cursor)
Display *display;
Window w;
Cursor cursor;

6 - 46 Graphics Functions

display

w

cursor

Specifies the connection to the X server.

Specifies the window.

Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cursor is None,
it is equivalent to XUndefineCursor.

XDefineCursor can generate BadCursor and BadWindow errors.

To undefine the cursor in a given window, use XUndefineCursor.

XUndefineCursor(d~play, w)
Display *d~play;
Window w;

display

w

Specifies the connection to the X server.

Specifies the window.

The XUndefineCursor undoes the effect of a previous XDefineCursor for this
window. When the pointer is in the window, the parent's cursor will now be used. On the
root window, the default cursor is restored.

XUndefineCursor can generate a BadWindow error.

Graphics Functions 6 - 47

Window Manager Functions 7
Although it is difficult to categorize functions as application only or window manager only,
the functions in this chapter are most often used by window managers. It is not expected
that these functions will be used by most application programs. You can use the Xlib
window manager functions to:

• Change the parent of a window

• Control the lifetime of a window

• Determine resident colormaps

• Grab the pointer

• Grab the keyboard

• Grab the server

• Control event processing

• Manipulate the keyboard and pointer settings

• Control the screen saver

• Control host access

7.1 Changing the Parent of a Window

To change a window's parent to another window on the same screen, use
XReparentWindow. There is no way to move a window between screens.

XReparentWindow(display, w, parent, x, y)
Display *display;
Window w;
Window parent;
int x, y;

display Specifies the connection to the X server.

Specifies the window. w

Window Manager Functions 7 -1

parent Specifies the parent window.

x
y Specify the x and y coordinates of the position in the new parent window.

If the specified window is mapped, XReparentWindow automatically performs an
UnmapWindow request on it, removes it from its current position in the hierarchy, and
inserts it as the child of the specified parent. The window is placed in the stacking order
on top with respect to sibling windows.

After reparenting the specified window, XReparentWindow causes the X server to
generate a ReparentNotify event. The override redirect member returned in this
event is set to the window's corresponding attribute. -Window manager clients usually
should ignore this window if this member is set to True. Finally, if the specified window
was originally mapped, the X server automatically performs a MapWindow request on it.

The X server performs normal exposure processing on formerly obscured windows. The X
server might not generate Expose events for regions from the initial UnmapWindow
request that are immediately obscured by the final MapWindow request. A BadMatch
error results if:

• The new parent window is not on the same screen as the old parent window.

• The new parent window is the specified window or an inferior of the specified
window.

• The specified window has a ParentRelative background, and the new parent
window is not the same depth as the specified window.

XReparentWindow can generate BadMatch and BadWindow errors.

7.2 Controlling the Lifetime of a Window
The save-set of a client is a list of other clients' windows that, if they are inferiors of one of
the client's windows at connection close, should not be destroyed and should be remapped
if they are unmapped. For further information about close-connection processing, see
section 2.6. To allow an application's window to survive when a window manager that has
reparented a window fails, Xlib provides the save-set functions that you can use to control
the longevity of subwindows that are normally destroyed when the parent is destroyed. For
example, a window manager that wants to add decoration to a window by adding a frame
might reparent an application's window. When the frame is destroyed, the application's
window should not be destroyed but be returned to its previous place in the window
hierarchy.

The X server automatically removes windows from the save-set when they are destroyed.

7 - 2 Window Manager Functions

To add or remove a window from the client's save-set, use XChangeSaveSet.

XChangeSaveSet(d~pl~, W, change_mode)
Display *d~pl~ i
Window Wi

int change_mode i

display Specifies the connection to the X server.

w Specifies the window that you want to add to or delete from the client's
save-set.

change_mode Specifies the mode. You can pass SetModelnsert or
SetModeDelete.

Depending on the specified mode, XChangeSaveSet either inserts or deletes the
specified window from the client's save-set. The specified window must have been created
by some other client, or a BadMa tch error results.

XChangeSaveSet can generate BadMatch, BadValue, and BadWindow errors.

To add a window to the client's save-set, use XAddToSaveSet.

XAddToSaveSet (displ~, w)

Display *displ~;
Window w;

display Specifies the connection to the X server.

w Specifies the window that you want to add to the client's save-set.

The XAddToSaveSet function adds the specified window to the client's save-set. The
specified window must have been created by some other client, or a BadMa tch error
results.

XAddToSaveSet can generate BadMatch and BadWindow errors.

To remove a window from the client's save-set, use XRemoveFromS aveS e t.

XRemoveFromSaveSet(d~pl~, w)
Display *displ~ i
Window Wi

display Specifies the connection to the X server.

w Specifies the window that you want to delete from the client's save-set.

The XRemoveFromSaveSet function removes the specified window from the client's
save-set. The specified window must have been created by some other client, or a
BadMa tch error results.

Window Manager Functions 7 -3

XRemoveFromSaveSet can generate BadMatch and BadWindow errors.

7.3 Determining Resident Colormaps
Xlib provides functions that you can use to install a colormap, uninstall a colormap, and
obtain a list of installed colormaps.

At any time, there is a subset of the installed maps that is viewed as an ordered list and is
called the required list. The length of the required list is at most M, where M is the
minimum number of installed colormaps specified for the screen in the connection setup.
The required list is maintained as follows. When a colormap is specified to
XlnstallColormap, it is added to the head of the list; the list is truncated at the tail, if
necessary, to keep its length to at most M. When a colormap is specified to
XUninstallColormap and it is in the required list, it is removed from the list. A
colormap is not added to the required list when it is implicitly installed by the X server,
and the X server cannot implicitly uninstall a colormap that is in the required list.

To install a colormap, use XlnstallColormap.

XlnstallColormap (display, colormap)
Display *display;
Colormap colormap;

display

colonnap

Specifies the connection to the X server.

Specifies the colormap.

The XlnstallColormap function installs the specified colormap for its associated
screen. All windows associated with this colormap immediately display with true colors.
You associated the windows with this colormap when you created them by calling
XCreateWindow,XCreateSimpleWindow,XChangeWindowAttributes,or
XSetWindowColormap.

If the specified colormap is not already an installed colormap, the X server generates a
ColormapNotify event on each window that has that colormap. In addition, for every
other colormap that is installed as a result of a call to XlnstallColormap, the X
server generates a ColormapNotify event on each window that has that colormap.

XlnstallColormap can generate a BadColor error.

To uninstall a colormap, use XUninstallColormap.

XUninstallColormap (display, colormap)
Display *display;
Colormap colormap;

7 - 4 Window Manager Functions

display

colonnap

Specifies the connection to the X server.

Specifies the colormap.

The XUninstallColormap function removes the specified colormap from the
required list for its screen. As a result, the specified colormap might be uninstalled, and
the X server might implicitly install or uninstall additional colormaps. Which colormaps
get installed or uninstalled is server-dependent except that the required list must remain
installed.

If the specified colormap becomes uninstalled, the X server generates a
ColormapNotify event on each window that has that colormap. In addition, for every
other colormap that is installed or uninstalled as a result of a call to
XUninstallColormap, the X server generates a ColormapNotify event on each
window that has that colormap.

XUninstallColormap can generate a BadColor error.

To obtain a list of the currently installed colormaps for a given screen, use
XListlnstalledColormaps.

Colormap *XListlnstalledColormaps (display, w, num ...return)
Display *display;
Window w;
int *num...!eturn;

display

w

Specifies the connection to the X server.

Specifies the window that determines the screen.

num return Returns the number of currently installed colormaps.

The XListlnstalledColormaps function returns a list of the currently installed
colormaps for the screen of the specified window. The order of the colormaps in the list is
not significant and is no explicit indication of the required list. When the allocated list is
no longer needed, free it by using XFr e e .

XListlnstalledColormaps can generate a BadWindow error.

7.4 Pointer Grabbing

Xlib provides functions that you can use to control input from the pointer, which usually is
a mouse. Window managers most often use these facilities to implement certain styles of
user interfaces. Some toolkits also need to use these facilities for special purposes.

Window Manager Functions 7 -5

Usually, as soon as keyboard and mouse events occur, the X server delivers them to the
appropriate client, which is determined by the window and input focus. The X server
provides sufficient control over event delivery to allow window managers to support mouse
ahead and various other styles of user interface. Many of these user interfaces depend
upon synchronous delivery of events. The delivery of pointer and keyboard events can be
controlled independently.

When mouse buttons or keyboard keys are grabbed, events will be sent to the grabbing
client rather than the normal client who would have received the event. If the keyboard or
pointer is in asynchronous mode, further mouse and keyboard events will continue to be
processed. If the keyboard or pointer is in synchronous mode, no further events are
processed until the grabbing client allows them (see XAllowEvents). The keyboard or
pointer is considered frozen during this interval. The event that triggered the grab can also
be replayed.

Note that the logical state of a device (as seen by client applications) may lag the physical
state if device event processing is frozen.

There are two kinds of grabs: active and passive. An active grab occurs when a single
client grabs the keyboard or pointer explicitly (see XGrabPointer and
XGrabKeyboard). A passive grab occurs when clients grab a particular keyboard key or
pointer button in a window, and the grab will activate when the key or button is actually
pressed. Passive grabs are convenient for implementing reliable pop-up menus. For
example, you can guarantee that the pop-up is mapped before the up pointer button event
occurs by grabbing a button requesting synchronous behavior. The down event will trigger
the grab and freeze further processing of pointer events until you have the chance to map
the pop-up window. You can then allow further event processing. The up event will then
be correctly processed relative to the pop-up window.

For many operations, there are functions that take a time argument. The X server
includes a timestamp in various events. One special time, called CurrentTime,
represents the current server time. The X server maintains the time when the input focus
was last changed, when the keyboard was last grabbed, when the pointer was last grabbed,
or when a selection was last changed. Your application may be slow reacting to an event.
You often need some way to specify that your request should not occur if another
application has in the meanwhile taken control of the keyboard, pointer, or selection. By
providing the timestamp from the event in the request, you can arrange that the operation
not take effect if someone else has performed an operation in the meanwhile.

A timestamp is a time value, expressed in milliseconds. It typically is the time since the last
server reset. Timestamp values wrap around (after about 49.7 days). The server, given its
current time is represented by timestamp T, always interprets timestamps from clients by
treating half of the timestamp space as being later in time than T. One timestamp value,

7 - 6 Window Manager Functions

named CurrentTime, is never generated by the server. This value is reserved for use in
requests to represent the current server time.

For many functions in this section, you pass pointer event mask bits. The valid pointer
event mask bits are: ButtonPressMask, ButtonReleaseMask,
EnterWindowMask,LeaveWindowMask,PointerMotionMask,
PointerMotionHintMask,ButtonlMotionMask,Button2MotionMask,
Button3MotionMask,Button4MotionMask,ButtonSMotionMask,
ButtonMotionMask, and KeyMapStateMask. For other functions in this section,
you pass keymask bits. The valid keymask bits are: ShiftMask, LockMask,
ControlMask, ModlMask, Mod2Mask, Mod3Mask, Mod4Mask, and ModS Mask.

To grab the pointer, use XGrabPointer.

int XGrabPointer (display, grab window, owner events, event mask, pointer mode,
keyboard mode,- confine to, cursor, time) - -

Display *display; - -
Window grab window;
Bool owner events ;
unsigned int event mask;
int pointer mode, keyboard mode;
Window confine to; -
Cursor cursor;-
Time time;

display Specifies the connection to the X server.

Specifies the grab window. grab _window

owner events

event mask

confine_to

cursor

time

Specifies a Boolean value that indicates whether the pointer events are
to be reported as usual or reported with respect to the grab window if
selected by the event mask.

Specifies which pointer events are reported to the client. The mask is
the bitwise inclusive OR of the valid pointer event mask bits.

Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

Specifies the window to confine the pointer in or None.

Specifies the cursor that is to be displayed during the grab or None.

Specifies the time. You can pass either a timestamp or
CurrentTime.

Window Manager Functions 7 -7

The XGrabPointer function actively grabs control of the pointer and returns
GrabSuccess if the grab was successful. Further pointer events are reported only to
the grabbing client. XGrabPointer overrides any active pointer grab by this client. If
owner events is Fa 1 s e, all generated pointer events are reported with respect to
grab Window and are reported only if selected by event mask. If owner events is True
and if a generated pointer event would normally be reported to this clietrt, it is reported as
usual. Otherwise, the event is reported with respect to the grab window and is reported
only if selected by event mask. For either value of owner events, unreported events are
discarded. - -

If the pointer mode is Gr abModeAsync, pointer event processing continues as usual. If
the pointer is currently frozen by this client, the processing of events for the pointer is
resumed. If the pointer mode is GrabModeSync, the state of the pointer, as seen by
client applications, appe7us to freeze, and the X server generates no further pointer events
until the grabbing client calls XAllowEvents or until the pointer grab is released.
Actual pointer changes are not lost while the pointer is frozen; they are simply queued in
the server for later processing.

If the keyboard mode is GrabModeAsync, keyboard event processing is unaffected by
activation of the grab. If the keyboard mode is GrabModeSync, the state of the
keyboard, as seen by client application~, appears to freeze, and the X server generates no
further keyboard events until the grabbing client calls XAllowEvents or until the
pointer grab is released. Actual keyboard changes are not lost while the pointer is frozen;
they are simply queued in the server for later processing.

If a cursor is specified, it is displayed regardless of what window the pointer is in. If None
is specified, the normal cursor for that window is displayed when the pointer is in
grab_window or one of its subwindows; otherwise, the cursor for grab_window is displayed.

If a confine to window is specified, the pointer is restricted to stay contained in that
window. The confine to window need have no relationship to the grab window. If the
pointer is not initially in the confine to window, it is warped automaticaily to the closest
edge just before the grab activates a~d enter/leave events are generated as usual. If the
confine_to window is subsequently reconfigured, the pointer is warped automatically, as
necessary, to keep it contained in the window.

The time argument allows you to avoid certain circumstances that come up if applications
take a long time to respond or if there are long network delays. Consider a situation
where you have two applications, both of which normally grab the pointer when clicked on.
If both applications specify the timestamp from the event, the second application may wake
up faster and successfully grab the pointer before the first application. The first application
then will get an indication that the other application grabbed the pointer before its request
was processed.

XGrabPointer generates EnterNotify and LeaveNotify events.

7 -8 Window Manager Functions

Either if grab window or confine to window is not viewable or if the confine to window
lies completely outside the boundaries of the root window, XGrabPointer fails and
returns GrabNotViewable. If the pointer is actively grabbed by some other client, it
fails and returns AlreadyGrabbed. If the pointer is frozen by an active grab of another
client, it fails and returns GrabFrozen. If the specified time is earlier than the last­
pointer-grab time or later than the current X server time, it fails and returns
GrablnvalidTime. Otherwise, the last-painter-grab time is set to the specified time
(CurrentTime is replaced by the current X server time).

XGrabPointer can generate BadCursor, BadValue, and BadWindow errors.

To ungrab the pointer, use XUngrabPointer.

XUngrabPointer(d~plGo/. Ume)
Display *d~plGo/;
Time time;

display Specifies the connection to the X server.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XUngrabPointer function releases the pointer and any queued events if this client
has actively grabbed the pointer from XGrabPointer, XGrabButton, or from a
normal button press. XUngrabPointer does not release the pointer if the specified
time is earlier than the last-painter-grab time or is later than the current X server time. It
also generates EnterNotify and LeaveNotify events. The X server performs an
UngrabPointer request automatically if the event window or confine to window for an
active pointer grab becomes not viewable or if window reconfiguration c'iuses the
confine_to window to lie completely outside the boundaries of the root window.

To change an active pointer grab, use XChangeActivePointerGrab.

XChangeActi vePointerGrab (d~plGo/. event_mask. cursor. time)
Display *displGo/;
unsigned int event mask;
Cursor cursor; -
Time time;

display

event· mask

cursor

time

Specifies the connection to the X server.

Specifies which pointer events are reported to the client. The mask is the
bitwise inclusive OR of the valid pointer event mask bits.

Specifies the cursor that is to be displayed or None.

Specifies the time. You can pass either a timestamp or CurrentTime.

Window Manager Functions 7 - 9

The XChangeActivePointerGrab function changes the specified dynamic
parameters if the pointer is actively grabbed by the client and if the specified time is no
earlier than the last-pointer-grab time and no later than the current X server time. This
function has no effect on the passive parameters of a X Grab Button. The interpretation
of event mask and cursor is the same as described in XGrabPointer.

XChangeActivePointerGrab can generate BadCursor and BadValue errors.

To grab a pointer button, use XGrabButton.

XGrabButton (display, button, modifiers, grab window, owner events, event_mask,
pointer mode, keyboard mode, confine to, cursor)

Display *d~play;- - -
unsigned int button;
unsigned int modifiers;
Window grab window;
Bool owner events;
unsigned int event mask;
int pointer mode, keyboard mode;
Window confine to; -
Cursor cursor;-

display Specifies the connection to the X server.

button Specifies the pointer button that is to be grabbed or AnyButton.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab _window Specifies the grab window.

owner events Specifies a Boolean value that indicates whether the pointer events are
to be reported as usual or reported with respect to the grab window if
selected by the event mask.

event mask Specifies which pointer events are reported to the client. The mask is
the bitwise inclusive OR of the valid pointer event mask bits.

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard _mode Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

confine _to Specifies the window to confine the pointer in or None.

cursor Specifies the cursor that is to be displayed or None.

7 -10 Window Manager Functions

The XGrabButton function establishes a passive grab. In the future, the pointer is
actively grabbed (as for XGrabPointer), the last-pointer-grab time is set to the time at
which the button was pressed (as transmitted in the ButtonPress event), and the
ButtonPress event is reported if all of the following conditions are true:

• The pointer is not grabbed, and the specified button is logically pressed when the
specified modifier keys are logically down, and no other buttons or modifier keys are
logically down.

• The grab_window contains the pointer.

• The confine_to window (if any) is viewable.

• A passive grab on the same button/key combination does not exist on any ancestor
of grab_window.

The interpretation of the remaining arguments is as for XGrabPointer. The active
grab is terminated automatically when the logical state of the pointer has all buttons
released (independent of the state of the logical modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physical
state if device event processing is frozen.

This request overrides all previous grabs by the same client on the same button/key
combinations on the same window. A modifiers of AnyModifier is equivalent to
issuing the grab request for all possible modifier combinations (including the combination
of no modifiers). It is not required that all modifiers specified have currently assigned
KeyCodes. A button of AnyButton is equivalent to issuing the request for all possible
buttons. Otherwise, it is not required that the specified button currently be assigned to a
physical button.

If some other client has already issued a XGrabButton with the same button/key
combination on the same window, a BadAccess error results. When using
AnyModifier or AnyButton, the request fails completely, and a BadAccess error
results (no grabs are established) if there is a conflicting grab for any combination.
XGrabButton has no effect on an active grab.

XGrabButton can generate BadCursor, BadValue, and BadWindow errors.

To ungrab a pointer button, use XUngrabButton.

XUngrabBut ton (display, button, modifiers, grab window)
Display *display; -
unsigned int button;
unsigned int modifiers;
Window grab _window;

display Specifies the connection to the X server.

Window Manager Functions 7 -11

button

modifiers

grab _window

Specifies the pointer button that is to be released or AnyButton.

Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

Specifies the grab window.

The XUngrabButton function releases the passive button/key combination on the
specified window if it was grabbed by this client. A modifiers of AnyModifier is
equivalent to issuing the ungrab request for all possible modifier combinations, including
the combination of no modifiers. A button of AnyButton is equivalent to issuing the
request for all possible buttons. XUngrabButton has no effect on an active grab.

XUngrabButton can generate BadValue and BadWindow errors.

7.5 Keyboard Grabbing

Xlib provides functions that you can use to grab or ungrab the keyboard as well as allow
events.

For many functions in this section, you pass keymask bits. The valid keymask bits are:
ShiftMask, LockMask, ControlMask, ModlMask, Mod2Mask, Mod3Ma sk,
Mod4Mask, and ModSMask.

To grab the keyboard, use XGr abKeyboard.

int XGrabKeyboard (display, grab window, owner_events, pointer_mode, keyboard_mode, time)
Display *display; -
Window grab window;
Boo 1 owner events ;
int pointer -mode, keyboard mode;
Time time; - -

display Specifies the connection to the X server.

grab _window Specifies the grab window.

owner events Specifies a Boolean value that indicates whether the pointer events are
to be reported as usual or reported with respect to the grab window if
selected by the event mask.

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

7 -12 Window Manager Functions

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XGrabKeyboard function actively grabs control of the keyboard and generates
Focusln and FocusOut events. Further key events are reported only to the grabbing
client. XGrabKeyboard overrides any active keyboard grab by this client. If
owner events is Fa 1 s e, all generated key events are reported with respect to
grab Window. If owner events is True and if a generated key event would normally be
repof'ted to this client, it is reported normally; otherwise, the event is reported with respect
to the grab window. Both KeyPress and KeyRelease events are always reported,
independe.rt of any event selection made by the client.

If the keyboard_mode argument is Gr abModeAsync, keyboard event processing
continues as usual. If the keyboard is currently frozen by this client, then processing of
keyboard events is resumed. If the keyboard mode argument is GrabModeSync, the
state of the keyboard (as seen by client applications) appears to freeze, and the X server
generates no further keyboard events until the grabbing client issues a releasing
XAllowEvents call or until the keyboard grab is released. Actual keyboard changes are
not lost while the keyboard is frozen; they are simply queued in the server for later
processing.

If pointer mode is GrabModeAsync, pointer event processing is unaffected by activation
of the grab. If pointer mode is GrabModeSync, the state of the pointer (as seen by
client applications) appears to freeze, and the X server generates no further pointer events
until the grabbing client issues a releasing XAllowEvents call or until the keyboard
grab is released. Actual pointer changes are not lost while the pointer is frozen; they are
simply queued in the server for later processing.

If the keyboard is actively grabbed by some other client, XGrabKeyboard fails and
returns AlreadyGrabbed. If grab window is not viewable, it fails and returns
GrabNotViewable. If the keyboaf'd is frozen by an active grab of another client, it fails
and returns GrabFrozen. If the specified time is earlier than the last-keyboard-grab
time or later than the current X server time, it fails and returns GrablnvalidTime.
Otherwise, the last-keyboard-grab time is set to the specified time (CurrentTime is
replaced by the current X server time).

XGrabKeyboard can generate BadValue and BadWindow errors.

To ungrab the keyboard, use XUngrabKeyboard.

XUngrabKeyboard (display, time)
Display *display;
Time time;

display Specifies the connection to the X server.

Window Manager Functions 7 -13

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XUngr abKeyboard function releases the keyboard and any queued events if this
client has it actively grabbed from either XGr abKeyboard or XGr abKey.
XUngrabKeyboard does not release the keyboard and any queued events if the
specified time is earlier than the last-keyboard-grab time or is later than the current X
server time. It also generates Focusln and FocusOut events. The X server
automatically performs an Ungr abKeyboard request if the event window for an active
keyboard grab becomes not viewable.

To passively grab a single key of the keyboard, use XGr abKey .

XGrabKey (display, keycode, modifiers, grab window, owner_events, pointer_mode,
keyboard mode) -

Display *disp1aY;
int keycode;
unsigned int modifiers;
Window grab window;
Bool owner events ;
int pointer ".:.mode, keyboard_mode;

display Specifies the connection to the X server.

keycode Specifies the KeyCode or AnyKey.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab _window Specifies the grab window.

owner events Specifies a Boolean value that indicates whether the pointer events are
to be reported as usual or reported with respect to the grab window if
selected by the event mask.

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

The XGr abKey function establishes a passive grab on the keyboard. In the future, the
keyboard is actively grabbed (as for XGrabKeyboard), the last-keyboard-grab time is
set to the time at which the key was pressed (as transmitted in the KeyPress event), and
the KeyPress event is reported if all of the following conditions are true:

• The keyboard is not grabbed and the specified key (which can itself be a modifier
key) is logically pressed when the specified modifier keys are logically down, and no
other modifier keys are logically down.

7 -14 Window Manager Functions

• Either the grab window is an ancestor of (or is) the focus window, or the
grab_window is-a descendant of the focus window and contains the pointer.

• A passive grab on the same key combination does not exist on any ancestor of
grab_window.

The interpretation of the remaining arguments is as for XGrabKeyboard. The active
grab is terminated automatically when the logical state of the keyboard has the specified
key released (independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physical
state if device event processing is frozen.

A modifiers argument of AnyModifier is equivalent to issuing the request for all
possible modifier combinations (including the combination of no modifiers). It is not
required that all modifiers specified have currently assigned KeyCodes. A keycode
argument of AnyKey is equivalent to issuing the request for all possible KeyCodes.
Otherwise, the specified keycode must be in the range specified by min _ keycode and
max _ keycode in the connection setup, or a BadVa 1 ue error results.

If some other client has issued a XGr abKey with the same key combination on the same
window, a BadAccess error results. When using AnyModifier or AnyKey, the
request fails completely, and a BadAccess error results (no grabs are established) if
there is a conflicting grab for any combination.

XGrabKey can generate BadAccess, BadValue, and BadWindow errors.

To ungrab a key, use XUngr abKey.

XUngr abKey (display, keycode, modifiers, grab window)
Display *display; -
int keycode;
unsigned int modifiers;
Window grab _window;

display

keycode

Specifies the connection to the X server.

Specifies the KeyCode or AnyKey.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab _window Specifies the grab window.

The XUngr abKey function releases the key combination on the specified window if it
was grabbed by this client. It has no effect on an active grab. A modifiers of
AnyModifier is equivalent to issuing the request for all possible modifier combinations
(including the combination of no modifiers). A keycode argument of AnyKey is
equivalent to issuing the request for all possible key codes.

Window Manager Functions 7 -15

XUngrabKey can generate BadValue and BadWindow errors.

To allow further events to be processed when the device has been frozen, use
XAllowEven ts.

XAllowEvents (display I event mode I time)
Display *display; -
int event mode;
Time time;

display

event mode

time

Specifies the connection to the X server.

Specifies the event mode. You can pass AsyncPointer,
SyncPointer,AsyncKeyboard,SyncKeyboard,
ReplayPointer,ReplayKeyboard,AsyncBoth,orSyncBoth.

Specifies the time. You can pass either a timestamp or CurrentTime.

The XAllowEvents function releases some queued events if the client has caused a
device to freeze. It has no effect if the specified time is earlier than the last-grab time of
the most recent active grab for the client or if the specified time is later than the current X
server time. Depending on the event_mode argument, the following occurs:

AsyncPointer

SyncPointer

ReplayPointer

If the pointer is frozen by the client, pointer event processing continue~
usual. If the pointer is frozen twice by the client on behalf of two sepm
grabs, AsyncPointer thaws for both. AsyncPointer has no eft
the pointer is not frozen by the client, but the pointer need not be grab
the client.

If the pointer is frozen and actively grabbed by the client, pointer event
processing continues as usual until the next ButtonPress or
ButtonRelease event is reported to the client. At this time, the poi
again appears to freeze. However, if the reported event causes the poi
grab to be released, the pointer does not freeze .. SyncPointer has
effect if the pointer is not frozen by the client or if the pointer is not gr:
by the client.

If the pointer is actively grabbed by the client and is frozen as the resul
event having been sent to the client (either from the activation of a
XGrabButton or from a previous XAllowEvents with mode
SyncPointer but not from a XGrabPointer), the pointer grab is
released and that event is completely reprocessed. This time, however
function ignores any passive grabs at or above (towards the root of) the
grab window of the grab just released. The request has no effect if the
pointer is not grabbed by the client or if the pointer is not frozen as th(
of an event.

7 -16 Window Manager Functions

AsyncKeyboard If the keyboard is frozen by the client, keyboard event processing continut
as usual. If the keyboard is frozen twice by the client on behalf of two
separate grabs, AsyncKeyboard thaws for both. AsyncKeyboard 1
no effect if the keyboard is not frozen by the client, but the keyboard need
not be grabbed by the client.

SyncKeyboard If the keyboard is frozen and actively grabbed by the client, keyboard evet
processing continues as usual until the next KeyPress or KeyReleas 1

event is reported to the client. At this time, the keyboard again appears te
freeze. However, if the reported event causes the keyboard grab to be
released, the keyboard does not freeze. SyncKeyboard has no effect i
the keyboard is not frozen by the client or if the keyboard is not grabbed 1
the client.

ReplayKeyboard If the keyboard is actively grabbed by the client and is frozen as the result
an event having been sent to the client (either from the activation of a
XGrabKey or from a previous XAllowEvents with mode
SyncKeyboard but not from a XGrabKeyboard), the keyboard grab
released and that event is completely reprocessed. This time, however, th
function ignores any passive grabs at or above (towards the root of) the
grab window of the grab just released. The request has no effect if the
keyboard is not grabbed by the client or if the keyboard is not frozen as tt
result of an event.

SyncBoth If both pointer and keyboard are frozen by the client, event processing fOJ
both devices continues as usual until the next ButtonPress,
ButtonRelease, KeyPress, or KeyRelease event is reported to t]
client for a grabbed device (button event for the pointer, key event for thf
keyboard), at which time the devices again appear to freeze. However, if t
reported event causes the grab to be released, then the devices do not free
(but if the other device is still grabbed, then a subsequent event for it will
cause both devices to freeze). SyncBoth has no effect unless both point
and keyboard are frozen by the client. If the pointer or keyboard is frozel
twice by the client on behalf of two separate grabs, SyncBoth thaws for
both (but a subsequent freeze for SyncBo th will only freeze each devicI
once).

AsyncBoth If the pointer and the keyboard are frozen by the client, event processing
both devices continues as usual. If a device is frozen twice by the client 01

behalf of two separate grabs, AsyncBoth thaws for both. AsyncBot"
has no effect unless both pointer and keyboard are frozen by the client.

Window Manager Functions 7 -17

AsyncPointer, SyncPointer, and ReplayPointer have no effect on the
processing of keyboard events. AsyncKeyboard, SyncKeyboard, and
ReplayKeyboard have no effect on the processing of pointer events. It is possible for
both a pointer grab and a keyboard grab (by the same or different clients) to be active
simultaneously. If a device is frozen on behalf of either grab, no event processing is
performed for the device. It is possible for a single device to be frozen because of both
grabs. In this case, the freeze must be released on behalf of both grabs before events can
again be processed.

XAllowEvents can generate a BadValue error.

7.6 Server Grabbing

Xlib provides functions that you can use to grab and ungrab the server. These functions
can be used to control processing of output on other connections by the window system
server. While the server is grabbed, no processing of requests or close downs on any other
connection will occur. A client closing its connection automatically ungrabs the server.
Although grabbing the server is highly discouraged, it is sometimes necessary.

To grab the server, use XGrabServer.

XGrabServer(d~play)

Display *display;

display Specifies the connection to the X server.

The XGrabServer function disables processing of requests and close downs on all other
connections than the one this request arrived on. You should not grab the X server any
more than is absolutely necessary.

To ungrab the server, use XUngrabServer.

XUngrabServer (display)
Display *display;

display Specifies the connection to the X server.

The XUngrabServer function restarts processing of requests and close downs on other
connections. You should avoid grabbing the X server as much as possible.

7 -18 Window Manager Functions

7.7 Miscellaneous Control Functions
This section discusses how to:

• Control the input focus

• Control the pointer

• Kill clients

7.7.1 Controlling Input Focus

Xlib provides functions that you can use to move the pointer position as well as to set and
get the input focus.

To move the pointer to an arbitrary point on the screen, use XWarpPointer.

XWarpPointer (display, src _w, dest _ w, src _x, src y, src _width, src _height J dest _x,

display

src w

dest w

src x
srcy

desty>
Display *display;
Window src w, dest w;
int src_x, -srcy; -
unsigned int src width, src height;
int dest _x, dest y-; -

Specifies the connection to the X server.

Specifies the source window or None.

Specifies the destination window or None.

src width
src_height Specify a rectangle in the source window.

dest x
dest y Specify the x and y coordinates within the destination window.

If dest w is None, XWarpPointer moves the pointer by the offsets (dest x, dest y)
relative to the current position of the pointer. If dest w is a window, XWarpPointer
moves the pointer to the offsets (dest_ x, dest_y) relatiVe to the origin of dest_ w. However,
if src _ w is a window, the move only takes place if the specified rectangle src _ w contains the
pointer.

Window Manager Functions 7 -19

The src x and src y coordinates are relative to the origin of src w. If src height is zero, it
is replaced with the current height of src _ w minus src y. If src '=-width is zero, it is replaced
with the current width of src w minus src x. - -
There is seldom any reason for calling this function. The pointer should normally be left to
the user. If you do use this function, however, it generates events just as if the user had
instantaneously moved the pointer from one position to another. Note that you cannot use
XWarpPointer to move the pointer outside the confine to window of an active pointer
grab. An attempt to do so will only move the pointer as feU as the closest edge of the
confine to window.

XWarpPointer can generate a BadWindow error.

To set the input focus, use XSetlnputFocus.

XSetlnputFocus (display, focus, revert to, time)
Display *display; -
Window focus;
int revert to ;
Time time-;

display

focus

reven to

time

Specifies the connection to the X server.

Specifies the window, PointerRoot, or None.

Specifies where the input focus reverts to if the window becomes not
viewable. You can pass RevertToParent, RevertToPointerRoot,
or RevertToNone.

Specifies the time. You can pass either a timestamp or CurrentTirne.

The XSetlnputFocus function changes the input focus and the last-focus-change time.
It has no effect if the specified time is earlier than the current last-focus-change time or ii
later than the current X server time. Otherwise, the last-focus-change time is set to the
specified time (Curren tTirne is replaced by the current X server time).
XSetlnputFocus causes the X server to generate Focusln and FocusOut events.

Depending on the focus argument, the following occurs:

• If focus is None, all keyboard events are discarded until a new focus window is set,
and the revert_to argument is ignored.

• If focus is a window, it becomes the keyboard's focus window. If a generated
keyboard event would normally be reported to this window or one of its inferiors, the
event is reported as usual. Otherwise, the event is reported relative to the focus
window.

7 -20 Window Manager Functions

• If focus is PointerRoot, the focus window is dynamically taken to be the root
window of whatever screen the pointer is on at each keyboard event. In this case, the
revert_to argument is ignored.

The specified focus window must be viewable at the time XSetlnputFocus is called, or
a BadMa tch error results. If the focus window later becomes not viewable, the X server
evaluates the revert_to argument to determine the new focus window as follows:

• If revert to is RevertToParent, the focus reverts to the parent (or the closest
viewable-ancestor), and the new revert_to value is taken to be RevertToNone.

• If revert to is RevertToPointerRoot or RevertToNone, the focus reverts to
Pointe-rRoot or None, respectively. When the focus reverts, the X server
generates Focusln and FocusOut events, but the last-focus-change time is not
affected.

XSetlnputFocus can generate BadMatch, BadValue, and BadWindow errors.

To obtain the current input focus, use XGetlnputFocus.

XGetlnputFocus (display, focus_return, revert_to _return)
Display *display i
Window *focus return i
int *revert _to Jeturn i

display Specifies the connection to the X server.

focus ...!eturn

revert to return

Returns the focus window, PointerRoot, or None.

Returns the current focus state (RevertToParent,
RevertToPointerRoot, or RevertToNone).

The XGetlnputFocus function returns the focus window and the current focus state.

7.7.2 Killing Clients

Xlib provides functions that you can use to control the lifetime of resources owned by a
client or to cause the connection to a client to be destroyed.

To change a client's close-down mode, use XSetCloseDownMode.

XSetCloseDownMode (display, close_mode)
Display *display i
int close_mode i

display

close mode

Specifies the connection to the X server.

Specifies the client close-down mode. You can pass DestroyAll,
RetainPermanent, or RetainTemporary.

Window Manager Functions 7 -21

The XSetCloseDownMode defines what will happen to the client's resources at
connection close. A connection starts in DestroyAll mode. For information on what
happens to the client's resources when the close mode argument is RetainPerrnanent
or RetainTernporary, see section 2.6. -

XSetCloseDownMode can generate a BadValue error.

To destroy a client, use XKillClient.

XKillClient (display, resource)
Display *display;
XID resource;

display

resource

Specifies the connection to the X server.

Specifies any resource associated with the client that you want to destroy or
AIITernporary.

The XKi 11 C 1 i en t function forces a close-down of the client that created the resource if
a valid resource is specified. If the client has already terminated in either
RetainPerrnanent or RetainTernporary mode, all of the client's resources are
destroyed. If AIITernporary is specified, the resources of all clients that have
terminated in RetainTernporary are destroyed (see section 2.6). This permits
implementation of window manager facilities that aid debugging. A client can set its
close-down mode to RetainTernporary. If the client then crashes, its windows would
not be destroyed. The programmer can then inspect the application's window tree and use
the window manager to destroy the zombie windows.

XKillClient can generate a BadValue error.

7.8 Keyboard and Pointer Settings

Xlib provides functions that you can use to change the keyboard control, obtain a list of the
auto-repeat keys, turn keyboard auto-repeat on or off, ring the bell, set or obtain the
pointer button or keyboard mapping, and obtain a bit vector for the keyboard.

This section discusses the user-preference options of bell, key click, pointer behavior, and
so on. The default values for many of these functions are determined by command line
arguments to the X server and, on UNIX -based systems, are typically set in the
/etc/ttys file. Not all implementations will actually be able to control all of these
parameters.

The XChangeKeyboardControl function changes control of a keyboard and operates
on a XKeyboardControl structure:

/* Mask bits for ChangeKeyboardControl * /

7 -22 Window Manager Functions

define
define
define
define
define
define
define
define

/* Values */

typedef struct {
int key_click-percent;
int bell-percent;
int bell-pitch;
int bell_duration;
int led;

KBKeyClickPercent (lL< <0)
KBBellPercent (lL< <1)
KBBellPitch (lL< <2)
KBBellDuration (lL< <3)
KBLed (lL< <4)
KBLedMode (lL< <5)
KBKey (lL< <6)
KBAutoRepeatMode (lL< <7)

int led_mode; /* LedModeOn, LedModeOff */
int key;
int auto_repeat_mode; /* AutoRepeatModeOff, AutoRepeatModeOn,

AutoRepeatModeDefault */
} XKeyboardControl;

The key click percent member sets the volume for key clicks between 0 (off) and 100
(loud) h~clusive, if possible. A setting of -1 restores the default. Other negative values
generate a BadValue error.

The bell percent sets the base volume for the bell between 0 (off) and 100 (loud) inclusive,
if possible. A setting of -1 restores the default. Other negative values generate a
BadValue error. The bellJ>itch member sets the pitch (specified in Hz) of the bell, if
possible. A setting of -1 restores the default. Other negative values generate a
BadValue error. The bell duration member sets the duration of the bell specified in
milliseconds, if possible. A setting of -1 restores the default. Other negative values
generate a BadValue error.

If both the led mode and led members are specified, the state of that LEO is changed, if
possible. The ied mode member can be set to LedModeOn or LedModeOff. If only
led mode is specified, the state of all LEOs are changed, if possible. At most 32 LEOs
nUI~bered from one are supported. No standard interpretation of LEOs is defined. If led
is specified without led_mode, a BadMa tch error results.

Window Manager Functions 7 -23

If both the auto repeat mode and key members are specified, the auto repeat mode of
that key is changed (ac;ording to AutoRepeatModeOn, AutoRepeatModeOff, or
AutoRepeatModeDefault), if possible. If only auto repeat mode is specified, the
global auto _repeat_mode for the entire keyboard is changed, if possible, and does not
affect the per key settings. If a key is specified without an auto repeat mode, a
BadMatch error results. Each key has an individual mode of "Whether or not it should
auto-repeat and a default setting for the mode. In addition, there is a global mode of
whether auto-repeat should be enabled or not and a default setting for that mode. When
global mode is AutoRepeatModeOn, keys should obey their individual auto-repeat
modes. When global mode is AutoRepeatModeOff, no keys should auto-repeat. An
auto-repeating key generates alternating KeyPress and KeyRelease events. When a
key is used as a modifier, it is desirable for the key not to auto-repeat, regardless of its
auto-repeat setting.

A bell generator connected with the console but not directly on a keyboard is treated as if
it were part of the keyboard. The order in which controls are verified and altered is
server-dependent. If an error is generated, a subset of the controls may have been altered.

XChangeKeyboardControl (display, value mask, values)
Display *display; -
unsigned long value mask;
XKeyboardControl *Values;

display Specifies the connection to the X server.

value mask Specifies one value for each bit set to 1 in the mask.

values Specifies which controls to change. This mask is the bitwise inclusive OR
of the valid control mask bits.

The XChangeKeyboardControl function controls the keyboard characteristics
defined by the XKeyboardControl structure. The value mask argument specifies
which values are to be changed. -

XChangeKeyboardControl can generate BadMatch and BadValue errors.

To obtain the current control values for the keyboard, use XGetKeyboardControl.

XGetKeyboardControl (display, values return)
Display *display; -
XKeyboardState *Values ...!eturn ;

display

values return

Specifies the connection to the X server.

Returns the current keyboard controls in the specified
XKeyboardS ta te structure.

7 -24 Window Manager Functions

The XGetKeyboardContro1 function returns the current control values for the
keyboard to the XKeyboardS ta te structure.

typedef struct {
int key_click-percent;
int bell-percent;
unsigned int bell-pitch, bell_duration;
unsigned long led_mask;
int global_auto_repeat;
char auto repeats[32]:

} XKeyboardStat;;

For the LEDs, the least -significant bit of led mask corresponds to LED one, and each bit
set to 1 in led mask indicates an LED that is lit. The global auto repeat member can be
set to AutoR~peatModeOn or AutoRepeatModeOff. The auto repeats member is
a bit vector. Each bit set to 1 indicates that auto-repeat is enabled for the corresponding
key. The vector is represented as 32 bytes. Byte N (from 0) contains the bits for keys BN to
BN + 7 with the least-significant bit in the byte representing key BN.

To turn on keyboard auto-repeat, use XAutoRepeatOn.

XAutoRepeatOn (display)
Display *display;

display Specifies the connection to the X server.

The XAutoRepeatOn function turns on auto-repeat for the keyboard on the specified
display.

To turn off keyboard auto-repeat, use XAutoRepeatOff.

XAutoRepeatOff(d~play)

Display *display;

display Specifies the connection to the X server.

The XAutoRepeatOff function turns off auto-repeat for the keyboard on the specified
display.

To ring the bell, use XBe 11.

XBell (d~play, percent)
Display *display;
int percent;

display Specifies the connection to the X server.

percent Specifies the volume for the bell, which can range from -100 to 100 inclusive.

Window Manager Functions 7 -25

The XBe 11 function rings the bell on the keyboard on the specified display, if possible.
The specified volume is relative to the base volume for the keyboard. If the value for the
percent argument is not in the range -100 to 100 inclusive, a BadValue error results.
The volume at which the bell rings when the percent argument is nonnegative is:

base - [(base * percent) /100] + percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]

To change the base volume of the bell, use XChangeKeyboardControl.

XBel1 can generate a BadValue error.

To obtain a bit vector that describes the state of the keyboard, use XQueryKeymap.

XQueryKeymap (display, keys return)
Display *display; -
char keys Jeturn [32] ;

display Specifies the connection to the X server.

Returns an array of bytes that identifies which keys are pressed down.
Each bit represents one key of the keyboard.

The XQueryKeymap function returns a bit vector for the logical state of the keyboard,
where each bit set to 1 indicates that the corresponding key is currently pressed down. The
vector is represented as 32 bytes. Byte N (from 0) contains the bits for keys SN to SN + 7
with the least-significant bit in the byte representing key SN.

Note that the logical state of a device (as seen by client applications) may lag the physical
state if device event processing is frozen.

To set the mapping of the pointer buttons, use XSetPointerMapping.

int XSetPointerMapping (display, map, nmap)
Display *display;
unsigned char map[] ;
int nmap;

display Specifies the connection to the X server.

Specifies the mapping list. map

nmap Specifies the number o~ items in the mapping list.

7 -26 Window Manager Functions

The XSetPointerMapping function sets the mapping of the pointer. If it succeeds,
the X server generates a MappingNotify event, and XSetPointerMapping
returns MappingSuccess. Elements of the list are indexed starting from one. The
length of the list must be the same as XGetPointerMapping would return, or a
BadVal ue error results. The index is a core button number, and the element of the list
defines the effective number. A zero element disables a button, and elements are not
restricted in value by the number of physical buttons. However, no two elements can have
the same nonzero value, or a BadValue error results. If any of the buttons to be altered
are logically in the down state, XSetPointerMapping returns MappingBusy, and
the mapping is not changed.

XSetPointerMapping can generate a BadValue error.

To get the pointer mapping, use XGetPointerMapping.

int XGetPointerMapping (display, map return, nmap)
Display *display; -
unsigned char map return [] ;
int nmap; -

display

mapJetum

nmap

Specifies the connection to the X server.

Returns the mapping list.

Specifies the number of items in the mapping list.

The XGetPointerMapping function returns the current mapping of the pointer. The
list contains the mapping, starting with button 1. XGetPointerMapping returns the
number of physical buttons actually on the pointer. The nominal mapping for a pointer is
the identity mapping, where button [i] has the value i. The nmap argument specifies the
length of the array where the pointer mapping is returned, and only the first nmap
elements are returned in map_return.

To control the pointer's interactive feel, use XChangePointerControl.

XChangePointerControl (display, do accel, do threshold, accel_numerator,
accel_ denominator, threshold)

Display *display;
Bool do accel, do threshold;
int accel numerator, accel denominator;
int threshold; -

display

do accel

Specifies the connection to the X server.

Specifies a Boolean value that controls whether the values for the
accel numerator or accel denominator are used. - -

Window Manager Functions 7 -27

do threshold

accel numerator

accel denominator

threshold

Specifies a Boolean value that controls whether the value for the
threshold is used.

Specifies the numerator for the acceleration multiplier.

Specifies the denominator for the acceleration multiplier.

Specifies the acceleration threshold.

The XChangePointerControl function defines how the pointing device moves. The
acceleration, expressed as a fraction, is a multiplier for movement. For example, specifying
3/1 means the pointer moves three times as fast as normal. The fraction may be rounded
arbitrarily by the X server. Acceleration only takes effect if the pointer moves more than
threshold pixels at once and only applies to the amount beyond the value in the threshold
argument. Setting a value to -1 restores the default. The values of the do accel and
do_threshold arguments must be True for the pointer values to be set, or the parameters
are unchanged. Negative values (other than -1) generate a BadValue error, as does a
zero value for the accel_ denominator argument.

XChangePointerControl can generate a BadValue error.

To get the current pointer parameters, use XGetPointerControl.

XGetPointerControl (display, aceel numerator return, aceel denominator return,
threshol(jetum) - - -

Display *display;
in t *aceel numerator return I *aeeel_ denominator Jetum ;
int *threshold Jetum ;-

display

accel numerator return - -
accel denominator return - -
threshold return

Specifies the connection to the X server.

Returns the numerator for the acceleration multiplier.

Returns the denominator for the acceleration multiplier.

Returns the acceleration threshold.

The XGetPointerControl function returns the pointer's current acceleration
multiplier and acceleration threshold.

7.9 Keyboard Encoding
Most applications will find the simple interface XLookupString, which performs
simple translation of a key event to an ASCII string, most useful. Keyboard-related
utilities are discussed in chapter 10. The following section explains how to completely
control the bindings of symbols to keys and modifiers.

7 - 28 Window Manager Functions

A KeyCode represents a physical (or logical) key. KeyCodes lie in the inclusive range
[8,255]. A KeyCode value carries no intrinsic information, although server implementors
may attempt to encode geometry (for example, matrix) information in some fashion so that
it can be interpreted in a server-dependent fashion. The mapping between keys and
KeyCodes cannot be changed.

A KeySym is an encoding of a symbol on the cap of a key. The set of defined KeySyms
include the ISO Latin character sets (1-4), Katakana, Arabic, Cyrillic, Greek, Technical,
Special, Publishing, APL, Hebrew, and a special miscellany of keys found on keyboards
(Return, Help, Tab, and so on). To the extent possible, these sets are derived from
international standards. In areas where no standards exist, some of these sets are derived
from Digital Equipment Corporation standards. The list of defined symbols can be found
in <Xll/keysymdef. h >. Unfortunately, some C preprocessors have limits on the
number of defined symbols. If you must use KeySyms not in the Latin 1-4, Greek, and
miscellaneous classes, you may have to define a symbol for those sets. Most applications
usually only include < Xll/keysym. h >, which defines symbols for ISO Latin 1-4,
Greek, and miscellaneous.

A list of KeySyms is associated with each KeyCode. The length of the list can vary with
each KeyCode. The list is intended to convey the set of symbols on the corresponding key.
By convention, if the list contains a single KeySym and if that KeySym is alphabetic and
case distinction is relevant for it, then it should be treated as equivalent to a two-element
list of the lowercase and uppercase KeySyms. For example, if the list contains the single
KeySym for uppercase A, the client should treat it as if it were a pair with lowercase a as
the first KeySym and uppercase A as the second KeySym.

For any KeyCode, the first KeySym in the list should be chosen as the interpretation of a
KeyPress when no modifier keys are down. The second KeySym in the list normally
should be chosen when the Shift modifier is on or when the Lock modifier is on and Lock
is interpreted as ShiftLock. When the Lock modifier is on and is interpreted as CapsLock,
it is suggested that the Shift modifier first be applied to choose a KeySym. However, if
that KeySym is lowercase alphabetic, the corresponding uppercase KeySym should be used
instead. Other interpretations of CapsLock are possible; for example, it may be viewed as
equivalent to ShiftLock, but only applying when the first KeySym is lowercase alphabetic
and the second KeySym is the corresponding uppercase alphabetic. No interpretation of
KeySyms beyond the first two in a list is suggested here. No spatial geometry of the
symbols on the key is defined by their order in the KeySym list, although a geometry might
be defined on a vendor-specific basis. The X server does not use the mapping between
KeyCodes and KeySyms. Rather, it stores it merely for reading and writing by clients.

To obtain the legal KeyCodes for a display, use XDisplayKeycodes.

Window Manager Functions 7 -29

XDisplayKeycodes (display, min keycodes return, max keycodes return)
Display *display; - - - -
int *min _ keycodes _return, max _ keycodes Jetum ;

display

min _ keycodes Jetum

max _ keycodes Jetum

Specifies the connection to the X server.

Returns the minimum number of KeyCodes.

Returns the maximum number of KeyCodes.

The XDisplayKeycodes function returns the min-keycodes and max-keycodes
supported by the specified display. The minimum number of KeyCodes returned is never
less than 8, and the maximum number of KeyCodes returned is never greater than 255.
Not all KeyCodes in this range are required to have corresponding keys.

To obtain the symbols for the specified KeyCodes, use XGetKeyboardMapping.

KeySym *XGetKeyboardMapping (display, first keycode, keycode count,
keysyms "per JZeycode Jetum) -

Display *display;
KeyCode first keycode;
int keycode count;
int *keysyms"per_keycodeJetum;

display

keycode _count

Specifies the connection to the X server.

Specifies the first KeyCode that is to be returned.

Specifies the number of KeyCodes that are to be
returned.

keysyms yer _ keycode Jetum Returns the number of KeySyms per KeyCode.

The XGetKeyboardMapping function returns the symbols for the specified number of
KeyCodes starting with first keycode. The value specified in first keycode must be
greater than or equal to min-keycode as returned by XDisplayKeycodes, or a
BadValue error results. In-addition, the following expression must be less than or equal
to max_keycode as returned by XDisplayKeycodes:

first_keycode + keycode_count - 1

If this is not the case, a BadValue error results. The number of elements in the KeySyms
list is:

7 -30 Window Manager Functions

KeySym number N, counting from zero, for KeyCode K has the following index in the list,
counting from zero:

The X server arbitrarily chooses the keysyms yer _ keycode _return value to be large
enough to report all requested symbols. A special KeySym value of NoSymbol is used to
fill in unused elements for individual KeyCodes. To free the storage returned by
XGetKeyboardMapping, use XFree.

XGetKeyboardMapping can generate a BadValue error.

To change the keyboard mapping, use XChangeKeyboardMapping.

XChangeKeyboardMapping (display, first _ keycode, keysyms'per _ keycode, keysyms, num _codes)
Display *display;
int first keycode;
int keysyms'per _ keycode ;
KeySym *keysyms;
int num _codes;

display

first _ keycode

keysyms yer _ keycode

Specifies the connection to the X server.

Specifies the first KeyCode that is to be changed.

Specifies the number of KeySyms per KeyCode.

keysyms Specifies a pointer to an array of KeySyms.

num codes Specifies the number of KeyCodes that are to be changed.

The XChangeKeyboardMapping function defines the symbols for the specified
number of KeyCodes starting with first keycode. The symbols for KeyCodes outside this
range remain unchanged. The number of elements in keysyms must be:

The specified first keycode must be greater than or equal to min keycode returned by
XDisplayKeyco-des, or a BadValue error results. In additi;n, the following
expression must be less than or equal to max keycode as returned by
XDisplayKeycodes, or a BadValue error results:

KeySym number N, counting from zero, for KeyCode K has the following index in
keysyms, counting from zero:

(K - first_keycode) * keysyms-per_keycode + N

Window Manager Functions 7 -31

The specified keysyms yer _ keycode can be chosen arbitrarily by the client to be large
enough to hold all desired symbols. A special KeySym value of NoSymbol should be used
to fill in unused elements for individual KeyCodes. It is legal for NoSymbol to appear in
nontrailing positions of the effective list for a KeyCode. XChangeKeyboardMapp ing
generates a MappingNotify event.

There is no requirement that the X server interpret this mapping. It is merely stored for
reading and writing by clients.

XChangeKeyboardMapping can generate BadAlloc and BadValue errors.

The next four functions make use of the XModifierKeymap data structure, which
contains:

typedef struct {
int max_keypermodi
KeyCode *modifiermapi

} XModifierKeymapi

/* This server's max number of keys per modifier */
/* An 8 by max_keypermod array of the modifiers */

To create an XModifierKeymap structure, use XNewModifiermap.

XModifierKeymap *XNewModifiermap(max_~s~~_mod)
int max _ ~s ~~ _mod i

max_keys yeT_mod Specifies the number of KeyCode entries preallocated to the
modifiers in the map.

The XNewModifiermap function returns a pointer to XModifierKeymap structure
for later use.

To add a new entry to an XModifierKeymap structure, use
XlnsertModifiermapEntry.

XModifierKeymap *XlnsertModifiermapEntry(modmap, ~code entry, modifi~)
XModifierKeymap *modmap i -
KeyCode ~code _entry i
int modifier;

modmap

keycode _entry

Specifies a pointer to the XModifierKeymap structure.

Specifies the KeyCode.

modifier Specifies the modifier.

The XlnsertModifiermapEntry function adds the specified KeyCode to the set that
controls the specified modifier and returns the resulting XModifierKeymap structure
(expanded as needed).

7 -32 Window Manager Functions

To delete an entry from an XModifierKeyrnap structure, use
XDeleteModifiermapEntry.

XModifierKeymap *XDeleteModifiermapEntry (modmap, keycode _entry, modifier)
XModifierKeymap *modmap;
KeyCode keycode _entry ;
int modifier;

modmap

keycode _entry

Specifies a pointer to the XModifierKeymap structure.

Specifies the KeyCode.

modifier Specifies the modifier.

The XDeleteModifiermapEntry function deletes the specified KeyCode from the
set that controls the specified modifier and returns a pointer to the resulting
XModifierKeymap structure.

To destroy an XModifierKeymap structure, use XFreeModifiermap.

XFreeModifiermap(modmap)
XModifierKeymap *modmap;

modmap Specifies a pointer to the XModifierKeymap structure.

The XFreeModifiermap function frees the specified XModifierKeymap structure.

To set the KeyCodes to be used as modifiers, use XSetModifierMapping.

int XSetModifierMapping(d~pl~, modmap)
Display *d~pl~;
XModifierKeymap *modmap;

display Specifies the connection to the X server.

modmap Specifies a pointer to the XModifierKeymap structure.

The XSetModifierMapping function specifies the KeyCodes of the keys (if any) that
are to be used as modifiers. If it succeeds, the X server generates a MappingNotify
event, and XSetModifierMapping returns MappingSuccess. X permits at most
eight modifier keys. If more than eight are specified in the XModifierKeymap
structure, a BadLength error results.

The modifiermap member of the XModifierKeymap structure contains eight sets of
max keypermod KeyCodes, one for each modifier in the order Shift, Lock,
Control, ModI, Mod2, Mod3, Mod4, and ModS. Only nonzero KeyCodes have
meaning in each set, and zero KeyCodes are ignored. In addition, all of the nonzero
KeyCodes must be in the range specified by min _ keycode and max _ keycode in the

Window Manager Functions 7 -33

Display structure, or a BadValue error results. No KeyCode may appear twice in the
entire map, or a BadValue error results.

An X server can impose restrictions on how modifiers can be changed, for example, if
certain keys do not generate up transitions in hardware, if auto-repeat cannot be disabled
on certain keys, or if multiple modifier keys are not supported. If some such restriction is
violated, the status reply is MappingFailed, and none of the modifiers are changed. If
the new KeyCodes specified for a modifier differ from those currently defined and any
(current or new) keys for that modifier are in the logically down state,
XSetModifierMapping returns MappingBusy, and none of the modifiers is
changed.

XSetModifierMapping can generate BadAlloc and BadValue errors.

To obtain the KeyCodes used as modifiers, use XGetModifierMapping.

XModifierKeymap *XGetModifierMapping(d~pl~)
Display *displ~;

display Specifies the connection to the X server.

The XGetModifierMapping function returns a pointer to a newly created
XModifierKeymap structure that contains the keys being used as modifiers. The
structure should be freed after use by calling XFreeModifierrnap. If only zero values
appear in the set for any modifier, that modifier is disabled.

7.10 Screen Saver Control

Xlib provides functions that you can use to set, force, activate, or reset the screen saver and
to obtain the current screen saver values.

To set the screen saver, use XSetScreenSaver.

XSetScreenSaver (displ~, timeout, inte1Val, prefer blanking, allow _exposures)
Display *display; -
int timeout, interval;
int prefer blanking;
int allow =exposures ;

display

timeout

interval

Specifies the connection to the X server.

Specifies the timeout, in seconds, until the screen saver turns on.

Specifies the interval between screen saver alterations.

7 -34 Window Manager Functions

prefer_blanking Specifies how to enable screen blanking. You can pass
DontPreferBlanking, PreferBlanking, or
DefaultBlanking.

Specifies the screen save control values. You can pass
DontAllowExposures, AllowExposures, or
DefaultExposures.

Timeout and interval are specified in seconds. A timeout of 0 disables the screen saver,
and a timeout of -1 restores the default. Other negative values generate a BadValue
error. If the timeout value is nonzero, XSetScreenSaver enables the screen saver.
An interval of 0 disables the random-pattern motion. If no input from devices (keyboard,
mouse, and so on) is generated for the specified number of timeout seconds once the
screen saver is enabled, the screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video blanking, the
screen simply goes blank. Otherwise, if either exposures are allowed or the screen can be
regenerated without sending Expose events to clients, the screen is tiled with the root
window background tile randomly re-origined each interval minutes. Otherwise, the
screens' state do not change, and the screen saver is not activated. The screen saver is
deactivated, and all screen states are restored at the next keyboard or pointer input or at
the next call to XForceScreenSaver with mode ScreenSaverReset.

If the server-dependent screen saver method supports periodic change, the interval
argument serves as a hint about how long the change period should be, and zero hints that
no periodic change should be made. Examples of ways to change the screen include
scrambling the colormap periodically, moving an icon image around the screen
periodically, or tiling the screen with the root window background tile, randomly re­
origined periodically.

XSetScreenSaver can generate a BadValue error.

To force the screen saver on or off, use XForceScreenSaver.

XForceScreenSaver (display, mode)
Display *display;
int mode;

Specifies the connection to the X server. display

mode Specifies the mode that is to be applied. You can pass
ScreenSaverActive or ScreenSaverReset.

Window Manager Functions 7 -35

If the specified mode is ScreenSaverActive and the screen saver currently is
deactivated, XForceScreenSaver activates the screen saver even if the screen saver
had been disabled with a timeout of zero. If the specified mode is ScreenSaverReset
and the screen saver currently is enabled, XForceScreenSaver deactivates the screen
saver if it was activated, and the activation timer is reset to its initial state (as if device
input had been received).

XForceScreenSaver can generate a BadValue error.

To activate the screen saver, use XActivateScreenSaver.

XActivateScreenSaver(d~pl~)
Display *d~pl~;

display Specifies the connection to the X server.

To reset the screen saver, use XResetScreenSaver.

XResetScreenSaver(d~pl~)
Display *displ~;

display Specifies the connection to the X server.

To get the current screen saver values, use XGetScreenSaver.

XGetScreenSaver (d~pl~, timeout return, inteJVal return, prefer blanking return,
allow exposures return) - --

Display *displ~; - -
int *timeout return, *inteJVal return;
int *prefer_blankingJeturn; -
int *allow _exposures Jl!turn ;

display

timeout return

interval return

Specifies the connection to the X server.

Returns the timeout, in minutes, until the screen saver turns
on.

Returns the interval between screen saver invocations.

Returns the current screen blanking preference
(DontPreferBlanking, PreferBlanking, or
Defaul tBlanking).

Returns the current screen save control value
(DontAllowExposures, AllowExposures, or
Defaul tExposures).

7 -36 Window Manager Functions

7.11 Controlling Host Access

This section discusses how to:

• Add, get, or remove hosts from the access control list

• Change, enable, or disable access

X does not provide any protection on a per-window basis. If you find out the resource ID
of a resource, you can manipulate it. To provide some protection, however, connections
are permitted only from machines you trust. This is adequate on single-user workstations
but breaks down on timesharing machines. Although provisions exist in the X protocol for
proper connection authentication, the lack of a standard authentication server leaves host­
level access control as the only common mechanism.

The initial set of hosts allowed to open connections typically consists of:

• The host the window system is running on.

• On UNIX-based systems, each host is listed in .PN letc/X?hosts; ? indicates the
display number. This file consists of host names separated by newlines. DECnet
nodes must terminate in :: to tell them from Internet hosts.

If a host is not in the access control list when the access control mechanism is enabled and
if the host attempts to establish a connection, the server refuses the connection. To change
the access list, the client must reside on the same host as the server.

Servers also can implement other access control policies in addition to or in place of this
host acc~ss facility. See "X Window System Protocol" for further information.

7.11.1 Adding, Getting, or Removing Hosts

Xlib has functions for adding, getting, or removing hosts from the access control list. Host
access control functions use the XHostAddress structur~, which contains:

typedef struct {
int family;
int length;
char *address;

} XHostAddress;

/* for example Familylnternet */
/* length of address, in bytes */
/* pointer to where to find the address */

The family member specifies whi~h protocol address family to use (for example, TCP lIP
or DECnet) and can be FamilyInternet, FamilyDECnet, or FamilyChaos.
The length member specifies the length of the address in bytes. The ad'tlress member
specifies a pointer to the address.

Window Manager Functions 7 -37

For TCP/IP, the address should be in network byte order. For the DECnet family, the
server performs no automatic swapping on the address bytes. A Phase IV address is two
bytes long. The first byte contains the least -significant eight bits of the node number. The
second byte contains the most-significant two bits of the node number in the least­
significant two bits of the byte and the area in the most-significant six bits of the byte.

To add a single host, use XAddHost.

XAddHost(d~play, host)
Di splay *d~play;
XHostAddress *host;

display Specifies the connection to the X server.

host Specifies the host that is to be added.

The XAddHos t function adds the named host to the access control list for that display. A
BadAccess error results if the server and the client issuing the command are not the
same host.

XAddHost can generate BadAccess and BadValue errors.

To add multiple hosts at one time, use XAddHosts.

XAddHosts (display, hosts, num _hosts)
Display *d~play;
XHostAddress *hosts;
in t num .Jtosts ;

display Specifies the connection to the X server.

hosts Specifies each host that is to be added.

num hosts Specifies the number of hosts.

The XAddHos ts function adds each specified host to the access control list for that
display. The server must be on the same host as the client issuing the command, or a
BadAccess error results.

XAddHosts can generate BadAccess and BadValue errors.

To obtain a host list, use XListHosts.

XHostAddress *XListHosts (d~play, nhosts ..!eturn, state ..!eturn)
Display *display;
int *nhosts return;
Bool *state _return ;

display Specifies the connection to the X server.

7 -38 Window Manager Functions

nhosts return

state return

Returns the number of hosts currently in the access control list.

Returns the state of the access control.

The XListHosts function returns the current access control list as well as whether the
use of the list at connection setup was enabled or disabled. XListHosts allows a
program to find out what machines can connect. It also returns a pointer to a list of host
structures allocated by the function. Free this memory when not needed by calling XFree.

To remove a single host, use XRemoveHost.

XRemoveHost(d~play, host)
Display *d~play;
XHostAddress *host;

display

host

Specifies the connection to the X server.

Specifies the host that is to be removed.

The XRemoveHo s t function removes the specified host from the access control list for
that display. The server must be on the same host as the client process, or a BadAcce s s
error results. If you remove your machine from the access list, you can no longer connect
to that server, and this cannot be reversed unless you reset the server.

XRemoveHost can generate BadAccess and BadValue errors.

To remove multiple hosts at one time, use XRemoveHosts.

XRemoveHosts(d~play, hos~, num hos~)
Display *d~play; -
XHostAddress *hos~;
int num_hos~;

display Specifies the connection to the X server.

hosts Specifies each host that is to be removed.

num hosts Specifies the number of hosts.

The XRernoveHos ts function operates under the same constraints as the
XRernoveHosts function, and can generate the same errors.

7.11.2 Changing, Enabling, or Disabling Access Control

Xlib provides functions that you can use to enable, disable, or change access control.

For these functions to execute successfully, the client application must reside on the same
host as the X server.

To change access control, use XSetAccessControl.

Window Manager Functions 7 -39

XSetAccessControl(d~pl~, mode)
Display *d~pl~;
lnt mode;

display

mode

Specifies the connection to the X server.

Specifies the mode. You can pass EnableAccess or DisableAccess.

The XSetAccessControl function either enables or disables the use of the access
control list at each connection setup.

XSetAccessControl can generate BadAccess and BadValue errors.

To enable access control, use XEnableAccessControl.

XEnableAccessControl(d~pl~)
Display *d~pl~;

display Specifies the connection to the X server.

The XEnableAccessControl function enables the use of the access control list at
each connection setup.

XEnableAccessControl can generate a BadAccess error.

To disable access control, use XDisableAccessControl.

XDlsableAccessControl(d~pl~)

Display *displ~;

display Specifies the connection to the X server.

The XDisableAccessControl function disables the use of the access control list at
each connection setup.

XDisableAccessControl can generate a BadAccess error.

7 - 40 Window Manager Functions

Events and Event-Handling Functions 8
A client application communicates with the X server through the connection you establish
with the XOpenDisplay function. A client application sends requests to the X server
over this connection. These requests are made by the Xlib functions that are called in the
client application. Many Xlib functions cause the X server to generate events, and the
user's typing or moving the pointer can generate events asynchronously. The X server
returns events to the client on the same connection.

This chapter begins with a discussion of the following topics associated with events:

• Event types

• Event structures

• Event mask

• Event processing

It then discusses the Xlib functions you can use to:

• Select events

• Handle the output buffer and the event queue

• Select events from the event queue

• Send and get events

• Handle error events

NOTE

Some toolkits use their own event-handling functions and do not
allow you to interchange these event-handling functions with those in
Xlib. For further information, see the documentation supplied with
the toolkit.

Events and Event -Handling Functions 8 -1

Most applications simply are event loops: they wait for an event, decide what to do with it,
execute some amount of code that results in changes to the display, and then wait for the
next event.

8.1 Event Types
An event is data generated asynchronously by the X server as a result of some device
activity or as side effects of a request sent by an Xlib function. Device-related events
propagate from the source window to ancestor windows until some client application has
selected that event type or until the event is explicitly discarded. The X server generally
sends an event to a client application only if the client has specifically asked to be informed
of that event type, typically by setting the event-mask attribute of the window. The mask
can also be set when you create a window or by changing the window's event-mask. You
can also mask out events that would propagate to ancestor windows by manipulating the
do-not-propagate mask of the window's attributes. However, MappingNotify events
are always sent to all clients.

An event type describes a specific event generated by the X server. For each event type, a
corresponding constant name is defined in < XII IX . h >, which is used when referring to
an event type. The following table lists the event category and its associated event type or
types. The processing associated with these events is discussed in section 8.4.

8 - 2 Events and Event-Handling Functi~ns

Event Category Event TYPe

Keyboard events KeyPress, KeyRelease

Pointer events ButtonPress, ButtonRelease, MotionNotify

Window crossing events EnterNotify, LeaveNotify

Input focus events Focusln, FocusOut

Keymap state notification KeymapNotify
event

Exposure events Expose, GraphicsExpose, NoExpose

Structure control events CirculateRequest, ConfigureRequest,
MapRequest, ResizeRequest

Window state notification CirculateNotify, ConfigureNotify,
events CreateNotify, DestroyNotify, GravityNotify,

MapNotify, MappingNotify, ReparentNotify,
UnmapNotify, VisibilityNotify

Colormap state notification ColormapNotify
event

Client communication events ClientMessage, PropertyNotify,
SelectionClear, SelectionNotify,
SelectionRequest

8.2 Event Structures
For each event type, a corresponding structure is declared in < Xll/Xlib. h >. All the
event structures have the following common members:

typedef struct {
int type;
unsigned long serial;
Baal send_event;
Display *display;
Window window;

} XAnyEvent;

/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

Events and Event-Handling Functions 8-3

The type member is set to the event type constant name that uniquely identifies it. For
example, when the X server reports a GraphicsExpose event to a client application, it
sends an XGraphicsExposeEvent structure with the type member set to
GraphicsExpose. The display member is set to a pointer to the display the event was
read on. The send event member is set to True if the event came from a SendEvent
protocol request. The serial member is set from the serial number reported in the
protocol but expanded from the 16-bit least-significant bits to a full 32-bit value. The
window member is set to the window that is most useful to toolkit dispatchers.

The X server can send events at any time in the input stream. Xlib stores any events
received while waiting for a reply in an event queue for later use. Xlib also provides
functions that allow you to check events in the event queue (see section 8.7).

In addition to the individual structures declared for each event type, the XEvent structure
is a union of the individual structures declared for each event type. Depending on the type,
you should access members of each event by using the XEvent union.

typedef union _XEvent
int type; 1* must not be changed *1
XAnyEvent xanYj
XKeyEvent xkey;
XButtonEvent xbuttonj
XMotionEvent xmotionj
XCrossingEvent xcrossing;
XFocusChangeEvent xfocusj
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibilitYj
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequestj
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormapj
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;
long pad[24];

XEvent;

8 - 4 Events and Event-Handling Functions

An XEvent structure's first entry always is the type member, which is set to the event
type. The second member always is the serial number of the protocol request that
generated the event. The third member always is send event, which is a Bool that
indicates if the event was sent by a different client. The fourth member always is a display,
which is the display that the event was read from. Except for keymap events, the fifth
member always is a window, which has been carefully selected to be useful to toolkit
dispatchers. To avoid breaking toolkits, the order of these first five entries is not to
change. Most events also contain a time member, which is the time at which an event
occurred. In addition, a pointer to the generic event must be cast before it is used to
access any other information in the structure.

8.3 Event Masks

Clients select event reporting of most events relative to a window. To do this, pass an
event mask to an Xlib event-handling function that takes an event mask argument. The
bits of the event mask are defined in <XII/X. h>. Each bit in the event mask maps to
an event mask name, which describes the event or events you want the X server to return
to a client application.

Unless the client has specifically asked for them, most events are not reported to clients
when they are generated. Unless the client suppresses them by setting graphics-exposures
in the GC to False, GraphicsExpose and NoExpose are reported by default as a
result of XCopyPlane and XCopyArea. SelectionClear,
SelectionRequest, SelectionNotify, or ClientMessage cannot be
masked. Selection related events are only sent to clients cooperating with selections (see
section 4.4). When the keyboard or pointer mapping is changed, MappingNotify is
always sent to clients.

The following table lists the event mask constants you can pass to the event mask
argument and the circumstances in which you would want to specify the evwt mask:

Events and Event-Handling Functions 8-5

Event Mask

NoEventMask
KeyPressMask
KeyReleaseMask
ButtonPressMask
ButtonReleaseMask
EnterWindowMask
LeaveWindowMask
PointerMotionMask
PointerMotionHintMask
ButtonlMotionMask
Button2MotionMask
Button3MotionMask
Button4MotionMask
ButtonSMotionMask
ButtonMotionMask
KeymapStateMask
ExposureMask
VisibilityChangeMask
StructureNotifyMask
ResizeRedirectMask
SubstructureNotifyMask
SubstructureRedirectMask
FocusChangeMask
PropertyChangeMask
ColormapChangeMask
OwnerGrabButtonMask

Circumstances

No events wanted
Keyboard down events wanted
Keyboard up events wanted
Pointer button down events wanted
Pointer button up events wanted
Pointer window entry events wanted
Pointer window leave events wanted
Pointer motion events wanted
Pointer motion hints wanted
Pointer motion while button 1 down
Pointer motion while button 2 down
Pointer motion while button 3 down
Pointer motion while button 4 down
Pointer motion while button 5 down
Pointer motion while any button down
Keyboard state wanted at window entry and focus in
Any exposure wanted
Any change in visibility wanted
Any change in window structure wanted
Redirect resize of this window
Substructure notification wanted
Redirect structure requests on children
Any change in input focus wanted
Any change in property wanted
Any change in colormap wanted
Automatic grabs should activate with owner_events set to
True

8 - 6 Events and Event-Handling Functions

8.4 Event Processing
The event reported to a client application during event processing depends on which event
masks you provide as the event-mask attribute for a window. For some event masks, there
is a one-to-one correspondence between the event mask constant and the event type
constant. For example, if you pass the event mask ButtonPressMask, the X server
sends back only ButtonPress events. Most events contain a time member, which is the
time at which an event occurred.

In other cases, one event mask constant can map to several event type constants. For
example, if you pass the event mask SubstructureNotifyMask, the X server can
send back CirculateNotify, ConfigureNotify, CreateNotify,
DestroyNotify,GravityNotify,MapNotify,ReparentNotify,or
UrunapNotify events.

In another case, two event masks can map to one event type. For example, if you pass
either PointerMotionMask or ButtonMotionMask, the X server sends back a
MotionNotifyevent.

The following table lists the event mask, its associated event type or types, and the
structure name associated with the event type. Some of these structures actually are
typedefs to a generic structure that is shared between two event types. Note that N A.
appears in columns for which the information is not applicable.

Event Mask

ButtonMotionMask
ButtonlMotionMask
Button2MotionMask
Button3MotionMask
Button4MotionMask
Button5MotionMask

ButtonPressMask

ButtonReleaseMask

ColormapChangeMask

EnterWindowMask

LeaveWindowMask

ExposureMask

Event Type

MotionNotify

ButtonPress

ButtonRelease

ColormapNotify

EnterN otify

LeaveN otify

Expose

Structure Generic Structure

XPointerMovedEvent XMotionEvent

XButtonPressedEvent XButtonEvent

XButtonReleasedEvent XButtonEvent

XColormapEvent

XEnterWindowEvent XCrossingEvent

XLeaveWindowEvent XCrossingEvent

XExposeEvent

Events and Event-Handling Functions 8 -7

GCGraphicsExposures in GC GraphicsExpose XGraphicsExposeEvent
NoExpose XNoExposeEvent

FocusChangeMask Focusln XFocuslnEvent XFocusChangeEvent
FocusOut XFocusOutEvent XFocusChangeEvent

KeymapStateMask KeymapNotify XKeymapEvent

KeyPressMask KeyPress XKeyPressedEvent XKeyEvent
KeyReleaseMask KeyRelease XKeyReleasedEvent XKeyEvent

OwnerGrabButtonMask NA. NA.

PointerMotionMask MotionNotify XPointerMovedEvent XMotionEvent
PointerMotionHintMask NA. NA.

Prope~hangeMask PropertyN otify XPropertyEvent

ResizeRedirectMask ResizeRequest XResizeRequestEvent

StructureN otifyMask CirculateN otify XCirculateEvent
ConfigureN otify XConfigureEvent
DestroyN otify XDestroyWindowEvent
GravityN otify XGravityEvent
MapNotify XMapEvent
ReparentNotify XReparentEvent
U nmapN otify XU nmapEvent

SubstructureNotifyMask CirculateN otify XCirculateEvent
ConfigureN otify XConfigureEvent
CreateNotify XCreateWindowEvent
DestroyN otify XDestroyWindowEvent
GravityN otify XGravityEvent
MapNotify XMapEvent
ReparentNotify XReparentEvent
UnmapNotify XUnmapEvent

SubstructureRedirectMask CirculateRequest XCirculateRequestEvent
ConfigureRequest XConfigureRequestEvent
MapRequest XMapRequestEvent

NA. ClientMessage XClientMessageEvent

N.A. MappingNotify XMappingEvent

N.A. SelectionClear XSelectionClear Event

N.A. SelectionN otify XSelectionEvent

NA. SelectionRequest XSelectionRequestEvent

8·8 Events and Event-Handling Functions

VisibilityChangeMask VisibilityN otify XVisibilityEvent

The sections that follow describe the processing that occurs when you select the
different event masks. The sections are organized according to these processing
categories:

• Keyboard and pointer events

• Window crossing events

• Input focus events

• Keymap state notification events

• Exposure events

• Window state notification events

• Structure control events

• Colormap state notification events

• Client communication events

8.4.1 Keyboard and POinter Events

This section discusses:

• Pointer button events

• Keyboard and pointer events

Pointer Button Events
The following describes the event processing that occurs when a pointer button press is
processed with the pointer in some window wand when no active pointer grab is in
progress.

The X server searches the ancestors of w from the root down, looking for a passive grab to
activate. If no matching passive grab on the button exists, the X server automatically starts
an active grab for the client receiving the event and sets the last-painter-grab time to the
current server time. The effect is essentially equivalent to an XGrabButton with these
client passed arguments:

Events and Event-Handling Functions 8 - 9

Argument

w
event mask
pointer mode
keyboard_mode
owner events

confine_to
cursor

Value

The event window
The client's selected pointer events on the event window
GrabModeAsync
GrabModeAsync
True, if the client has selected OwnerGrabButtonMask
on the event window, otherwise False
None
None

The active grab is automatically terminated when the logical state of the pointer has all
buttons released. Clients can modify the active grab by calling XUngrabPointer and
XChangeActivePointerGrab.

Keyboard and Pointer Events
This section discusses the processing that occurs for the keyboard events KeyPress and
KeyRelease and the pointer events ButtonPress, ButtonRelease, and
MotionNotify. For information about the keyboard event-handling utilities, see
chapter 10.

The X server reports KeyPress or KeyRelease events to clients wanting information
about keys that logically change state. Note that these events are generated for all keys,
even those mapped to modifier bits. The X server reports ButtonPress or
ButtonRelease events to clients wanting information about buttons that logically
change state.

The X server reports MotionNotify events to clients wanting information about when
the pointer logically moves. The X server generates this event whenever the pointer is
moved and the pointer motion begins and ends in the window. The granularity of
MotionNotify events is not guaranteed, but a client that selects this event type is
guaranteed to receive at least one event when the pointer moves and then rests.

The generation of the logical changes lags the physical changes if device event processing is
frozen.

To receive KeyPress, KeyRelease, ButtonPress, and ButtonRelease events,
set KeyPressMask, KeyReleaseMask, ButtonPressMask, and
ButtonReleaseMask bits in the event-mask attribute of the window.

To receive MotionNotify events, set one or more of the following event masks bits in
the event-mask attribute of the window.

8 -10 Events and Event-Handling Functions

• ButtonlMotionMask-ButtonSMotionMask

The client application receives MotionNotify events only when one or more of
the specified buttons is pressed.

• ButtonMotionMask

The client application receives MotionNotify events only when at least one
button is pressed.

• PointerMotionMask

The client application receives MotionNotify events independent of the state of
the pointer buttons.

• PointerMotionHint

If PointerMotionHintMask is selected, the X server is free to send only one
MotionNotify event (with the is hint member of the XPointerMovedEvent
structure set to NotifyHint) to the client for the event window, until either the
key or button state changes, the pointer leaves the event window, or the client calls
XQueryPointer or XGetMotionEvents. The server still may send
MotionNotify events without is_hint set to NotifyHint.

The source of the event is the viewable window that the pointer is in. The window used by
the X server to report these events depends on the window's position in the window
hierarchy and whether any intervening window prohibits the generation of these events.
Starting with the source window, the X server searches up the window hierarchy until it
locates the first window specified by a client as having an interest in these events. If one of
the intervening windows has its do-not-propagate-mask set to prohibit generation of the
event type, the events of those types will be suppressed. Clients can modify the actual
window used for reporting by performing active grabs and, in the case of keyboard events,
by using the focus window.

The structures for these event types contain:

Events and Event-Handling Functions 8 -11

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
unsigned int button;
Bool same_screen;

XButtonEvent;

/* ButtonPress or ButtonRelease */
/* I of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* "event" window it is reported relative to */
/* root window that the event occurred on */
/* child window */
/* milliseconds */
/* pointer x, y coordinates in event window */
/* coordinates relative to root */
/* key or button mask */
/* detail */
/* same screen flag */

typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
unsigned int keycode;
Bool same_screen;

XKeyEvent;
typedef XKeyEvent XKeyPressedEvent;
typedef XKeyEvent XKeyReleasedEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y root;
unsigned int state;
char is_hint;
Bool same_screen;

XMotionEvent;

/* KeyPress or KeyRelease */
/* I of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* "event" window it is reported relative to */
/* root window that the event occurred on */
/* child window */
/* milliseconds */
/* pointer x, y coordinates in event window */
/* coordinates relative to root *1
/* key or button mask */
/* detail */
/* same screen flag */

/* MotionNotify */
/* I of last request processed by server */
1* true if this came from a SendEvent request */
/* Display the event was read from */
/* "event" window reported relative to */
/* root window that the event occurred on */
/* child window */
/* milliseconds */
/* pointer x, y coordinates in event window */
/* coordinates relative to root */
/* key or button mask */
/* detail */
/* same screen flag */

typedef XMotionEvent XPointerMovedEvent;

8 -12 Events and Event-Handling Functions

These structures have the following common members: window, root, subwindow, time, X,

y, x root, y root, state, and same screen. The window member is set to the window on
which the event was generated aid is referred to as the event window. As long as the
conditions previously discussed are met, this is the window used by the X server to report
the event. The root member is set to the source windows root window. The x root and
y root members are set to the pointer's coordinates relative to the root windo~s origin at
the time of the event.

The same screen member is set to indicate whether the event window is on the same
screen as the root window and can be either True or False. If True, the event and
root windows are on the same screen. If False, the event and root windows are not on
the same screen.

If the source window is an inferior of the event window, the subwindow member of the
structure is set to the child of the event window that is the source member or an ancestor
of it. Otherwise, the X server sets the subwindow member to None. The time member is
set to the time when the event was generated and is expressed in milliseconds.

If the event window is on the same screen as the root window, the x and y members are set
to the coordinates relative to the event windows origin. Otherwise, these members are set
to zero.

The state member is set to indicate the logical state of the pointer buttons and modifier
keys just prior to the event, which is the bitwise inclusive OR of one or more of the button
or modifier key masks: ButtonlMask, Button2Mask, Button3Mask,
Button4Mask, ButtonSMask, ShiftMask, LockMask, ControlMask,
ModlMask, Mod2Mask, Mod3Mask, Mod4Mask, and ModSMask.

Each of these structures also has a member that indicates the detail. For the
XKeyPressedEvent and XKeyReleasedEvent structures, this member is called
keycode. It is set to a number that represents a physical key on the keyboard. The
keycode is an arbitrary representation for any key on the keyboard (see chapter 7).

For the XButtonPressedEvent and XButtonReleasedEvent structures, this
member is called button. It represents the pointer button that changed state and can be
the Buttonl, Button2, Button3, Button4, or ButtonS value. For the
XPointerMovedEvent structure, this member is called is hint. It can be set to
NotifyNorrnal or NotifyHint. -

Events and Event-Handling Functions 8 -13

8.4.2 Window Entry/Exit Events

This section describes the processing that occurs for the window crossing events
EnterNotify and LeaveNotify. If a pointer motion or a window hierarchy change
causes the pointer to be in a different window than before, the X server reports
EnterNotify or LeaveNotify events to clients who have selected for these events.
All EnterNotify and LeaveNotify events caused by a hierarchy change are
generated after any hierarchy event (UnmapNotify, MapNotify,
ConfigureNotify, GravityNotify, CirculateNotify) caused by that
change; however, the X protocol does not constrain the ordering of EnterNotify and
LeaveNotify events with respect to FocusOut, VisibilityNotify, and
Expose events.

This contrasts with MotionNotify events, which are also generated when the pointer
moves but only when the pointer motion begins and ends in a single window. An
EnterNotify or LeaveNotify event also can be generated when some client
application calls XGrabPointer and XUngrabPointer.

To receive EnterNotify or LeaveNotify events, set the EnterWindowMask or
LeaveWindowMask bits of the event-mask attribute of the window.

The structure for these event types contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
int mode;
int detail;

Bool same_screen;
Bool focus;
unsigned int state;

} XCrossingEvent;

/* EnterNotify or LeaveNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* "event" window reported relative to */
/* root window that the event occurred on */
/* child window */
/* milliseconds */
/* pointer x, y coordinates in event window */
/* coordinates relative to root */
/* NotifyNormal, NotifyGrab, NotifyUngrab */

/*
* NotifyAncestor, NotifyVirtual, Notifylnferior,
* NotifyNonlinear,NotifyNonlinearVirtual
*/
/* same screen flag */
/* boolean focus */
/* key or button mask */

typedef XCrossingEvent XEnterWindowEvent;
typedef XCrossingEvent XLeaveWindowEvent;

8 -14 Events and Event-Handling Functions

The window member is set to the window on which the EnterNotify or
LeaveNotify event was generated and is referred to as the event window. This is the
window used by the X server to report the event, and is relative to the root window on
which the event occurred. The root member is set to the root window of the screen on
which the event occurred.

For a LeaveNotify event, if a child of the event window contains the initial position of
the pointer, the subwindow component is set to that child. Otherwise, the X server sets the
subwindow member to None. For an EnterNotify event, if a child of the event
window contains the final pointer position, the subwindow component is set to that child or
None.

The time member is set to the time when the event was generated and is expressed in
milliseconds. The x and y members are set to the coordinates of the pointer position in the
event window. This position is always the pointer's final position, not its initial position. If
the event window is on the same screen as the root window, x and y are the pointer
coordinates relative to the event window's origin. Otherwise, x and yare set to zero. The
x_root and y_root members are set to the pointer's coordinates relative to the root
window's origin at the time of the event.

The same screen member is set to indicate whether the event window is on the same
screen as the root window and can be either True or False. If True, the event and
root windows are on the same screen. If Fa 1 s e, the event and root windows are not on
the same screen.

The focus member is set to indicate whether the event window is the focus window or an
inferior of the focus window. The X server can set this member to either True or
Fa 1 s e. If True, the event window is the focus window or an inferior of the focus
window. If False, the event window is not the focus window or an inferior of the focus
window.

The state member is set to indicate the state of the pointer buttons and modifier keys just
prior to the event. The X server can set this member to the bitwise inclusive OR of one or
more of the button or modifier key masks: ButtonlMask, Button2Mask,
Button3Mask,Button4Mask,Button5Mask, ShiftMask,LockMask,
ControlMask, ModlMask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Ma sk.

The mode member is set to indicate whether the events are normal events, pseudo-motion
events when a grab activates, or pseudo-motion events when a grab deactivates. The X
server can set this member to NotifyNormal, NotifyGrab, or NotifyUngrab.

The detail member is set to indicate the notify detail and can be Not i fy Anc e s to r ,
NotifyVirtual, Notifylnferior, NotifyNonlinear, or
NotifyNonlinearVirtual.

Events and Event-Handling Functions 8 -15

Normal Entry jExit Events
EnterNotify and LeaveNotify events are generated when the pointer moves from
one window to another window. Normal events are identified by XEnterWindowEvent
or XLeaveWindowEvent structures whose mode member is set to NotifyNormal.

• When the pointer moves from window A to window B and A is an inferior of B, the
X server does the following:

• It generates a LeaveNotify event on window A, with the detail member of
the XLeaveWindowEvent structure set to NotifyAncestor.

• It generates a LeaveNotify event on each window between window A and
window B, exclusive, with the detail member of each XLeaveWindowEvent
structure set to NotifyVirtual.

• It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to Notifylnferior.

• When the pointer moves from window A to window Band B is an inferior of A, the
X server does the following:

• It generates a LeaveNotify event on window A, with the detail member of
the XLeaveWindowEvent structure set to Notifylnferior.

• It generates an EnterNotify event on each window between window A and
window B, exclusive, with the detail member of each XEnterWindowEvent
structure set to NotifyVirtual.

• It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyAnces tor.

• When the pointer moves from window A to window B and window C is their least
common ancestor, the X server does the following:

• It generates a LeaveNotify event on window A, with the detail member of
the XLeaveWindowEvent structure set to NotifyNonlinear.

• It generates a LeaveNotify event on each window between window A and
window C, exclusive, with the detail member of each XLeaveWindowEvent
structure set to NotifyNonlinearVirtual.

• It generates an EnterNotify event on each window between window C and
window B, exclusive, with the detail member of each XEnterWindowEvent
structure set to NotifyNonlinearVirtual.

• It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyNonlinear.

8 -16 Events and Event-Handling Functions

• When the pointer moves from window A to window B on different screens, the X
server does the following:

• It generates a LeaveNotify event on window A, with the detail member of
the XLeaveWindowEvent structure set to NotifyNonlinear.

• If window A is not a root window, it generates a LeaveNotify event on each
window above window A up to and including its root, with the detail member of
each XLeaveWindowEvent structure set to
NotifyNonlinearVirtual.

• If window B is not a root window, it generates an EnterNotify event on
each window from window B's root down to but not including window B, with
the detail member of each XEnterWindowEvent structure set to
NotifyNonlinearVirtual.

• It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyNonlinear.

Grab and Ungrab Entry/Exit Events
Pseudo-motion mode EnterNotify and LeaveNotify events are generated when a
pointer grab activates or deactivates. Events in which the pointer grab activates are
identified by XEnterWindowEvent or XLeaveWindowEvent structures whose
mode member is set to NotifyGrab. Events in which the pointer grab deactivates are
identified by XEnterWindowEvent or XLeaveWindowEvent structures whose
mode member is set to NotifyUngrab (see XGrabPointer).

• When a pointer grab activates after any initial warp into a confine to window and
before generating any actual ButtonPress event that activates the grab, G is the
grab_window for the grab, and P is the window the pointer is in, the X server does
the following:

• It generates EnterNotify and LeaveNotify events (see section 8.4.2.1)
with the mode members of the XEnterWindowEvent and
XLeaveWindowEvent structures set to NotifyGrab. These events are
generated as if the pointer were to suddenly warp from its current position in P
to some position in G. However, the pointer does not warp, and the X server
uses the pointer position as both the initial and final positions for the events.

• When a pointer grab deactivates after generating any actual ButtonRelease
event that deactivates the grab, G is the grab window for the grab, and P is the
window the pointer is in, the X server does the following:

Events and Event-Handling Functions 8 ·17

• It generates EnterNotify and LeaveNotify events (see section 8.4.2.1)
with the mode members of the XEnterWindowEvent and
XLeaveWindowEvent structures set to NotifyUngrab. These events are
generated as if the pointer were to suddenly warp from some position in G to its
current position in P. However, the pointer does not warp, and the X server
uses the current pointer position as both the initial and final positions for the
events.

8.4.3 Input Focus Events

This section describes the processing that occurs for the input focus events Focusln and
FocusOut. The X server can report Focusln or FocusOut events to clients wanting
information about when the input focus changes. The keyboard is always attached to some
window (typically, the root window or a top-level window), which is called the focus
window. The focus window and the position of the pointer determine the window that
receives keyboard input. Clients may need to know when the input focus changes to
control highlighting of areas on the screen.

To receive Focusln or FocusOut events, set the FocusChangeMask bit in the
event-mask attribute of the window.

The structure for these event types contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int mode;
int detail;

} XFocusChangeEvent;

/* Focusln or FocusOut */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* window of event */
/* NotifyNormal, NotifyGrab, NotifyUngrab */

/*
* NotifyAncestor, NotifyVirtual, Notifylnferior,
* NotifyNonlinear,NotifyNonlinearVirtual, NotifyPointer
* NotifyPointerRoot, NotifyDetailNone
*/

typedef XFocusChangeEvent XFocuslnEvent;
typedef XFocusChangeEvent XFocusOutEvent;

The window member is set to the window on which the Focusln or FocusOut event
was generated. This is the window used by the X server to report the event. The mode
member is set to indicate whether the focus events are normal focus events, focus events
while grabbed, focus events when a grab activates, or focus events when a grab deactivates.

8 -18 Events and Event-Handling Functions

The X server can set the mode member to NotifyNormal, NotifyWhileGrabbed,
NotifyGrab, or NotifyUngrab.

All FocusOut events caused by a window unmap are generated after any
UnmapNotify event; however, the X protocol does not constrain the ordering of
FocusOut events with respect to generated EnterNotify, LeaveNotify,
VisibilityNotify, and Expose events.

Depending on the event mode, the detail member is set to indicate the notify detail and
can be NotifyAnces tor, NotifyVirtual, NotifyInferior,
NotifyNonlinear, NotifyNonlinearVirtual, NotifyPointer,
NotifyPointerRoot, or NotifyDetailNone.

Normal Focus Events and Focus Events While Grabbed
Normal focus events are identified by XFocusInEvent or XFocusOutEvent
structures whose mode member is set to NotifyNormal. Focus events while grabbed
are identified by XFocusInEvent or XFocusOutEvent structures whose mode
member is set to NotifyWhileGrabbed. The X server processes normal focus and
focus events while grabbed according to the following:

• When the focus moves from window A to window B, A is an inferior of B, and the
pointer is in window P, the X server does the following:

• It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyAncestor.

• It generates a FocusOut event on each window between window A and
window B, exclusive, with the detail member of each XFocusOutEvent
structure set to NotifyVirtual.

• It generates a Focus In event on window B, with the detail member of the
XFocusOutEvent structure set to NotifyInferior.

• If window P is an inferior of window B but window P is not window A or an
inferior or ancestor of window A, it generates a FocusIn event on each
window below window B, down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer .

• When the focus moves from window A to window B, B is an inferior of A, and the
pointer is in window P, the X server does the following:

• If window P is an inferior of window A but P is not an inferior of window B or
an ancestor of B, it generates a FocusOut event on each window from
window P up to but not including window A, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

Events and Event-Handling Functions 8 -19

• It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to Notifylnferior.

• It generates a Focusln event on each window between window A and window
B, exclusive, with the detail member of each XFocuslnEvent structure set to
NotifyVirtual.

• It generates a Focusln event on window B, with the detail member of the
XFocuslnEvent structure set to NotifyAncestor .

• When the focus moves from window A to window B, window C is their least
common ancestor, and the pointer is in window P, the X server does the following:

• If window P is an inferior of window A, it generates a FocusOut event on
each window from window P up to but not including window A, with the detail
member of the XFocusOutEvent structure set to NotifyPointer.

• It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

• It generates a FocusOut event on each window between window A and
window C, exclusive, with the detail member of each XFocusOutEvent
structure set to NotifyNonlinearVirtual.

• It generates a Focusln event on each window between C and B, exclusive,
with the detail member of each XFocuslnEvent structure set to
NotifyNonlinearVirtual.

• It generates a Focusln event on window B, with the detail member of the
XFocuslnEvent structure set to NotifyNonlinear.

• If window P is an inferior of window B, it generates a Focus In event on each
window below window B down to and including window P, with the detail
member of the XFocuslnEvent structure set to NotifyPointer.

• When the focus moves from window A to window B on different screens and the
pointer is in window P, the X server does the following:

• If window P is an inferior of window A, it generates a FocusOut event on
each window from window P up to but not including window A, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

• It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

8 -20 Events and Event-Handling Functions

• If window A is not a root window, it generates a FocusOut event on each
window above window A up to and including its root, with the detail member of
each XFocusOutEvent structure set to NotifyNonlinearVirtual.

• If window B is not a root window, it generates a Focusln event on each
window from window B's root down to but not including window B, with the
detail member of each XFocuslnEvent structure set to
NotifyNonlinearVirtual.

• It generates a Focusln event on window B, with the detail member of each
XFocuslnEvent structure set to NotifyNonlinear.

• If window P is an inferior of window B, it generates a Focusln event on each
window below window B down to and including window P, with the detail
member of each XFocuslnEvent structure set to NotifyPointer .

• When the focus moves from window A to PointerRoot (events sent to the
window under the pointer) or None (discard), and the pointer is in window P, the X
server does the following:

• If window P is an inferior of window A, it generates a FocusOut event on
each window from window P up to but not including window A, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

• It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

• If window A is not a root window, it generates a FocusOut event on each
window above window A up to and including its root, with the detail member of
each XFocusOutEvent structure set to NotifyNonlinearVirtual.

• It generates a Focusln event on the root window of all screens, with the detail
member of each XFocuslnEvent structure set to NotifyPointerRoot
(or NotifyDetailNone).

• If the new focus is PointerRoot, it generates a Focusln event on each
window from window P's root down to and including window P, with the detail
member of each XFocuslnEvent structure set to NotifyPointer .

• When the focus moves from PointerRoot (events sent to the window under the
pointer) or None to window A, and the pointer is in window P, the X server does
the following:

• If the old focus is PointerRoot, it generates a FocusOut event on each
window from window P up to and including window P's root, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

Events and Event-Handling Functions 8 -21

• It generates a FocusOut event on all root windows, with the detail member of
each XFocusOutEvent structure set to NotifyPointerRoot (or
NotifyDetailNone).

• If window A is not a root window, it generates a Focusln event on each
window from window A's root down to but not including window A, with the
detail member of each XFocuslnEvent structure set to
NotifyNonlinearVirtual.

• It generates a Focusln event on window A, with the detail member of the
XFocuslnEvent structure set to NotifyNonlinear.

• If window P is an inferior of window A, it generates a Focusln event on each
window below window A down to and including window P, with the detail
member of each XFocuslnEvent structure set to NotifyPointer .

• When the focus moves from PointerRoot (events sent to the window under the
pointer) to None (or vice versa), and the pointer is in window P, the X server does
the following:

• If the old focus is PointerRoot, it generates a FocusOut event on each
window from window P up to and including window P's root, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

• It generates a FocusOut event on all root windows, with the detail member of
each XFocusOutEvent structure set to either NotifyPointerRoot or
NotifyDetailNone.

• It generates a Focusln event on all root windows, with the detail member of
each XFocuslnEvent structure set to NotifyDetailNone or
NotifyPointerRoot.

• If the new focus is PointerRoot, it generates a Focusln event on each
window from window P's root down to and including window P, with the detail
member of each XFocuslnEvent structure set to NotifyPointer.

Focus Events Generated by Grabs
Focus events in which the keyboard grab activates are identified by XFocuslnEvent or
XFocusOutEvent structures whose mode member is set to NotifyGrab. Focus
events in which the keyboard grab deactivates are identified by XFocuslnEvent or
XFocusOutEvent structures whose mode member is set to NotifyUngrab (see
XGrabKeyboard).

8 -22 Events and Event-Handling Functions

• When a keyboard grab activates before generating any actual KeyPress event that
activates the grab, G is the grab window, and F is the current focus, the X server
does the following: -

• It generates Focusln and FocusOut events, with the mode members of the
XFocuslnEvent and XFocusOutEvent structures set to NotifyGrab.
These events are generated as if the focus were to change from F to G .

• When a keyboard grab deactivates after generating any actual KeyRelease event
that deactivates the grab, G is the grab window, and F is the current focus, the X
server does the following: -

• It generates Focusln and FocusOut events, with the mode members of the
XFocuslnEvent and XFocusOutEvent structures set to
Not i fyUngr ab. These events are generated as if the focus were to change
from G to F.

8.4.4 Key Map State Notification Events

The X server can report KeymapNotify events to clients that want information about
changes in their keyboard state.

To receive KeymapNotify events, set the KeymapStateMask bit in the event-mask
attribute of the. window. The X server generates this event immediately after every
EnterNotify and Focusln event.

The structure for this event type contains:

1* generated on EnterWindow and Focusln when KeymapState selected *1
typedef struct {

int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
char key_vector[32];

} XKeymapEvent;

1* KeymapNotify *1
1* # of last request processed by server *1
1* true if this came from a SendEvent request *1
1* Display the event was read from *1

The window member is not used but is present to aid some toolkits. The key vector
member is set to the bit vector of the keyboard. Each bit set to 1 indicates that the
corresponding key is currently pressed. The vector is represented as 32 bytes. Byte N
(from 0) contains the bits for keys BN to BN + 7 with the least-significant bit in the byte
representing key BN.

Events and Event-Handling Functions 8 -23

8.4.5 Exposure Events

The X protocol does not guarantee to preserve the contents of window regions when the
windows are obscured or reconfigured. Some implementations may preserve the contents
of windows. Other implementations are free to destroy the contents of windows when
exposed. X expects client applications to assume the responsibility for restoring the
contents of an exposed window region. (An exposed window region describes a formerly
obscured window whose region becomes visible.) Therefore, the X server sends Expose
events describing the window and the region of the window that has been exposed. A
naive client application usually redraws the entire window. A more sophisticated client
application redraws only the exposed region.

Expose Events
The X server can report Expose events to clients wanting information about when the
contents of window regions have been lost. The circumstances in which the X server
generates Expose events are not as definite as those for other events. However, the X
server never generates Expose events on windows whose class you specified as
InputOnly. The X server can generate Expose events when no valid contents are
available for regions of a window and either the regions are visible, the regions are
viewable and the server is (perhaps newly) maintaining backing store on the window, or
the window is not viewable but the server is (perhaps newly) honoring the window's
backing-store attribute of Always or WhenMapped. The regions decompose into an
(arbitrary) set of rectangles, and an Expose event is generated for each rectangle. For
any given window, the X server guarantees to report contiguously all of the regions
exposed by some action that causes Expose events, such as raising a window.

To receive Expose events, set the ExposureMask bit in the event-mask attribute of
the window.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int x, y;
int width, height;
int count;

} XExposeEvent;

/* Expose */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* if nonzero, at least this many more */

8 -24 Events and Event-Handling Functions

The window member is set to the exposed (damaged) window. The x and y members are
set to the coordinates relative to the window's origin and indicate the upper-left corner of
the rectangle. The width and height members are set to the size (extent) of the rectangle.
The count member is set to the number of Expose events that are to follow. If count is
zero, no more Expose events follow for this window. However, if count is nonzero, at
least that number of Expose events (and possibly more) follow for this window. Simple
applications that do not want to optimize redisplay by distinguishing between subareas of
its window can just ignore all Expose events with nonzero counts and perform full
redisplays on events with zero counts.

GraphicsExpose and NoExpose Events
The X server can report GraphicsExpose events to clients wanting information about
when a destination region could not be computed during certain graphics requests:
XCopyArea or XCopyPlane. The X server generates this event whenever a
destination region could not be computed due to an obscured or out-of-bounds source
region. In addition, the X server guarantees to report contiguously all of the regions
exposed by some graphics request (for example, copying an area of a drawable to a
destination drawable).

The X server generates a NoExpose event whenever a graphics request that might
produce a GraphicsExpose event does not produce any. In other words, the client is
really asking for a GraphicsExpose event but instead receives a NoExpose event.

To receive GraphicsExpose or NoExpose events, you must first set the graphics­
exposure attribute of the graphics context to True. You also can set the graphics-expose
attribute when creating a graphics context using XCrea teGC or by calling
XSetGraphicsExposures.

The structures for these event types contain:

typedef struct {
int type;
unsigned long serial;
Baal send_event;
Display *display;
Drawable drawable;
int x, y;
int width, height;
int count;
int major_code;
int minor_code;

} XGraphicsExposeEvent;

/* GraphicsExpose */
/* * of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* if nonzero, at least this many more */
/* core is CopyArea or CopyPlane */
/* not defined in the core */

Events and Event-Handling Functions 8 -25

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Drawable drawable;
int major_code;
int minor_code;

} XNoExposeEvent;

/* NoExpose */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* core is CopyArea or CopyPlane */
/* not defined in the core */

Both structures have these common members: drawable, major code, and minor code.
The drawable member is set to the drawable of the destination region on which the
graphics request was to be performed. The major code member is set to the graphics
request initiated by the client and can be either XJ;opyArea or X_CopyPlane. If it is
X_ CopyArea, a call to XCopyArea initiated the request. If it is X_ CopyPlane, a call
to XCopyPlane initiated the request. These constants are defined in
<XlljXproto .h>. The minor code member, like the major code member, indicates
which graphics request was initiat;d by the client. However, the'iitinor code member is not
defined by the core X protocol and will be zero in these cases, although it may be used by
an extension.

The XGraphicsExposeEvent structure has these additional members: X, y, width,
height, and count. The x and y members are set to the coordinates relative to the
drawable's origin and indicate the upper-left corner of the rectangle. The width and height
members are set to the size (extent) of the rectangle. The count member is set to the
number of GraphicsExpose events to follow. If count is zero, no more
GraphicsExpose events follow for this window. However, if count is nonzero, at least
that number of GraphicsExpose events (and possibly more) are to follow for this
window.

8.4.6 Window State Change Events

The following sections discuss:

• CirculateNotifyevents

• ConfigureNotify events

• CreateNotify events

• DestroyNotifyevents

• GravityNotifyevents

• MapNotifyevents

• MappingNotify events

8 -26 Events and Event-Handling Functions

• ReparentNotify events

• UnmapNotifyevents

• VisibilityNotifyevents

CirculateNotify Events
The X server can report CirculateNotify events to clients wanting information
about when a window changes its position in the stack. The X server generates this event
type whenever a window is actually restacked as a result of a client application calling
XCirculateSubwindows, XCirculateSubwindowsUp, or
XCirculateSubwindowsDown.

To receive CirculateNotify events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of the parent window (in which case, circulating any child generates
an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
int place;

} XCirculateEvent;

/* CirculateNotify */
/* * of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* PlaceOnTop, PlaceOnBottom */

The event member is set either to the restacked window or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. The window
member is set to the window that was restacked. The place member is set to the window's
position after the restack occurs and is either PlaceOnTop or PlaceOnBottom. If it
is PlaceOnTop, the window is now on top of all siblings. If it is PlaceOnBottom, the
window is now below all siblings.

ConfigureNotify Events
The X server can report ConfigureNotify events to clients wanting information
about actual changes to a window's state, such as size, position, border, and stacking order.
The X server generates this event type whenever one of the following configure window
requests made by a client application actually completes:

• A window's size, position, border, or stacking order is reconfigured by calling
XConfigureWindow.

Events and Event-Handling Functions 8 -27

• The window's position in the stacking order is changed by calling XLowerWindow,
XRaiseWindow,orXRestackWindows.

• A window is moved by calling XMoveWindow.

• A window's size is changed by calling XResizeWindow.

• A window's size and location is changed by calling XMoveResizeWindow.

• A window is mapped and its position in the stacking order is changed by calling
XMapRaised.

• A window's border width is changed by calling XSetWindowBorderWidth.

To receive ConfigureNotify events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of the parent window (in which case, configuring any child generates
an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
Bool override_redirect;

} XConfigureEvent;

/* ConfigureNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The event member is set either to the reconfigured window or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. The window
member is set to the window whose size, position, border, or stacking order was changed.

The x and y members are set to the coordinates relative to the parent window's origin and
indicate the position of the upper-left outside corner of the window. The width and height
members are set to the inside size of the window, not including the border. The
border_width member is set to the width of the window's border, in pixels.

The above member is set to the sibling window and is used for stacking operations. If the
X server sets this member to None, the window whose state was changed is on the bottom
of the stack with respect to sibling windows. However, if this member is set to a sibling
window, the window whose state was changed is placed on top of this sibling window.

8 -28 Events and Event-Handling Functions

The override redirect member is set to the override-redirect attribute of the window.
Window manager clients normally should ignore this window if the override_redirect
member is True.

CreateNotify Events
The X server can report CreateNotify events to clients wanting information about
creation of windows. The X server generates this event whenever a client application
creates a window by calling XCreateWindow or XCreateSirnpleWindow.

To receive CreateNotify events, set the SubstructureNotifyMask bit in the
event-mask attribute of the window. Creating any children then generates an event.

The structure for the event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Bool override_redirect;

} XCreateWindowEvent;

/* CreateNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* parent of the window */
/* window id of window created */
/* window location */
/* size of window */
/* border width */
/* creation should be overridden */

The parent member is set to the created window's parent. The window member specifies
the created window. The x and y members are set to the created window's coordinates
relative to the parent window's origin and indicate the position of the upper-left outside
corner of the created window. The width and height members are set to the inside size of
the created window (not including the border) and are always nonzero. The border_width
member is set to the width of the created window's border, in pixels. The
override redirect member is set to the override-redirect attribute of the window. Window
manage; clients normally should ignore this window if the override_redirect member is
True.

DestroyNotify Events
The X server can report DestroyNotify events to clients wanting information about
which windows are destroyed. The X server generates this event whenever a client
application destroys a window by calling XDestroyWindow or
XDestroySubwindows.

Events and Event-Handling Functions 8 -29

The ordering of the DestroyNotify events is such that for any given window,
DestroyNotify is generated on all inferiors of the window before being generated on
the window itself. The X protocol does not constrain the ordering among siblings and
across subhierarchies.

To receive DestroyNotify events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of the parent window (in which case, destroying any child generates
an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *displaYi
Window event;
Window window;

} XDestroyWindowEvent;

/* DestroyNotify */
/* I of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The event member is set either to the destroyed window or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. The window
member is set to the window that is destroyed.

GravityNotify Events
The X server can report GravityNotify events to clients wanting information about
when a window is moved because of a change in the size of its parent. The X server
generates this event whenever a client application actually moves a child window as a result
of resizing its parent by calling XConfigureWindow, XMoveResizeWindow, or
XResizeWindow.

To receive GravityNotify events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of the parent window (in which case, any child that is moved because
its parent has been resized generates an event).

The structure for this event type contains:

8 -30 Events and Event-Handling Functions

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
int x, y;

} XGravityEvent;

/* GravityNotify */
/* * of last request processed by server */
/* true if this crune from a SendEvent request */
/* Display the event was read from */

The event member is set either to the window that was moved or to its parent, depending
on whether StructureNotify or SubstructureNotify was selected. The
window member is set to the child window that was moved. The x and y members are set
to the coordinates relative to the new parent window's origin and indicate the position of
the upper-left outside corner of the window.

MapNotify Events
The X server can report MapNotify events to clients wanting information about which
windows are mapped. The X server generates this event type whenever a client application
changes the window's state from unmapped to mapped by calling XMap'Window,
XMapRaised, XMapSubwindows, XReparentWindow, or as a result of save-set
processing.

To receive MapNotify events, set the StructureNotifyMask bit in the event-mask
attribute of the window or the SubstructureNotifyMask bit in the event-mask
attribute of the parent window (in which case, mapping any child generates an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
Bool override_redirect;

} XMapEvent;

/* MapNotify * /
/* # of last request processed by server */
/* true if this crune from a SendEvent request */
/* Display the event was read from */

/* boolean, is override set ... *1

The event member is set either to the window that was mapped or to its parent, depending
on whether StructureNotify or SubstructureNotify was selected. The
window member is set to the window that was mapped. The override redirect member is
set to the override-redirect attribute of the window. Window manage-;- clients normally
should ignore this window if the override-redirect attribute is True, because these events
usually are generated from pop-ups, which override structure control.

Events and Event-Handling Functions 8 -31

MappingNotify Events
The X server reports MappingNotify events to all clients. There is no mechanism to
express disinterest in this event. The X server generates this event type whenever a client
application successfully calls:

• XSetModifierMapping to indicate which KeyCodes are to be used as modifiers

• XChangeKeyboardMapping to change the keyboard mapping

• XSetPointerMapping to set the pointer mapping

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Baal send_event;
Display *display;
Window window;
int request;

int first_keycode;
int count;

} XMappingEvent;

/* MappingNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* unused */
/* one of MappingModifier, MappingKeyboard,

MappingPointer */
/* first keycode */
/* defines range of change w. first_keycode*/

The request member is set to indicate the kind of mapping change that occurred and can
be MappingModifier, MappingKeyboard, MappingPointer. If it is
MappingModifier, the modifier mapping was changed. If it is MappingKeyboard,
the keyboard mapping was changed. If it is MappingPointer, the pointer button
mapping was changed. The first keycode and count members are set only if the request
member was set to MappingK;yboard. The number in first keycode represents the
first number in the range of the altered mapping, and count represents the number of
keycodes altered.

To update the client application's knowledge of the keyboard, you should call
XRefreshKeyboardMapping.

ReparentNotify Events
The X server can report ReparentNotify events to clients wanting information about
changing a window's parent. The X server generates this event whenever a client
application calls XReparentWindow and the window is actually reparented.

To receive ReparentNotify events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event -mask attribute of either the old or the new parent window (in which case,
reparenting any child generates an event).

The structure for this event type contains:

8 -32 Events and Event-Handling Functions

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
Window parent;
int x, y;
Bool override_redirect;

} XReparentEvent;

1* ReparentNotify *1
1* # of last request processed by server *1
1* true if this came from a SendEvent request *1
1* Display the event was read from *1

The event member is set either to the reparented window or to the old or the new parent,
depending on whether StructureNotify or SubstructureNotify was selected.
The window member is set to the window that was reparented. The parent member is set
to the new parent window. The x and y members are set to the reparented window's
coordinates relative to the new parent window's origin and define the upper-left outer
corner of the reparented window. The override redirect member is set to the override­
redirect attribute of the window specified by the-window member. Window manager
clients normally should ignore this window if the override_redirect member is True.

UnmapNotify Events
The X server can report UnmapNotify events to clients wanting information about
which windows are unmapped. The X server generates this event type whenever a client
application changes the window's state from mapped to unmapped.

To receive UnmapNotify events, set the StructureNotifyMask bit in the event­
mask attribute of the window or the SubstructureNotifyMask bit in the event­
mask attribute of the parent window (in which case, unmapping any child window
generates an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
Bool from_configure;

} XUnmapEvent;

1* UnmapNotify *1
1* # of last request processed by server *1
1* true if this came from a SendEvent request *1
1* Display the event was read from *1

The event member is set either to the unmapped window or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. This is the
window used by the X server to report the event. The window member is set to the

Events and Event-Handling Functions 8 -33

window that was unmapped. The from configure member is set to True if the event was
generated as a result of a resizing of the window's parent when the window itself had a
win_gravity of UnmapGravi ty.

VisibilityNotify Events
The X server can report Vi sib iIi tyN 0 t i fy events to clients wanting any change in
the visibility of the specified window. A region of a window is visible if someone looking at
the screen can actually see it. The X server generates this event whenever the visibility
changes state. However, this event is never generated for windows whose class is
InputOnly.

All Vis i b iIi tyN 0 t i fy events caused by a hierarchy change are generated after any
hierarchy event (UnmapNotify, MapNotify, ConfigureNotify,
GravityNotify, CirculateNotify) caused by that change. Any
Vis i b iIi tyN 0 t i fy event on a given window is generated before any Exp 0 s e events
on that window, but it is not required that all Vis i b iIi tyN 0 t i fy events on all
windows be generated before all Expose events on all windows. The X protocol does not
constrain the ordering of VisibilityNotify events with respect to FocusOut,
EnterNotify, and LeaveNotify events.

To receive VisibilityNotify events, set the VisibilityChangeMask bit in the
event-mask attribute of the window.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int state;

} XVisibilityEvent;

/* VisibiltyNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The window member is set to the window whose visibility state changes. The state
member is set to the state of the window's visibility and can be
VisibilityUnobscured, VisibilityPartiallyObscured,or
VisibilityFullyObscured. The X server ignores all of a window's subwindows
when determining the visibility state of the window and processes Visibili tyNotify
events according to the following:

• When the window changes state from partially obscured, fully obscured, or not
viewable to viewable and completely unobscured, the X server generates the event
with the state member of the XVisibilityEvent structure set to
VisibilityUnobscured.

8 -34 Events and Event-Handling Functions

• When the window changes state from viewable and completely unobscured or not
viewable to viewable and partially obscured, the X server generates the event with
the state member of the XVisibilityEvent structure set to
VisibilityPartiallyObscured.

• When the window changes state from viewable and completely unobscured, viewable
and partially obscured, or not viewable to viewable and fully obscured, the X server
generates the event with the state member of the XVisibilityEvent structure
set to VisibilityFullyObscured.

8.4.7 Structure Control Events

This section discusses:

• CirculateRequest events

• ConfigureReques t events

• MapRequest events

• ResizeRequest events

CirculateRequest Events
The X server can report CirculateRequest events to clients wanting information
about when another client initiates a circulate window request on a specified window. The
X server generates this event type whenever a client initiates a circulate window request on
a window and a subwindow actually needs to be restacked. To initiate a circulate window
request on the window, the client calls XCirculateSubwindows,
XCirculateSubwindowsUp,orXCirculateSubwindowsDown.

To receive CirculateRequest events, set the SubstructureRedirectMask in
the event-mask attribute of the window. Then, in the future, the circulate window request
for the specified window is not executed, and thus, any subwindow's position in the stack is
not changed. For example, a client application calls XCirculateSubwindowsUp to
raise a subwindow to the top of the stack. If you had selected
SubstructureRedirectMask on the window, the X server reports to you a
CirculateRequest event and does not raise the subwindow to the top of the stack.

The structure for this event type contains:

Events and Event-Handling Functions 8 -3S

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window parent;
Window window;
int place;

} XCirculateRequestEvent;

/* CirculateRequest */
/* * of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* PlaceOnTop, PlaceOnBottom */

The parent member is set to the parent window. The window member is set to the
subwindow to be restacked. The place member is set to what the new position in the
stacking order should be and is either PlaceOnTop or PlaceOnBottom. If it is
PlaceOnTop, the subwindow should be on top of all siblings. If it is PlaceOnBottom,
the subwindow should be below all siblings.

ConfigureRequest Events
The X server can report ConfigureReques t events to clients wanting information
about when a different client initiates a configure window request on any child of a
specified window. The configure window request attempts to reconfigure a window's size,
position, border, and stacking order. The X server generates this event whenever a
different client initiates a configure window request on a window by calling
XConfigureWindow,XLowerWindow,XRaiseWindow,XMapRaised,
XMoveResizeWindow,XMoveWindow,XResizeWindow,XRestackWindows,
orXSetWindowBorderWidth.

To receive ConfigureRequest events, set the SubstructureRedirectMask bit
in the event-mask attribute of the window. ConfigureReques t events are generated
when a ConfigureWindow protocol request is issued on a child window by another
client. For example, suppose a client application calls XLowerWindow to lower a
window. If you had selected SubstructureRedirectMask on the parent window
and if the override-redirect attribute of the window is set to False, the X server reports a
ConfigureRequest event to you and does not lowerfhe specified window.

The structure for this event type contains:

8 -36 Events and Event-Handling Functions

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
int detail;
unsigned long value_mask;

} XConfigureRequestEvent;

/* ConfigureRequest */
/* I of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* Above, Below, TopIf, BottomIf, Opposite */

The parent member is set to the parent window. The window member is set to the window
whose size, position, border width, or stacking order is to be reconfigured. The
value mask member indicates which components were specified in the
Con:EigureWindow protocol request. The corresponding values are reported as given
in the request. The remaining values are filled in from the current geometry of the
window, except in the case of above (sibling) and detail (stack-mode), which are reported
as Above and None, respectively, if they are not given in the request.

MapRequest Events
The X server can report MapRequest events to clients wanting information about a
different client's desire to map windows. A window is considered mapped when a map
window request completes. The X server generates this event whenever a different client
initiates a map window request on an unmapped window whose override_redirect member
is set to False. Clients initiate map window requests by calling XMapWindow,
XMapRaised,orXMapSubwindows.

To receive MapRequest events, set the SubstructureRedirectMask bit in the
event-mask attribute of the window. This means another client's attempts to map a child
window by calling one of the map window request functions is intercepted, and you are
sent a MapReques t instead. For example, assume a client application calls
XMapWindow to map a window. If you (usually a window manager) had selected
SubstructureRedirectMask on the parent window and if the override-redirect
attribute of the window is set to False, the X server reports a MapRequest event to
you and does not map the specified window. Thus, this event gives your window manager
client the ability to control the placement of subwindows.

The structure for this event type contains:

Events and Event-Handling Functions 8 -37

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window parent;
Window window;

} XMapRequestEvent;

/* MapRequest */
/* I of last request processed by server */
/* true if this crune from a SendEvent request */
/* Display the event was read from */

The parent member is set to the parent window. The window member is set to the window
to be mapped.

ResizeRequest Events
The X server can report ResizeRequest events to clients wanting information about
another client's attempts to change the size of a window. The X server generates this
event whenever some other client attempts to change the size of the specified window by
calling XConfigureWindow, XResizeWindow, or XMoveResizeWindow.

To receive ResizeRequest events, set the ResizeRedirect bit in the event-mask
attribute of the window. Any attempts to change the size by other clients are then
redirected.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int width, height;

} XResizeRequestEvent;

/* ResizeRequest */
/* I of last request processed by server */
/* true if this crune from a SendEvent request */
/* Display the event was read from */

The window member is set to the window whose size another client attempted to change.
The width and height members are set to the inside size of the window, excluding the
border.

8.4.8 Colormap State Change Events

The X server can report ColormapNotify events to clients wanting information about
when the colormap changes and when a colormap is installed or uninstalled. The X server
generates this event type whenever a client application:

• Changes the colormap member of the XSetWindowAttributes structure by
calling XChangeWindowAttributes, XFreeColormap, or
XSetWindowColormap

8 - 38 Events and Event-Handling Functions

• Installs or uninstalls the colormap by calling XlnstallColormap or
XUninstallColormap

To receive ColormapNotify events, set the ColormapChangeMask bit in the
event -mask attribute of the window.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Colormap colormap;
Bool new;
int state;

} XColormapEvent;

/* ColormapNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* colormap or None */

/* Colormaplnstalled, ColormapUninstalled */

The window member is set to the window whose associated colormap is changed, installed,
or uninstalled. For a colormap that is changed, installed, or uninstalled, the colormap
member is set to the colormap associated with the window. For a colormap that is changed
by a call to XFreeColormap, the colormap member is set to None. The new member
is set to indicate whether the colormap for the specified window was changed or installed
or uninstalled and can be True or Fa 1 s e. If it is True, the colormap was changed. If it
is False, the colormap was installed or uninstalled. The state member is always set to
indicate whether the colormap is installed or uninstalled and can be
Colormaplnstalled or ColormapUninstalled.

8.4.9 Client Communication Events

This section discusses:

• ClientMessage events

• PropertyNotify events

• SelectionClear events

• SelectionNotifyevents

• SelectionRequest events

Events and Event-Handling Functions 8 -39

ClientMessage Events
The X server generates ClientMessage events only when a client calls the function
XSendEvent.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Atom message_type;
int format;
union {

char b[20];
short s[10];
long 1[5];

} data;
} XClientMessageEvent;

/* ClientMessage */
/* * of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The window member is set to the window to which the event was sent. The message type
member is set to an atom that indicates how the data should be interpreted by the -
receiving client. The format member is set to 8, 16, or 32 and specifies whether the data
should be viewed as a list of bytes, shorts, or longs. The data member is a union that
contains the members b, s, and 1. The b, s, and I members represent data of 20 8-bit
values, 10 16-bit values, and 5 32-bit values. Particular message types might not make use
of all these values. The X server places no interpretation on the values in the
message_type or data members.

PropertyNotify Events
The X server can report PropertyNotify events to clients wanting information about
property changes for a specified window.

To receive PropertyNotify events, set the PropertyChangeMask bit in the
event-mask attribute of the window.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Atom atom;
Time time;
int state;

} XPropertyEvent;

/* PropertyNotify */
/* * of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* PropertyNewValue or PropertyDeleted */

8 -40 Events and Event-Handling Functions

The window member is set to the window whose associated property was changed. The
atom member is set to the property's atom and indicates which property was changed or
desired. The time member is set to the server time when the property was changed. The
state member is set to indicate whether the property was changed to a new value or
deleted and can be PropertyNewValue or PropertyDelete. The state member is
set to PropertyNewValue when a property of the window is changed using
XChangeProperty or XRotateWindowProperties (even when adding zero­
length data using XChangeProperty) and when replacing all or part of a property with
identical data using XChangeProperty or XRotateWindowProperties. The
state member is set to PropertyDeleted when a property of the window is deleted
using XDeleteProperty or, if the delete argument is True,
XGetWindowProperty.

SelectionClear Events
The X server reports SelectionClear events to the current owner of a selection. The
X server generates this event type on the window losing ownership of the selection to a
new owner. This sequence of events could occur whenever a client calls
XSetSelectionOwner.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Atom selection;
Time time;

} XSelectionClearEvent;

/* SelectionClear */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The window member is set to the window losing ownership of the selection. The selection
member is set to the selection atom. The time member is set to the last change time
recorded for the selection. The owner member is the window that was specified by the
current owner in its XSetSelectionOwner call.

SelectionRequest Events
The X server reports SelectionRequest events to the owner of a selection. The X
server generates this event whenever a client requests a selection conversion by calling
XConvertSelection and the specified selection is owned by a window.

The structure for this event type contains:

Events and Event-Handling Functions 8 -41

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window owner;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

} XSelectionRequestEvent;

1* SelectionRequest *1
1* I of last request processed by server *1
1* true if this came from a SendEvent request *1
1* Display the event was read from *1

The owner member is set to the window owning the selection and is the window that was
specified by the current owner in its XSetSelectionOwner call. The requestor
member is set to the window requesting the selection. The selection member is set to the
atom that names the selection. For example, PRIMARY is used to indicate the primary
selection. The target member is set to the atom that indicates the type the selection is
desired in. The property member can be a property name or None. The time member is
set to the time and is a timestamp or CurrentTime from the ConvertSelection
request.

The client who owns the selection should do the following:

• The owner client should convert the selection based on the atom contained in the
target member.

• If a property was specified (that is, the property member is set), the owner client
should store the result as that property on the requestor window and then send a
SelectionNotify event to the requestor by calling XSendEvent with an
empty event-mask; that is, the event should be sent to the creator of the requestor
window.

• If None is specified as the property, the owner client should choose a property
name on the requestor window and then send a SelectionNotify event giving
the actual name.

• If the selection cannot be converted as requested, the owner client should send a
SelectionNotify event with the property set to None.

8 - 42 Events and Event-Handling Functions

SelectionNotify Events
This event is generated by the X server in response to a ConvertSelection protocol
request when there is no owner for the selection. When there is an owner, it should be
generated by the owner of the selection by using XSendEvent. The owner of a selection
should send this event to a requestor when a selection has been converted and stored as a
property or when a selection conversion could not be performed (which is indicated by
setting the property member to None).

If None is specified as the property in the ConvertSelection protocol request, the
owner should choose a property name, store the result as that property on the requestor
window, and then send a SelectionNotify giving that actual property name.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

} XSelectionEvent;

1* SelectionNotify *1
1* # of last request processed by server *1
1* true if this came from a SendEvent request *1
1* Display the event was read from *1

1* atom or None *1

The requestor member is set to the window associated with the requestor of the selection.
The selection member is set to the atom that indicates the selection. For example,
PRIMARY is used for the primary selection. The target member is set to the atom that
indicates the converted type. For example, PIXMAP is used for a pixmap. The property
member is set to the atom that indicates which property the result was stored on. If the
conversion failed, the property member is set to None. The time member is set to the
time the conversion took place and can be a timestamp or CurrentTime.

8.5 Selecting Events

There are two ways to select the events you want reported to your client application. One
way is to set the event mask member of the XSetWindowAttributes structure when
you call XCreateWi;dow and XChangeWindowAttributes. Another way is to
use XSelectlnput.

XSelectlnput (display, w, event_mask)
Display *display;
Window w;
long event_mask;

Events and Event-Handling Functions 8-43

display Specifies the connection to the X server.

w

event mask

Specifies the window whose events you are interested in.

Specifies the event mask.

The XSelectlnput function requests that the X server report the events associated
with the specified event mask. Initially, X will not report any of these events. Events are
reported relative to a window. If a window is not interested in a device event, it usually
propagates to the closest ancestor that is interested, unless the do _ not yropagate mask
prohibits it.

Setting the event-mask attribute of a window overrides any previous call for the same
window but not for other clients. Multiple clients can select for the same events on the
same window with the following restrictions:

• Multiple clients can select events on the same window because their event masks are
disjoint. When the X server generates an event, it reports it to all interested clients.

• Only one client at a time can select CirculateRequest,
ConfigureRequest, or MapRequest events, which are associated with the
event mask SubstructureRedirectMask.

• Only one client at a time can select a ResizeRequest event, which is associated
with the event mask ResizeRedirectMask.

• Only one client at a time can select a ButtonPress event, which is associated
with the event mask ButtonPressMask.

The server reports the event to all interested clients.

XSelectlnput can generate a BadWindow error.

8.6 Handling the Output Buffer

The output buffer is an area used by Xlib to store requests. The functions described in this
section flush the output buffer if the function would block or not return an event. That is,
all requests residing in the output buffer that have not yet been sent are transmitted to the
X server. These functions differ in the additional tasks they might perform.

To flush the output buffer, use XFlush.

XFlush (display)
Display *display;

display Specifies the connection to the X server.

8 - 44 Events and Event-Handling Functions

The XFl us h function flushes the output buffer. Most client applications need not use this
function because the output buffer is automatically flushed as needed by calls to
XPending, XNextEvent, and XWindowEvent. Events generated by the server may
be enqueued into the library's event queue.

To flush the output buffer and then wait until all requests have been processed, use
XSync.

XSync (display I discard)
Display *display;
Bool discard;

display Specifies the connection to the X server.

discard Specifies a Boolean value that indicates whether XSync discards all events on
the event queue.

The XSync function flushes the output buffer and then waits until all requests have been
received and processed by the X server. Any errors generated must be handled by the
error handler. For each error event received by Xlib, XSync calls the client application's
error handling routine (see section 8.12.2). Any events generated by the server are
enqueued into the library's event queue.

Finally, if you passed False, XSync does not discard the events in the queue. If you
passed True, XSync discards all events in the queue, including those events that were on
the queue before XSync was called. Client applications seldom need to call XSync.

8.7 Event Queue Management
Xlib maintains an event queue. However, the operating system also may be buffering data
in its network connection that is not yet read into the event queue.

To check the number of events in the event queue, use XEventsQueued.

int XEventsQueued (display I mode)
Display *display;
int mode;

display

mode

Specifies the connection to the X server.

Specifies the mode. You can pass QueuedAlready,
QueuedAfterFlush, or QueuedAfterReading.

Events and Event-Handling Functions 8 - 45

If mode is QueuedAlready, XEventsQueued returns the number of events already
in the event queue (and never performs a system call). If mode is QueuedAfterFlush,
XEventsQueued returns the number of events already in the queue if the number is
nonzero. If there are no events in the queue, XEventsQueued flushes the output buffer,
attempts to read more events out of the application's connection, and returns the number
read. If mode is QueuedAfterReading, XEventsQueued returns the number of
events already in the queue if the number is nonzero. If there are no events in the queue,
XEventsQueued attempts to read more events out of the application's connection
without flushing the output buffer and returns the number read.

XEventsQueued always returns immediately without I/O if there are events already in
the queue. XEventsQueued with mode QueuedAfterFlush is identical in behavior
to XPending. XEventsQueued with mode QueuedAlready is identical to the
XQLength function.

To return the number of events that are pending, use XPending.

int XPending (display)
Display *display;

display Specifies the connection to the X server.

The XPending function returns the number of events that have been received from the
X server but have not been removed from the event queue. XPending is identical to
XEventsQueued with the mode QueuedAfterFlush specified.

8.8 Manipulating the Event Queue

Xlib provides functions that let you manipulate the event queue. The next three sections
discuss how to:

• Obtain events, in order, and remove them from the queue

• Peek at events in the queue without removing them

• Obtain events that match the event mask or the arbitrary predicate procedures that
you provide

8.8.1 Returning the Next Event

To get the next event and remove it from the queue, use XNextEvent.

8 - 46 Events and Event-Handling Functions

XNextEvent (display, event return)
Display *display; -
XEvent *event...!eturn;

display

event return

Specifies the connection to the X server.

Returns the next event in the queue.

The XNextEvent function copies the first event from the event queue into the specified
XEvent structure and then removes it from the queue. If the event queue is empty,
XNextEvent flushes the output buffer and blocks until an event is received.

To peek at the event queue, use XPeekEvent.

XFeekEvent (display, event return)
Display *display; -
XEvent *event...!eturn;

display Specifies the connection to the X server.

event return Returns a copy of the matched event's associated structure.

The XPeekEvent function returns the first event from the event queue, but it does not
remove the event from the queue. If the queue is empty, XPeekEvent flushes the
output buffer and blocks until an event is received. It then copies the event into the client­
supplied XEvent structure without removing it from the event queue.

8.8.2 Selecting Events Using a Predicate Procedure

Each of the functions discussed in this section requires you to pass a predicate procedure
that determines if an event matches what you want. Your predicate procedure must decide
only if the event is useful and must not call Xlib functions. In particular, a predicate is
called from inside the event routine, which must lock data structures so that the event
queue is consistent in a multi-threaded environment.

The predicate procedure and its associated arguments are:

Bool (*predicate) (display, event, arg)
Display *display;
XEvent *event;
char *arg;

display Specifies the connection to the X server.

Specifies a pointer to the XEven t structure. event

arg Specifies the argument passed in from the XIfEvent, XGheckIfEvent,
or XPeeklfEvent function.

Events and Event-Handling Functions 8 - 47

The predicate procedure is called once for each event in the queue until it finds a match.
After finding a match, the predicate procedure must return True. If it did not find a
match, it must return F al s e .

To check the event queue for a matching event and, if found, remove the event from the
queue, use XlfEvent.

XI fEvent (display, event return, predicate, arg)
Display *display;-
XEvent *event return;
Bool (*predicate) () ;
char *arg;

display

event return

predicate

arg

Specifies the connection to the X server.

Returns the matched event's associated structure.

Specifies the procedure that is to be called to determine if the next event
in the queue matches what you want.

Specifies the user-supplied argument that will be passed to the predicate
procedure.

The XlfEvent function completes only when the specified predicate procedure returns
True for an event, which indicates an event in the queue matches. XlfEvent flushes
the output buffer if it blocks waiting for additional events. XlfEvent removes the
matching event from the queue and copies the structure into the client-supplied XEvent
structure.

To check the event queue for a matching event without blocking, use XChecklfEvent.

Bool XCheckIfEvent (display, eventJeturn, predicate, arg)
Display *display;
XEvent *event return;
Boo 1 (*predicate) () ;
char *arg;

display

event return

predicate

arg

Specifies the connection to the X server.

Returns a copy of the matched event's associated structure.

Specifies the procedure that is to be called to determine if the next event
in the queue matches what you want.

Specifies the user-supplied argument that will be passed to the predicate
procedure.

8 - 48 Events and Event-Handling Functions

When the predicate procedure finds a match, XCheckIfEvent copies the matched
event into the client-supplied XEvent structure and returns True. (This event is
removed from the queue.) If the predicate procedure finds no match, XCheckIfEvent
returns Fa 1 s e, and the output buffer will have been flushed. All earlier events stored in
the queue are not discarded.

To check the event queue for a matching event without removing the event from the
queue, use XPeekIfEvent.

XPeekIfEvent (display, event return, predicaJe, arg)
Display *display; -
XEvent *event return;
Bool (*predicate) () ;
char *arg;

display

event return

predicate

arg

Specifies the connection to the X server.

Returns a copy of the matched event's associated structure.

Specifies the procedure that is to be called to determine if the next event
in the queue matches what you want.

Specifies the user-supplied argument that will be passed to the predicate
procedure.

The XPeekIfEvent function returns only when the specified predicate procedure
returns True for an event. After the predicate procedure finds a match,
XPeekIfEvent copies the matched event into the client-supplied XEvent structure
without removing the event from the queue. XPeekIfEvent flushes the output buffer if
it blocks waiting for additional events.

8.8.3 Selecting Events Using a Window or Event Mask

The functions discussed in this section let you select events by window or event types,
allowing you to process events out of order.

To remove the next event that matches both a window and an event mask, use
XWindowEvent.

XWindowEvent (display, w, event_mask, event Jeturn)
Display *display;
Window w;
long event mask;
XEvent *event Jeturn ;

display Specifies the connection to the X server.

w Specifies the window whose events you are interested in.

Events and Event-Handling Functions 8-49

event mask Specifies the event mask.

event return Returns the matched event's associated structure.

The XWindowEvent function searches the event queue for an event that matches both
the specified window and event mask. When it finds a match, XWindowEvent removes
that event from the queue and copies it into the specified XEvent structure. The other
events stored in the queue are not discarded. If a matching event is not in the queue,
XWindowEvent flushes the output buffer and blocks until one is received.

To remove the next event that matches both a window and an event mask (if any), use
XCheckWindowEvent. This function is similar to XWindowEvent except that it
never blocks and it returns a Boo 1 indicating if the event was returned.

Bool XCheckWindowEvent(display, w, event_mask, event..!eturn)
Display *display;
Window w;
long event mask;
XEvent *event Jeturn ;

display

w

event mask

event return

Specifies the connection to the X server.

Specifies the window whose events you are interested in.

Specifies the event mask.

Returns the matched event's associated structure.

The XCheckWindowEvent function searches the event queue and then the events
available on the server connection for the first event that matches the specified window
and event mask. If it finds a match, XCheckWindowEvent removes that event, copies it
into the specified XEvent structure, and returns True. The other events stored in the
queue are not discarded. If the event you requested is not available,
XCheckWindowEvent returns False, and the output buffer will have been flushed.

To remove the next event that matches an event mask, use XMaskEvent.

XMaskEvent (display, event mask, event_return)
Display *display; -
long event mask;
XEvent *event Jeturn ;

display

event mask

event return

Specifies the connection to the X server.

Specifies the event mask.

Returns the matched event's associated structure.

8 - 50 Events and Event-Handling Functions

The XMas kEven t function searches the event queue for the events associated with the
specified mask. When it finds a match, XMas kEven t removes that event and copies it
into the specified XEvent structure. The other events stored in the queue are not
discarded. If the event you requested is not in the queue, XMaskEvent flushes the
output buffer and blocks until one is received.

To return and remove the next event that matches an event mask (if any), use
XCheckMaskEvent. This function is similar to XMaskEvent except that it never
blocks and it returns a Boo 1 indicating if the event was returned.

Baal XCheckMaskEvent (display, event_mask, event_return)
Display *display;
lang event mask;
XEvent *event ..!eturn ;

display

event mask

event return

Specifies the connection to the X server.

Specifies the event mask.

Returns the matched event's associated structure.

The XCheckMaskEvent function searches the event queue and then any events
available on the server connection for the first event that matches the specified mask. If it
finds a match, XCheckMaskEvent removes that event, copies it into the specified
XEvent structure, and returns True. The other events stored in the queue are not
discarded. If the event you requested is not available, XCheckMaskEvent returns
False, and the output buffer will have been flushed.

To return and remove the next event in the queue that matches an event type, use
XCheckTypedEvent.

Baal XCheckTypedEvent (display, event_type, event..!eturn)
Display *display;
int event_type;
XEvent *event ..!eturn ;

display

event_type

event return

Specifies the connection to the X server.

Specifies the event type to be compared.

Returns the matched event's associated structure.

Events and Event-Handling Functions 8 • 51

The XCheckTypedEvent function searches the event queue and then any events
available on the server connection for the first event that matches the specified type. If it
finds a match, XCheckTypedEvent removes that event, copies it into the specified
XEven t structure, and returns True. The other events in the queue are not discarded.
If the event is not available, XCheckTypedEvent returns False, and the output buffer
will have been flushed.

To return and remove the next event in the queue that matches an event type and a
window, use XCheckTypedWindowEvent.

Bool XCheckTypedWindowEvent (display, w, event_type, event Jetum)
Display *display;
Window w;
int event type;
XEvent *event Jetum ;

display

w

event return

Specifies the connection to the X server.

Specifies the window.

Specifies the event type to be compared.

Returns the matched event's associated structure.

The XCheckTypedWindowEvent function searches the event queue and then any
events available on the server connection for the first event that matches the specified type
and window. If it finds a match, XCheckTypedWindowEvent removes the event from
the queue, copies it into the specified XEven t structure, and returns True. The other
events in the queue are not discarded. If the event is not available,
XCheckTypedWindowEvent returns False, and the output buffer will have been
flushed.

8.9 Putting an Event Back into the Queue

To push an event back into the event queue, use XPutBackEvent.

XPutBackEvent(display, event)
Display *display;
XEvent *event;

display

event

Specifies the connection to the X server.

Specifies a pointer to the event.

8 - 52 Events and Event-Handling Functions

The XPutBackEvent function pushes an event back onto the head of the display's event
queue by copying the event into the queue. This can be useful if you read an event and
then decide that you would rather deal with it later. There is no limit to the number of
times in succession that you can call XPutBackEvent.

8.10 Sending Events to Other Applications
To send an event to a specified window, use XSendEvent. This function is often used in
selection processing. For example, the owner of a selection should use XS endEven t to
send a SelectionNotify event to a requestor when a selection has been converted
and stored as a property.

Status XSendEvent(display, w, propagate, event_mask, event_send)
Display *display;
Window w;
Bool propagate;
long event mask;
XEvent *event _send;

display Specifies the connection to the X server.

w Specifies the window the event is to be sent to, PointerWindow, or
InputFocus.

propagate

event mask

Specifies a Boolean value.

Specifies the event mask.

event send Specifies a pointer to the event that is to be sent.

The XSendEvent function identifies the destination window, determines which clients
should receive the specified events, and ignores any active grabs. This function requires
you to pass an event mask. For a discussion of the valid event mask names, see section 8.3.
This function uses the w argument to identify the destination window as follows:

• Ifw is PointerWindow, the destination window is the window that contains the
pointer.

• If w is InputFocus and if the focus window contains the pointer, the destination
window is the window that contains the pointer; otherwise, the destination window is
the focus window.

To determine which clients should receive the specified events, XSendEvent uses the
propagate argument as follows:

• If event mask is the empty set, the event is sent to the client that created the
destination window. If that client no longer exists, no event is sent.

Events and Event-Handling Functions 8 -S3

• If propagate is False, the event is sent to every client selecting on destination any
of the event types in the event_mask argument.

• If propagate is True and no clients have selected on destination any of the event
types in event-mask, the destination is replaced with the closest ancestor of
destination for which some client has selected a type in event-mask and for which no
intervening window has that type in its do-not-propagate-mask. If no such window
exists or if the window is an ancestor of the focus window and InputFocus was
originally specified as the destination, the event is not sent to any clients. Otherwise,
the event is reported to every client selecting on the final destination any of the types
specified in event_mask.

The event in the XEvent structure must be one of the core events or one of the events
defined by an extension (or a BadValue error results) so that the X server can correctly
byte-swap the contents as necessary. The contents of the event are otherwise unaltered and
unchecked by the X server except to force send event to True in the forwarded event and
to set the serial number in the event correctly. -

XSendEvent returns zero if the conversion to wire protocol format failed and returns
nonzero otherwise.

XSendEvent can generate BadValue and BadWindow errors.

8.11 Getting Pointer Motion History

Some X server implementations will maintain a more complete history of pointer motion
than is reported by event notification. The pointer position at each pointer hardware
interrupt may be stored in a buffer for later retrieval. This buffer is called the motion
history buffer. For example, a few applications, such as paint programs, want to have a
precise history of where the pointer traveled. However, this historical information is highly
excessive for most applications.

To determine the size of the motion buffer, use XDisplayMotionBufferSize.

unsigned long XDisplayMotionBufferSize(d~play)
Display *display;

display Specifies the connection to the X server.

The server may retain the recent history of the pointer motion and do so to a finer
granularity than is reported by MotionNotify events. The XGetMotionEvents
function makes this history available.

To get the motion history for a specified window and time, use XGetMotionEvents.

8 - 54 Events and Event-Handling Functions

XTimeCoord *XGetMotionEvents (display I W I start I stop I nevents ...return)
Display *display;
Window w;
Time start I stop;
int *nevents ...return ;

display

w

start

Specifies the connection to the X server.

Specifies the window.

stop Specify the time interval in which the events are returned from the
motion history buffer. You can pass a timestamp or CurrentTime.

nevents return Returns the number of events from the motion history buffer.

The XGetMotionEvents function returns all events in the motion history buffer that
fall between the specified start and stop times, inclusive, and that have coordinates that lie
within the specified window (including its borders) at its present placement. If the start
time is later than the stop time or if the start time is in the future, no events are returned.
If the stop time is in the future, it is equivalent to specifying CurrentTime. The return
type for this function is a structure defined as follows:

typedef struct {
Time time;
short X, y;

} XTimeCoord;

The time member is set to the time, in milliseconds. The x and y members are set to the
coordinates of the pointer and are reported relative to the origin of the specified window.
To free the data returned from this call, use XFr e e .

XGetMotionEvents can generate a BadWindow error.

8.12 Handling Error Events

Xlib provides functions that you can use to enable or disable synchronization and to use
the default error handlers.

Events and Event-Handling Functions 8 -55

8.12.1 Enabling or Disabling Synchronization

When debugging X applications, it often is very convenient to require Xlib to behave
synchronously so that errors are reported as they occur. The following function lets you
disable or enable synchronous behavior. Note that graphics may occur 30 or more times
more slowly when synchronization is enabled. On UNIX-based systems, there is also a
global variable _Xdebug that, if set to nonzero before starting a program under a
debugger, will force synchronous library behavior.

After completing their work, all Xlib functions that generate protocol requests call what is
known as an after function. XSetAfterFunction sets which function is to be called.

int (*XSetAfterFunction (display, procedure» ()
Display *display i
int (*procedure) () i

display

procedure

Specifies the connection to the X server.

Specifies the function to be called after an Xlib function that generates a
protocol request completes its work.

The specified procedure is called with only a display pointer. XSetAfterFunction
returns the previous after function.

To enable or disable synchronization, use XSynchronize.

int (*XSynchronize (display, onoff» ()
Display *display i
Bool onoffi

display

on off

Specifies the connection to the X server.

Specifies a Boolean value that indicates whether to enable or disable
synchronization.

The XSynchronize function returns the previous after function. If onoff is True,
XSynchronize turns on synchronous behavior. If onoff is False, XSynchronize
turns off synchronous behavior.

8 - 56 Events and Event-Handling Functions

8.12.2 Using the Default Error Handlers

There are two default error handlers in Xlib: one to handle typically fatal conditions (for
example, the connection to a display server dying because a machine crashed) and one to
handle error events from the X server. These error handlers can be changed to user­
supplied routines if you prefer your own error handling and can be changed as often as you
like. If either function is passed a NULL pointer, it will reinvoke the default handler. The
action of the default handlers is to print an explanatory message and exit.

To set the error handler, use XSetErrorHandler.

XSetErrorHandler(handl~)

int (*handl~)(Display *, XErrorEvent *)

handler Specifies the program's supplied error handler.

Xlib generally calls the program's supplied error handler whenever an error is received. It
is not called on BadName errors from OpenFont, LookupColor, or
AllocNamedColor protocol requests or on BadFont errors from a QueryFont
protocol request. These errors generally are reflected back to the program through the
procedural interface. Because this condition is not assumed to be fatal, it is acceptable for
your error handler to return. However, the error handler should not call any functions
(directly or indirectly) on the display that will generate protocol requests or that will look
for input events.

The XErrorEvent structure contains:

typedef struct {
int type;
Display *display; 1* Display the event was read from */
unsigned long serial; 1* serial number of failed request */
unsigned char error_code;/* error code of failed request */
unsigned char request_code;/* Major op-code of failed request */
unsigned char minor_code;/* Minor op-code of failed request */
XIO resourceid; /* resource id */

} XErrorEvent;

The serial member is the number of requests, starting from one, sent over the network
connection since it was opened. It is the number that was the value of NextRequest
immediately before the failing call was made. The request code member is a protocol
request of the procedure that failed, as defined in <XlljXproto. h >. The following
error codes can be returned by the functions described in this chapter:

Events and Event-Handling Functions 8 -57

Error Code

BadAccess

BadAlloc

BadAtom

BadColor

BadCursor

BadDrawable

BadFont

BadGC

BadIDChoice

Description

A client attempts to grab a key/button combination already grabb(
by another client.

A client attempts to free a colormap entry that it had not already
allocated.

A client attempts to store into a read-only or unallocated colormal
entry.

A client attempts to modify the access control list from other than
the local (or otherwise authorized) host.

A client attempts to select an event type that another client has
already selected.

The server fails to allocate the requested resource. Note that the
explicit listing of BadAlloc errors in requests only covers
allocation errors at a very coarse level and is not intended to (nor
can it in practice hope to) cover all cases of a server running out oj
allocation space in the middle of service. The semantics when a
server runs out of allocation space are left unspecified, but a serve]
may generate a BadAlloc error on any request for this reason,
and clients should be prepared to receive such errors and handle 0

discard them.

A value for an atom argument does not name a defined atom.

A value for a colormap argument does not name a defined
colormap.

A value for a cursor argument does not name a defined cursor.

A value for a drawable argument does not name a defined window
or pixmap.

A value for a font argument does not name a defined font (or, in
some cases, GContext).

A value for a GContext argument does not name a defined
GContext.

The value chosen for a resource identifier either is not included in
the range assigned to the client or is already in use. Under normal
circumstances, this cannot occur and should be considered a serve]
or Xlib error.

8 -58 Events and Event-Handling Functions

Badlmplementation The server does not implement some aspect of the request. A server
that generates this error for a core request is deficient. As such, this
error is not listed for any of the requests, but clients should be
prepared to receive such errors and handle or discard them.

BadLength The length of a request is shorter or longer than that required to
contain the arguments. This is an internal Xlib or server error.

BadMatch

BadName

BadPixmap

BadRequest

BadValue

BadWindow

The length of a request exceeds the maximum length accepted by the
server.

In a graphics request, the root and depth of the graphics context
does not match that of the drawable.

An InputOnly window is used as a drawable.

Some argument or pair of arguments has the correct type and range,
but it fails to match in some other way required by the request.

An InputOnly window lacks this attribute.

A font or color of the specified name does not exist.

A value for a pixmap argument does not name a defined pixmap.

The major or minor opcode does not specify a valid request. This
usually is an Xlib or server error.

Some numeric value falls outside of the range of values accepted by
the request. Unless a specific range is specified for an argument, the
full range defined by the argument's type is accepted. Any argument
defined as a set of alternatives typically can generate this error (due
to the encoding).

A value for a window argument does not name a defined window.

NOTE

The BadAtom, BadColor, BadCursor, BadDrawable,
BadFont, BadGC, BadPixmap, and BadWindow errors are
also used when the argument type is extended by a set of fixed
alternatives.

Events and Event-Handling Functions 8 - 59

To obtain textual descriptions of the specified error code, use XGetErrorText.

XGetErrorText (display, code, buffer return, length)
Display *display; -
int code;
char *buffer return ;
int length; -

display

code

buffer ..!etum

length

Specifies the connection to the X server.

Specifies the error code for which you want to obtain a description.

Returns the error description.

Specifies the size of the buffer.

The XGetErrorText function copies a null-terminated string describing the specified
error code into the specified buffer. It is recommended that you use this function to obtain
an error description because extensions to Xlib may define their own error codes and error
strings.

To obtain error messages from the error database, use XGetErrorDatabaseText.

XGetErrorDatabaseText(display, name, message, default_string, bufferJeturn, length)
Display *display;
char *name, *message;
char *default string;
char *buffer return;
int length; -

display

name

message

default_string

buffer ..!etum

length

Specifies the connection to the X server.

Specifies the name of the application.

Specifies the type of the error message.

Specifies the default error message if none is found in the database.

Returns the error description.

Specifies the size of the buffer.

The XGetErrorDatabaseText function returns a message (or the default message)
from the error message database. Xlib uses this function internally to look up its error
messages. On a UNIX-based system, the error message database is
/usr/lib/Xll/XErrorDB.

The name argument should generally be the name of your application. The message
argument should indicate which type of error message you want. Xlib uses three
predefined message types to report errors (uppercase and lowercase matter):

8 - 60 Events and Event-Handling Functions

XProtoError The protocol error number is used as a string for the message argument.

XlibMessage These are the message strings that are used internally by the library.

XRequest The major request protocol number is used for the message argument. If
no string is found in the error database, the default string is returned to
the buffer argument. -

To report an error to the user when the requested display does not exist, use
XDisplayName.

char *XDisplayName(stJring)
char *stJring;

string Specifies the character string.

The XDisplayName function returns the name of the display that XOpenDisplay
would attempt to use. If a NULL string is specified, XDisplayName looks in the
environment for the display and returns the display name that XOpenDisplay would
attempt to use. This makes it easier to report to the user precisely which display the
program attempted to open when the initial connection attempt failed.

To handle fatal I/O errors, use XSetIOErrorHandler.

XSetIOErrorHandler(handl~)

int (*handl~)(Display *);

handler Specifies the program's supplied error handler.

The XSetIOErrorHandler sets the fatal I/O error handler. Xlib calls the program's
supplied error handler if any sort of system call error occurs (for example, the connection
to the server was lost). This is assumed to be a fatal condition, and the called routine
should not return. If the I/O error handler does return, the client process exits.

Events and Event-Handling Functions 8 - 61

Predefined Property Functions 9
There are a number of predefined properties for information commonly associated with
windows. The atoms for these predefined properties can be found in < XII /Xa tom. h > ,
where the prefix XA _ is added to each atom name.

Xlib provides functions that you can use to perform operations on predefined properties.
This chapter discusses how to:

• Communicate with window managers

• Manipulate standard colormaps

9.1 Communicating with Window Managers

This section discusses a set of pr'operties and functions that are necessary for clients to
communicate effectively with window managers. Some of these properties have complex
structures. Because all the data in a single property on the server has to be of the same
format (8-bit, 16-bit, or 32-bit) and because the C structures representing property types
cannot be guaranteed to be uniform in the same way, Set and Get functions are provided
for properties with complex structures.

These functions define but do not enforce minimal policy among window managers.
Writers of window managers are urged to use the information in these properties rather
than invent their own properties and types. A window manager writer, however, can
define additional properties beyond this least common denominator.

In addition to Set and Get functions for individual properties, Xlib includes one function,
XSetStandardProperties, that sets all or portions of several properties.
Applications are encouraged to provide the window manager more information than is
possible with XSetStandardProperties. To do so, they should call the Set
functions for the additional or specific properties that they need.

Every application should specify the following information:

• Name of the application

• Name to be used in the icon

Predefined Property Functions 9 -1

• Command used to invoke the application

• Size and window manager hints

Xlib does not set defaults for the properties described in this section. Thus, the default
behavior is determined by the window manager and may be based on the presence or
absence of certain properties. All the properties are considered to be hints to a window
manager. When implementing window management policy, a window manager determines
what to do with this information and can ignore it.

The supplied properties are:

9 -2 Predefined Property Functions

Name 1YPe Format Description

WMNAME STRING 8 Name of the application.

WM ICON NAME STRING 8 Name to be used in icon. - -
WM NORMAL HINTS WM SIZE HINTS 32 Size hints for a window in its - -

normal state. The C type of this
property is XS izeHints.

WM ZOOM HINTS WM SIZE HINTS 32 Size hints for a zoomed window. - -
The C type of this property is
XSizeHints.

WM HINTS WM HINTS 32 Additional hints set by client for
use by the window manager. The
C type of this property is
XWMHints.

WM COMMAND STRING 8 The command and arguments,
separated by ASCII nulls, used to
invoke the application.

WM ICON SIZE WM ICON SIZE 32 The window manager may set this - - - -
property on the root window to
specify the icon sizes it supports.
The C type of this property is
XIconSize.

WM ClASS STRING 32 Set by application programs to
allow window and session
managers to obtain the
application's resources from the
resource database.

WM TRANSIENT FOR WINDOW 32 Set by application programs to - -
indicate to the window manager
that a transient top-level window,
such as a dialog box, is not really a
normal application window.

The atom names stored in < Xll/Xa tom. h > are named XA _PROPERTY_NAME.

Predefined Property Functions 9 -3

Xlib provides functions that you can use to set and get predefined properties. Note that
calling the Set function for a property with complex structure redefines all members in that
property, even though only some of those members may have a specified new value.
Simple properties for which Xlib does not provide a Set or Get function can be set by using
XChangeProperty, and their values can be retrieved using XGetWindowProperty.
The remainder of this section discusses how to:

• Set standard properties

• Set and get the name of a window

• Set and get the icon name of a window

• Set the command and arguments of the application

• Set and get window manager hints

• Set and get window size hints

• Set and get icon size hints

• Set and get the class of a window

• Set and get the transient property for a window

9.1.1 Setting Standard Properties

Use XSetStandardProperties to specify a minimum set of properties describing
the "quickie" application. This function sets all or portions of the WM NAME,
WM _ICON_NAME, WM _HINTS, WM _COMMAND, and WM _NORMAL_HINTS
properties.

XSetStandardProperties (display, w, window_name, icon_name, iconyixmap, argv, argc, hints)
Display *display;
Window w;
char *window name;
char *icon _mime;
Pixmap icon yixmap ;
char **argv;
int argc;
XSizeHints *hints;

display Specifies the connection to the X server.

w Specifies the window.

window name Specifies the window name (null-terminated string).

icon name Specifies the icon name (null-terminated string).

9 - 4 Predefined Property Functions

iconyixmap

argv

Specifies the bitmap that is to be used for the icon or None.

Specifies the application's argument list. (Typically, the main program
argv array.)

argc Specifies the number of arguments.

hints Specifies a pointer to the size hints for the window in its normal state.

Use XSetStandardProperties to allow simple applications to set the most essential
properties with a single call. Use XSetStandardProperties to give a window
manager some information about your program's preferences. However, don't use this
function with applications that need to communicate more information than the function
can handle.

XSetStandardProperties can generate BadAlloc and BadWindow errors.

9.1.2 Setting and Getting Window Names

Xlib provides functions that you can use to set and read the name of a window. These
functions set and read the WM _NAME property.

To assign a name to a window, use XStoreName.

XStoreName(display, w, window name)
Display *d~play; -
Window w;
char *window _name;

display Specifies the connection to the X server.

w Specifies the window.

window name Specifies window name (null-terminated string).

The XStoreName function assigns the name passed to window name to the specified
window. A window manager can display the window name in so~e prominent place, such
as the title bar, to allow users to identify windows easily. Some window managers may
display a window's name in the window's icon, although they are encouraged to use the
window's icon name if one is provided by the application.

XStoreName can generate BadAlloc and BadWindow errors.

To get the name of a window, use XFe tchName.

Status XFetchName (display, w, window name return)
Display *d~play; --
Window w;
char **window _name ..!eturn ;

Predefined Property Functions 9 -5

display

w

window name return - -

Specifies the connection to the X server.

Specifies the window.

Returns pointer to window name (null-terminated string).

The XFetchName function returns the name of the specified window. If it succeeds, it
returns nonzero; if no name is set for the window, it returns zero. If the WM _ NAME
property has not been set for this window, XFetchName sets window_name_return to
NULL. When finished with it, a client uses XFree to release the window name string.

XFetchName can generate a BadWindow error.

9.1.3 Setting and Getting Icon Names

Xlib provides functions that you can use to set and read the name to be displayed in a
window's icon. These functions set and read the WM _ICON _NAME property.

To set the name to be displayed in a window's icon, use XSetlconName.

XSetlconName(display, w, iconyame>
Display *display i
Window Wi

char *icon _name i

display Specifies the connection to the X server.

w Specifies the window.

icon name Specifies icon name (null-terminated string).

XSetlconName can generate BadAlloc and BadWindow errors.

To get the name a window wants displayed in its icon, use XGetlconName.

Status XGetIconName (display, w, icon yame ?turn)
Display *display i
Window Wi

char **icon _name ..!eturn i

display

w

icon name return - -

Specifies the connection to the X server.

Specifies the window.

Returns pointer to window's icon name (null-terminated string).

The XGetlconName function returns the name for display in the specified window's
icon. If it succeeds, it returns nonzero; if no icon name is set for the window, it returns
zero. If no name is assigned to the window, XGetlconName sets icon name return to
NULL. A client uses XFree to release the icon name string. --

9 - 6 Predefined Property Functions

XGetlconName can generate a BadWindow error.

9.1.4 Setting the Command

To set the command property, use XSetCommand. This function sets the
WM _ COMMAND property.

XSetConmand (display I W, argv I argc)
Display *display;
Window w;
char **argv;
int argc;

display Specifies the connection to the X server.

Specifies the window. w

argv

argc

Specifies the application's argument list.

Specifies the number of arguments.

XSetCommand sets the command and arguments used to invoke the application.

XSetCommand can generate BadAlloc and BadWindow errors.

9.1.5 Setting and Getting Window Manager Hints

The functions discussed in this section set and read the WM HINTS property and use the
flags and the XWMHints structure, as defined in the <Xl17Xutil. h> header file:

/* Window manager hints mask bits * /

define
define
define
define
define
define
define
define

InputHint
StateHint
IconPixmapHint
IconWindowHint
IconPositionHint
IconMaskHint
WindowGroupHint
AIIHints

(lL < < 0)
(lL < < 1)
(lL < < 2)
(lL < < 3)
(lL < < 4)
(lL < < 5)
(lL < < 6)
(InputHint I StateHint I IconPixmapHint I
Icon WindowHint I IconPositionHint I
IconMaskHint I WindowGroupHint)

Predefined Property Functions 9 -7

1* Values *1

typedef struct
long flags;
Bool input;

1* marks which fields in this structure are defined *1
1* does this application rely on the window manager to
get keyboard input? *1

int initial_state; 1* see below *1
Pixmap icon-pixmap 1* pixmap to be used as icon *1
Window icon_window 1* window to be used as icon *1
int icon_x, icon_y 1* initial position of icon *1
Pixmap icon_mask; 1* pixmap to be used as mask for icon-pixmap *1
XID window_group; 1* id of related window group *1
1* this structure may be extended in the future *1

} XWMHints;

The input member is used to communicate to the window manager the input focus model
used by the application. Applications that expect input but never explicitly set focus to any
of their subwindows (that is, use the push model of focus management), such as XIO-style
applications that use real-estate driven focus, should set this member to True. Similarly,
applications that set input focus to their subwindows only when it is given to their top-level
window by a window manager should also set this member to True. Applications that
manage their own input focus by explicitly setting focus to one of their subwindows
whenever they want keyboard input (that is, use the pull model of focus management)
should set this member to False. Applications that never expect any keyboard input also
should set this member to False.

Pull model window managers should make it possible for push model applications to get
input by setting input focus to the top-level windows of applications whose input member is
True. Push model window managers should make sure that pull model applications do
not break them by resetting input focus to PointerRoot when it is appropriate (for
example, whenever an application whose input member is False sets input focus to one
of its subwindows).

The definitions for the initial_state flag are:

#define
#define
define
define
define

DontCareState
NormalState
ZoomS tate
IconicState
InactiveState

o
1
2
3
4

/* don't know or care * /
/* most applications start this way * /
/* application wants to start zoomed * /
/* application wants to start as an icon * /
/* application believes it is seldom used;

some wm's may put it on inactive menu * /

The icon_mask specifies which pixels of the icon yixmap should be used as the icon. This
allows for nonrectangular icons. Both the icon pixmap and icon mask must be bitmaps.
The icon window lets an application provide a Window for use as an icon for window
manager; that support such use. The window group lets you specify that this window
belongs to a group of other windows. For exa'iitple, if a single application manipulates

9 - 8 Predefined Property Functions

multiple top-level windows, this allows you to provide enough information that a window
manager can iconify all of the windows rather than just the one window.

To set the window manager hints for a window, use XSetWMHints.

XSetWMHints (display, w, wmhints)
Display *display i
Window Wi
XWMHints *wmhints i

display Specifies the connection to the X server.

w Specifies the window.

wmhints Specifies a pointer to the window manager hints.

The XSetWMHints function sets the window manager hints that include icon
information and location, the initial state of the window, and whether the application relies
on the window manager to get keyboard input.

XSetWMHints can generate BadAlloc and BadWindow errors.

To read the window manager hints for a window, use XGetWMHints.

XWMHints *XGetWMHints(display, w)
Display *display i
Window Wi

display

w

Specifies the connection to the X server.

Specifies the window.

The XGetWMHints function reads the window manager hints and returns NULL if no
WM _HINTS property was set on the window or a pointer to a XWMHints structure if it
succeeds. When finished with the data, free the space used for it by calling XFree.

XGetWMHints can generate a BadWindow error.

9.1.6 Setting and Getting Window Sizing Hints

Xlib provides functions that you can use to set or get window sizing hints.

The functions discussed in this section use the flags and the XSizeHints structure, as
defined in the < XII/Xu til. h > header file:

Predefined Property Functions 9 -9

/* Size hints mask bits * /

define USPosition
define USSize
define PPosition
define PSize
define PMinSize
define PMaxSize
define PResizelnc
define PAspect
define PAIIHints

1* Values *1

(1L < < 0)
(1L < < 1)
(1L < < 2)
(1L < < 3)
(1L < < 4)
(1L < < 5)
(1L < < 6)
(1L < < 7)

/* user specified X, y * /
/* user specified width, height * /
/* program specified position * /
/* program specified size * /
/* program specified minimum size * /
/* program specified maximum size * /
/* program specified resize increments * /
/* program specified min and max aspect ratios * /
(PPosition I PSize I PMinSize I PMaxSize I
PResizelnc I P Aspect)

typedef struct {
long flags; 1* marks which fields in this structure are defined *1
int x, y;
int width, height;
int min_width, min_height;
int max_width, max_height;
int width inc, height inc;
struct { - -

int x; 1* numerator *1
int y; 1* denominator *1

} min_aspect, max_aspect;
} XSizeHints;

The X, y, width, and height members describe a desired position and size for the window.
To indicate that this information was specified by the user, set the USPos i tion and
USSize flags. To indicate that it was specified by the application without any user
involvement, set PPosi tion and PSize. This lets a window manager know that the
user specifically asked where the window should be placed or how the window should be
sized and that the window manager does not have to rely on the program's opinion.

The min width and min height members specify the minimum window size that still allows
the applkation to be useful. The max width and max height members specify the
maximum window size. The width in~ and height inc-members define an arithmetic
progression of sizes (minimum to ~aximum) into which the window prefers to be resized.
The min aspect and max aspect members are expressed as ratios of x and y, and they
allow an application to specify the range of aspect ratios it prefers.

The next two functions set and read the WM _NORMAL_HINTS property.

To set the size hints for a given window in its normal state, use XSetNormalHints.

9 -10 Predefined Property Functions

XSetNormalHints (display. w. hints)
Display *display;
Window w;
XSizeHints *hints;

display Specifies the connection to the X server.

Specifies the window. w

hints Specifies a pointer to the size hints for the window in its normal state.

The XSetNormalHints function sets the size hints structure for the specified window.
Applications use XSetNormalHints to inform the window manager of the size or
position desirable for that window. In addition, an application that wants to move or resize
itself should call XSetNormalHints and specify its new desired location and size as
well as making direct Xlib calls to move or resize. This is because window managers may
ignore redirected configure requests, but they pay attention to property changes.

To set size hints, an application not only must assign values to the appropriate members in
the hints structure but also must set the flags member of the structure to indicate which
information is present and where it came from. A call to XSetNormalHints is
meaningless, unless the flags member is set to indicate which members of the structure
have been assigned values.

XSetNormalHints can generate BadAlloc and BadWindow errors.

To return the size hints for a window in its normal state, use XGetNorrnalHints.

Status XGetNormalHints (display. w. hints Jeturn)
Display *display;
Window w;
XSizeHints *hints _return ;

display

w

hints return

Specifies the connection to the X server.

Specifies the window.

Returns the size hints for the window in its normal state.

The XGetNormalHints function returns the size hints for a window in its normal state.
It returns a nonzero status if it succeeds or zero if the application specified no normal size
hints for this window.

XGetNormalHints can generate a BadWindow error.

The next two functions set and read the WM _ZOOM _ HINTS property.

To set the zoom hints for a window, use XSetZoomHints.

Predefined Property Functions 9 -11

XSetZoomHints (display, w, zhints)
Display *display;
Window w;
XSizeHints *zhints;

display Specifies the connection to the X server.

Specifies the window. w

zhints Specifies a pointer to the zoom hints.

Many window managers think of windows in one of three states: iconic, normal, or
zoomed. The XSetZoomHints function provides the window manager with information
for the window in the zoomed state.

XSetZoomHints can generate BadAlloc and BadWindow errors.

To read the zoom hints for a window, use XGetZoomHints.

Status XGetZoomHints (display, w, zhints _return)
Display *display;
Window w;
XSizeHints *zhints ..!eturn;

display Specifies the connection to the X server.

Specifies the window. w

zhints return Returns the zoom hints.

The XGetZoomHints function returns the size hints for a window in its zoomed state. It
returns a nonzero status if it succeeds or zero if the application specified no zoom size
hints for this window.

XGetZoomHints can generate a BadWindow error.

To set the value of any property of type WM _SIZE_HINTS, use XS e tS iz eHin ts .

XSetSizeHints (display, w, hints, property)
Display *display;
Window w;
XSizeHints *hints;
Atom property;

display Specifies the connection to the X server.

Specifies the window. w

hints

property

Specifies a pointer to the size hints.

Specifies the property name.

9 -12 Predefined Property Functions

The XSetSizeHints function sets the XSizeHints structure for the named property
and the specified window. This is used by XSetNormalHints and XSetZoomHints,
and can be used to set the value of any property of type WM SIZE HINTS. Thus, it may
be useful if other properties of that type get defined. - -

XSetSizeHints can generate BadAlloc, BadAtom, and BadWindow errors.

To read the value of any property of type WM _SIZE _HINTS, use XGe tS izeHin ts .

Status XGetSizeHints(display, w, hints_return, property)
Display *display;
Window w;
XSizeHints *hints return;
Atom property; -

display

w

Specifies the connection to the X server.

Specifies the window.

hints return Returns the size hints.

property Specifies the property name.

XGetSizeHints returns the XSizeHints structure for the named property and the
specified window. This is used by XGetNormalHints and XGetZoomHints. It also
can be used to retrieve the value of any property of type WM _ SIZE _HINTS. Thus, it may
be useful if other properties of that type get defined. XGe t S i z eH in t s returns a
nonzero status if a size hint was defined or zero otherwise.

XGetSizeHints can generate BadAtom and BadWindow errors.

9.1.7 Setting and Getting Icon Size Hints

Applications can cooperate with window managers by providing icons in sizes supported by
a window manager. To communicate the supported icon sizes to the applications, a
window manager should set the icon size property on the root window of the screen. To
find out what icon sizes a window manager supports, applications should read the icon size
property from the root window of the screen.

The functions discussed in this section set or read the WM ICON SIZE property. In
addition, they use the XlconS ize structure, which is defi;'ed in :(Xll/Xutil. h > and
contains:

typedef struct {
int min_width, min_height
int max_width, max_height
int width_inc, height_inc

} XlconSize;

Predefined Property Functions 9 -13

The width inc and height inc members define an arithmetic progression of sizes
(minimum-to maximum) that represent the supported icon sizes.

To set the icon size hints for a window, use XSetlconSizes.

XSetIconSizes (display, w, size list, count)
Display *display; -
Window w;
XIconSize *size list;
int count; -

display Specifies the connection to the X server.

Specifies the window. w

size list Specifies a pointer to the size list.

count Specifies the number of items in the size list.

The XSetlconSizes function is used only by window managers to set the supported
icon sizes.

XSet:lconSizes can generate BadAlloc and BadWindow errors.

To return the icon sizes hints for a window, use XGetlconS izes.

Status XGetIconSizes(display, w, size)ist_return, countJeturn)
Display *display;
Window w;
XIconSize **size list return;
int *count Jeturn ;- -

display

w

size list return

count return

Specifies the connection to the X server.

Specifies the window.

Returns a pointer to the size list.

Returns the number of items in the size list.

The XGetlconSizes function returns zero if a window manager has not set icon sizes
or nonzero otherwise. XGetlconSizes should be called by an application that wants to
find out what icon sizes would be most appreciated by the window manager under which
the application is running. The application should then use XSetWMHints to supply the
window manager with an icon pixinap or window in one of the supported sizes. To free the
data allocated in size _list_return, use XFree.

XGetlconS izes can generate a BadWindow error.

9 -14 Predefined Property Functions

9.1.8 Setting and Getting the Class of a Window

Xlib provides functions to set and get the class of a window. These functions set and read
the WM CLASS property. In addition, they use the XClassHint structure, which is
defined iiI <Xll/Xutil. h > and contains:

typedef struct {
char *res_name;
char *res_class;

} XClassHint;

The res name member contains the application name, and the res class member contains
the application class. Note that the name set in this property may differ from the name set
as WM NAME. That is, WM NAME specifies what should be displayed in the title bar
and, the-refore, can contain te~poral information (for example, the name of a file currently
in an editor's buffer). On the other hand, the name specified as part ofWM CLASS is the
formal name of the application that should be used when retrieving the appliCation's
resources from the resource database.

To set the class of a window, use XSetClassHint.

XSetClassHint (display, w, class hints)
Display *display; -
Window w;
XClassHint *class _hints ;

display

w

Specifies the connection to the X server.

Specifies the window.

class hints Specifies a pointer to a XClassHint structure that is to be used.

The XSetClassHint function sets the class hint for the specified window.

XSetClassHint can generate BadAlloc and BadWindow errors.

To get the class of a window, use XGetClassHint.

Status XGetClassHint (display, w, class hints return)
Display *display; - -
Window w;
XClassHint *class _hints_return ;

display

w

Specifies the connection to the X server.

Specifies the window.

class hints return Returns the XClassHint structure.

Predefined Property Functions 9 -15

The XGetClassHint function returns the class of the specified window. To free
res_name and res_class when finished with the strings, use XFree.

XGetClassHint can generate a BadWindow error.

9.1.9 Setting and Getting the Transient Property

An application may want to indicate to the window manager that a transient, top-level
window (for example, a dialog box) is operating on behalf of (or is transient for) another
window. To do so, the application would set the WM TRANSIENT FOR property of the
dialog box to be the window ID of its main window. Some window ~anagers use this
information to unmap an application's dialog boxes (for example, when the main
application window gets iconified).

The functions discussed in this section set and read the WM TRANSIENT FOR - -
property.

To set the WM _TRANSIENT _FOR property for a window, use
XSetTransientForHint.

XSet Trans i entForHint (display, w, prop _window)
Display *display;
Window w;
Window prop_window;

display Specifies the connection to the X server.

w Specifies the window.

prop _window Specifies the window that the WM _TRANSIENT_FOR property is to be
set to.

The XSetTransientForHint function sets the WM TRANSIENT FOR property of
the specified window to the specified prop_window. - -

XSetTransientForHint can generate BadAlloc and BadWindow errors.

To get the WM _TRANSIENT _FOR value for a window, use
XGetTransientForHint.

Status XGetTransientForHint (display, w, prop_window Jetum)
Display *display;
Window Wi

Window *prop _window Jetum ;

display

w

Specifies the connection to the X server.

Specifies the window.

9 - 16 Predefined Property Functions

prop _window Jetum Returns the WM TRANSIENT FOR property of the specified
window. - -

The XGetTransientForHint function returns the WM TRANSIENT FOR property
for the specified window. --

XGetTransientForHint can generate a BadWindow error.

9.2 Manipulating Standard Colormaps

Applications with color palettes, smooth-shaded drawings, or digitized images demand
large numbers of colors. In addition, these applications often require an efficient mapping
from color triples to pixel values that display the appropriate colors.

As an example, consider a 3D display program that wants to draw a smoothly shaded
sphere. At each pixel in the image of the sphere, the program computes the intensity and
color of light reflected back to the viewer. The result of each computation is a triple of
RGB coefficients in the range 0.0 to 1.0. To draw the sphere, the program needs a
colormap that provides a large range of uniformly distributed colors. The colormap should
be arranged so that the program can convert its RGB triples into pixel values very quickly,
because drawing the entire sphere requires many such conversions.

On many current workstations, the display is limited to 256 or fewer colors. Applications
must allocate colors carefully, not only to make sure they cover the entire range they need
but also to make use of as many of the available colors as possible. On a typical X display,
many applications are active at once. Most workstations have only one hardware look-up
table for colors, so only one application colormap can be installed at a given time. The
application using the installed colormap is displayed correctly, and the other applications
"go technicolor" and are displayed with false colors.

As another example, consider a user who is running an image processing program to
display earth-resources data. The image processing program needs a colormap set up with
8 reds, 8 greens, and 4 blues (a total of 256 colors). Because some colors are already in
use in the default colormap, the image processing program allocates and installs a new
colormap.

The user decides to alter some of the colors in the image. He invokes a color palette
program to mix and choose colors. The color palette program also needs a colormap with
8 reds, 8 greens, and 4 blues, so just as the image-processing program, it must allocate and
install a new colormap.

Predefined Property Functions 9 -17

Because only one colormap can be installed at a time, the color palette may be displayed
incorrectly whenever the image-processing program is active. Conversely, whenever the
palette program is active, the image may be displayed incorrectly. The user can never
match or compare colors in the palette and image. Contention for colormap resources can
be reduced if applications with similar color needs share colormaps.

As another example, the image processing program and the color palette program could
share the same colormap if there existed a convention that described how the colormap
was set up. Whenever either program was active, both would be displayed correctly.

The standard colormap properties define a set of commonly used colormaps. Applications
that share these colormaps and conventions display true colors more often and provide a
better interface to the user.

9.2.1 Standard Colormaps

Standard colormaps allow applications to share commonly used color resources. This
allows many applications to be displayed in true colors simultaneously, even when each
application needs an entirely filled colormap.

Several standard colormaps are described in this section. Usually, a window manager
creates these colormaps. Applications should use the standard colormaps if they already
exist. If the standard colormaps do not exist, you should create them by opening a new
connection, creating the properties, and setting the close-down mode of the connection to
RetainPermanent.

The xs tandardCo lormap structure contains:

typedef s,truct {
Colormap colormap;
unsigned long red_max;
unsigned long red_mult;
unsigned long green_max;
unsigned long green_mult;
unsigned long blue_max;
unsigned long blue_mult;
unsigned long base-pixel;

} XStandardColormap;

The colormap member is the colormap created by the XCreateColormap function.
The red max, green max, and blue max members give the maximum red, green, and blue
values, respectively. Each color coefficient ranges from zero to its max, inclusive. For
example, a common colormap allocation is 3/3/2 (3 planes for red, 3 planes for green, and
2 planes for blue). This colormap would have red_max = 7, green_max = 7, and blue_max
= 3. An alternate allocation that uses only 216 colors is red max = 5, green max = 5, and
blue max = 5. --

9 -18 Predefined Property Functions

The red mult, green mult, and blue mult members give the scale factors used to compose
a full pii"el value. (See the discussion-of the base yixel members for further information.)
For a 3/3/2 allocation, red mult might be 32, green mult might be 4, and blue mult might
be 1. For a 6-colors-each allocation, red mult might-be 36, green mult might be 6, and
blue mult might be 1. - -

The base yixel member gives the base pixel value used to compose a full pixel value.
Usually, the base pixel is obtained from a call to the XAllocColorPlanes function.
Given integer red~ green, and blue coefficients in their appropriate ranges, one then can
compute a corresponding pixel value by using the following expression:

r * red_mult + g * green_mult + b * blue_mult + base-pixel

For GrayScale colormaps, only the colormap, red_max, red _ mult, and base yixel
members are defined. The other members are ignored.

To compute a GrayScale pixel value, use the following expression:

gray * red_mult + base-pixel

The properties containing the XStandardColormap information have the type
RGB COLOR MAP. - -

9.2.2 Standard Colormap Properties and Atoms

Several standard colormaps are available. Each standard colormap is defined by a
property, and each such property is identified by an atom. The following list names the
atoms and describes the colormap associated with each one. The < Xll /Xa tom. h >
header file contains the definitions for each of the following atoms, which are prefixed
withXA .

RGB _DEFAULT_MAP This atom names a property. The value of the property is an
XStandardColormap.

The property defines an RGB subset of the default colormap of the
screen. Some applications only need a few RGB colors and may be
able to allocate them from the system default colormap. This is the
ideal situation because the fewer colormaps that are active in the
system the more applications are displayed with correct colors at all
times.

Predefined Property Functions 9 -19

A typical allocation for the RGB DEFAULT MAP on 8-plane
displays is 6 reds, 6 greens, and 6 blues. This gives 216 uniformly
distributed colors (6 intensities of 36 different hues) and still leaves
40 elements of a 256-element colormap available for special-purpose
colors for text, borders, and so on.

RGB _BEST _ MAP This atom names a property. The value of the property is an
XStandardColormap.

RGB RED MAP
- -

The property defines the best RGB colormap available on the
screen. (Of course, this is a subjective evaluation.) Manyimage
processing and 3D applications need to use all available colormap
cells and to distribute as many perceptually distinct colors as possible
over those cells. This implies that there may be more green values
available than red, as well as more green or red than blue.

On an 8-plane PseudoColor display, RGB BEST MAP should
be a 3/3/2 allocation. On a 24-plane DirectColor display,
RGB BEST MAP should be an 8/8/8 allocation. On other displays,
the RGB BEST MAP allocation is purely up to the implementor of
the display. -

RGB GREEN MAP - -
RGB _ BLUE_MAP These atoms name properties. The value of each property is an

XStandardColormap.

The properties define all-red, all-green, and all-blue colormaps,
respectively. These maps are used by applications that want to make
color-separated images. For example, a user might generate a full­
color image on an 8-plane display both by rendering an image three
times (once with high color resolution in red, once with green, and
once with blue) and by multiply-exposing a single frame in a camera.

RGB _GRAY_MAP This atom names a property. The value of the property is an
XStandardColormap.

The property describes the best GrayScale colormap available on
the screen. As previously mentioned, only the colormap, red_max,
red_mult, and baseyixel members of the XStandardColormap
structure are used for GrayScale colormaps.

9 -20 Predefined Property Functions

9.2.3 Getting and Setting an XStandardColormap Structure

To get the XStandardColormap structure associated with one of the described atoms,
use XGetStandardColormap.

Status XGetStandardColormap(display, w, colormap Jeturn, property)
Display *display;
Window w;
XStandardColormap *colormap return;
Atom property; 1* RGB_BEST_MAP, etc. *1

display Specifies the connection to the X server.

Specifies the window. w

colonnap ..!etum

property

Returns the colormap associated with the specified atom.

Specifies the property name.

The XGetStandardColormap function returns the colormap definition associated
with the atom supplied as the property argument. For example, to fetch the standard
GrayScale colormap for a display, you use XGetStandardColormap with the
following syntax:

XGetStandardColormap(dpy, DefaultRootWindow(dpy), &cmap, XA_RGB_GRAY_MAP);

Once you have fetched a standard colormap, you can use it to convert RGB values into
pixel values. For example, given an XStandardColormap structure and floating-point
RGB coefficients in the range 0.0 to 1.0, you can compose pixel values with the following C
expression:

pixel = base-pixel
+ «unsigned long) (0.5 + r * red_max» * red_mult
+ «unsigned long) (0.5 + g * green_max» * green_mult
+ «unsigned long) (0.5 + b * blue_max» * blue_multi

The use of addition rather than logical OR for composing pixel values permits allocations
where the RGB value is not aligned to bit boundaries.

XGetStandardColormap can generate BadAtom and BadWindow errors.

To set a standard colormap, use XSetStandardColormap.

XSetStandardColormap (display, w, colormap, property)
Display *display;
Window w;
XStandardColormap *colormap;
Atom property; 1* RGB_BEST_MAP, etc. *1

Predefined Property Functions 9 -21

display Specifies the connection to the X server.

w Specifies the window.

colonnap Specifies the colormap.

property Specifies the property name.

The XSetStandardColormap function usually is only used by window managers. To
create a standard colormap, follow this procedure:

1. Open a new connection to the same server.

2. Grab the server.

3. See if the property is on the property list of the root window for the screen.

4. If the desired property is not present:

• Create a colormap (not required for RGB _DEFAULT_MAP)

• Determine the color capabilities of the display.

• Call XAllocColorPlanes or XAllocColorCells to allocate cells in
the colormap.

• Call XStoreColors to store appropriate color values in the colormap.

• Fill in the descriptive members in the XS tandardCo lormap structure.

• Attach the property to the root window.

• Use XSetCloseDownMode to make the resource permanent.

5. Ungrab the server.

XSetStandardColormap can generate BadAlloc, BadAtom, and BadWindow
errors.

9 -22 Predefined Property Functions

Application Utility Functions 10
Once you have initialized the X system, you can use the Xlib utility functions to:

• Handle keyboard events

• Obtain the X environment defaults

• Parse window geometry strings

• Parse hardware colors strings

• Generate regions

• Manipulate regions

• Use cut and paste buffers

• Determine the appropriate visual

• Manipulate images

• Manipulate bitmaps

• Use the resource manager

• Use the context manager
As a group, the functions discussed in this chapter provide the functionality that is
frequently needed and that spans toolkits. Many of these functions do not generate actual
protocol requests to the server.

10.1 Keyboard Utility Functions

This section discusses keyboard event functions and KeySym classification macros.

Application Utility Functions 10-1

10.1.1 Keyboard Event Functions

The X server does not predefine the keyboard to be ASCII characters. It is often useful to
know that the a key was just pressed or that it was just released. When a key is pressed or
released, the X server sends keyboard events to client programs. The structures associated
with keyboard events contain a keycode member that assigns a number to each physical
key on the keyboard. For a discussion of keyboard event processing, see section 8.4.1. For
information on how to manipulate the keyboard encoding, see section 7.9.

Because KeyCodes are completely arbitrary and may differ from server to server, client
programs wanting to deal with ASCII text, for example, must explicitly convert the
KeyCode value into ASCII. Therefore, Xlib provides functions to help you customize the
keyboard layout. Keyboards differ dramatically, so writing code that presumes the
existence of a particular key on the main keyboard creates portability problems.

Keyboard events are usually sent to the deepest viewable window underneath the pointer's
position that is interested in that type of event. It is also possible to assign the keyboard
input focus to a specific window. When the input focus is attached to a window, keyboard
events go to the client that has selected input on that window rather than the window
under the pointer.

The functions in this section handle the shift modifier computations suggested by the
protocol. The KeySym table is internally modified to define the lowercase transformation
of a-z by adding the lowercase KeySym to the first element of the KeySym list (used
internally) defined for the KeyCode, when the list is of length 1. If you want the
untransformed KeySyms defined for a key, you should only use the functions described in
section 7.9.

To look up the KeySyms, use XLookupKeysym.

KeySym XLookupKeysym(key event, index)
XKeyEvent *key event;
int index; -

Specifies the KeyPress or KeyRelease event.

Specifies the index into the KeySyms list for the event's KeyCode.

The XLookupKeysym function uses a given keyboard event and the index you specified
to return the KeySym from the list that corresponds to the KeyCode member in the
XKeyPressedEvent or XKeyReleasedEvent structure. If no KeySym is defined
for the KeyCode of the event, XLookupKeysym returns NoSymbol.

To refresh the stored modifier and keymap information, use
XRefreshKeyhoardMapping.

10 - 2 Application Utility Functions

XRefreshKeyboardMapping (event map)
XMappingEvent *event _ map ;

event_map Specifies the mapping event that is to be used.

The XRefreshKeyboardMapping function refreshes the stored modifier and keymap
information. You usually call this function when a MappingNotify event with a
request member of MappingKeyboard or MappingModifier occurs. The result is
to update Xlib's knowledge of the keyboard.

To map a key event to an ISO Latin-l string, use XLookupString.

int XLookupString (event strnet, buffer Jeturn, bytes_buffer, keysym Jeturn, status}n _out)
XKeyEvent *event strnet;
char *buffer return;
int bytes_bu7Jer;
KeySym *keysym return;
XComposeStatus *status _in _out;

event struct

buffer Jetum

bytes buffer

keysym _return

status in out

Specifies the key event structure to be used. You can pass
XKeyPressedEvent or XKeyReleasedEvent.

Returns the translated characters.

Specifies the length of the buffer. No more than bytes_buffer of
translation are returned.

Returns the KeySym computed from the event if this argument is not
NULL.

Specifies or returns the XComposeStatus structure or NULL.

The XLookupString function is a convenience routine that maps a key event to an ISO
Latin-l string, using the modifier bits in the key event to deal with shift, lock, and control.
It returns the translated string into the user's buffer. It also detects any rebound KeySyms
(see XRebindKeysym) and returns the specified bytes. XLookupString returns the
length of the string stored in the tag buffer. If the lock modifier has the caps lock KeySym
associated with it, XLookupString interprets the lock modifier to perform caps lock
processing.

If present (non-NULL), the XComposeStatus structure records the state, which is
private to Xlib, that needs preservation across calls to XLookupString to implement
compose processing.

To rebind the meaning of a KeySym for a client, use XRebindKeysym.

Application Utility Functions 10-3

XRebindKeysym (display, keysym, list, mod_count, string, bytes _string)
Di splay *display;
KeySym keysym;
KeySym list [] ;
int mod count;
unsigned char *string;
int bytes_string;

display

keysym

list

mod count

string

bytes _string

Specifies the connection to the X server.

Specifies the KeySym that is to be rebound.

Specifies the KeySyms to be used as modifiers.

Specifies the number of modifiers in the modifier list.

Specifies a pointer to the string that is copied and will be returned by
XLookupString.

Specifies the length of the string.

The XRebindKeysyrn function can be used to rebind the meaning of a KeySym for the
client. It does not redefine any key in the X server but merely provides an easy way for
long strings to be attached to keys. XLookupString returns this string when the
appropriate set of modifier keys are pressed and when the KeySym would have been used
for the translation. Note that you can rebind a KeySym that may not exist.

To convert the name of the KeySym to the KeySym code, use XStringToKeysym.

KeySym XStringToKeysym(string)
char *string;

string Specifies the name of the KeySym that is to be converted.

Valid KeySym names are listed in < Xll/keysyrndef. h > by removing the XK _ prefix
from each name. If the specified string does not match a valid KeySym,
XStringToKeysyrn returns NoSyrnbo1.

To convert a KeySym code to the name of the KeySym, use XKeysymToString.

char *XKeysymToString (keysym)
KeySym keysym;

keysym Specifies the KeySym that is to be converted.

The returned string is in a static area and must not be modified. If the specified KeySym is
not defined, XKeysyrnToString returns a NULL.

To convert a key code to a defined KeySym, use XKeycodeToKeysym.

10 - 4 Application Utility Functions

KeySym XKeycodeToKeysym (display, keycode, index)
Display *display;
KeyCode keycode;
int index;

display

keycode

Specifies the connection to the X server.

Specifies the KeyCode.

index Specifies the element of KeyCode vector.

The XKeycodeToKeysym function uses internal Xlib tables and returns the KeySym
defined for the specified KeyCode and the element of the KeyCode vector. If no symbol is
defined, XKeycodeToKeysym returns NoSymbol.

To convert a KeySym to the appropriate KeyCode, use XKeysymToKeycode.

KeyCode XKeysymToKeycode (display, keysym)
Display *display;
KeySym keysym;

display

keysym

Specifies the connection to the X server.

Specifies the KeySym that is to be searched for.

If the specified KeySym is not defined for any KeyCode, XKeysymToKeycode returns
zero.

10.1.2 Keysym Classification Macros

You may want to test if a KeySym is, for example, on the keypad or on one of the function
keys. You can use the KeySym macros to perform the following tests.

IsCursorKey (keysym)

Returns True if the specified KeySym is a cursor key.

IsFunctionKey (keysym)

Returns True if the specified KeySym is a function key.

IsKeypadKey (keysym)

Returns True if the specified KeySym is a keypad key.

IsMiscFunctionKey (keysym)

Returns True if the specified KeySym is a miscellaneous function key.

Application Utility Functions 10 - 5

I sModifierKey (keysym)

Returns True if the specified KeySym is a modifier key.

Is PFKey (keysym)

Returns True if the specified KeySym is a PF key.

10.2 Obtaining the X Environment Defaults

A program often needs a variety of options in the X environment (for example, fonts,
colors, mouse, background, text, and cursor). Specifying these options on the command
line is inefficient and unmanageable because individual users have a variety of tastes with
regard to window appearance. XGetDefaul t makes it easy to find out the fonts, colors,
and other environment defaults favored by a particular user. Defaults are usually loaded
into the RESOURCE MANAGER property on the root window at login. If no such
property exists, a resource file in the user's home directory is loaded. On a UNIX-based
system, this file is $HOMEI . Xde f aul ts. After loading these defaults, XGe tDe f aul t
merges additional defaults specified by the XENVIRONMENT environment variable. If
XENVIRONMENT is defined, it contains a full path name for the additional resource file.
If XENVIRONMENT is not defined, XGetDefaul t looks for $HOMEI . Xdefaul ts­
name, where name specifies the name of the machine on which
the application is running. For details of the format of these files, see section 10.11.

The XGe tDe f aul t function provides a simple interface for clients not wishing to use the
X toolkit or the more elaborate interfaces provided by the resource manager discussed in
section 10.11.

char *XGetDefault (display, program, option)
Display *display;
char *program;
char *option;

display

program

Specifies the connection to the X server.

Specifies the program name for the Xlib defaults (usuallyargv[O] of the main
program).

option Specifies the option name.

The XGetDefaul t function returns the value NULL if the option name specified in this
argument does not exist for the program. The strings returned by XGetDefault are
owned by Xlib and should not be modified or freed by the client.

To obtain a pointer to the resource manager string of a display, use
XResourceManagerString.

10 -6 Application Utility Functions

char *XResourceManagerString(d~play)
Display *d~play;

display Specifies the connection to the X server.

The XResourceManagerString returns the RESOURCE MANAGER property
from the server's root window of screen zero, which was return~d when the connection was
opened using XOpenDisplay.

10.3 Parsing the Window Geometry

To parse standard window geometry strings, use XParseGeornetry.

int XParseGeometry (parsestring, x return, y return, width return, height Jeturn)
char *parsestring; - - -
int *x return, *y return;
int *wldth Jeturn -: *height _return ;

parsestring Specifies the string you want to parse.

X return
y..!eturn Return the x and y offsets.

width return
height_return Return the width and height determined.

By convention, X applications use a standard string to indicate window size and placement.
XParseGeornetry makes it easier to conform to this standard because it allows you to
parse the standard window geometry. Specifically, this function lets you parse strings of
the form:

[=] [<width>x<height>] [{+- } <xoffset> { +- } <yoffset>]

The items in this form map into the arguments associated with this function. (Items
enclosed in < > are integers, items in [] are optional, and items enclosed in { } indicate
"choose one of'. Note that the brackets should not appear in the actual string.)

The XP ar s eGe orne try function returns a bitmask that indicates which of the four
values (width, height, xoffset, and yoffset) were actually found in the string and whether the
x and y values are negative. By convention, -0 is not equal to + 0, because the user needs to
be able to say "position the window relative to the right or bottom edge." For each value
found, the corresponding argument is updated. For each value not found, the argument is
left unchanged. The bits are represented by XVal ue, YV al ue, Wi d th Val ue,

Application Utility Functions 10·7

He ightValue , XNegative, or YNegative and are defined in <Xll/Xutil.h>.
They will be set whenever one of the values is defined or one of the signs is set.

If the function returns either the XValue or YValue flag, you should place the window
at the requested position.

To parse window geometry given a user-specified position and a default position, use
XGeometry.

int XGeometry (display, screen, position, default "position, bwidth, [width, [height, xadder,
yadder, x return, y return, width return, height return)

Display *display; - - - -
int screen;
char *position, *default "position;
unsigned int bwidth;
unsigned int [width, [height;
int xadder, yadder;
int *x return, *y return;
int *Wldth ..!'eturn ~ *height ..!'eturn ;

display

screen

position
default yosition

bwidth

/height
fwidth

xadder
yadder

x return
YJeturn

width return

Specifies the connection to the X server.

Specifies the screen.

Specify the geometry specifications.

Specifies the border width.

Specify the font height and width in pixels (increment size).

Specify additional interior padding needed in the window.

Return the x and y offsets.

height Jeturn Return the width and height determined.

You pass in the border width (bwidth), size of the increments fwidth and fheight (typically
font width and height), and any additional interior space (xadder and yadder) to make it
easy to compute the resulting size. The XGeometry function returns the position the
window should be placed given a position and a default position. XGeometry determines
the placement of a window using a geometry specification as specified by
XParseGeometry and the additional information about the window. Given a fully
qualified default geometry specification and an incomplete geometry specification,

10 - 8 Application Utility Functions

XParseGeometry returns a bitmask value as defined above in the XParseGeometry
call, by using the position argument.

The returned width and height will be the width and height specified by defaultJ>osition as
overridden by any user-specified position. They are not affected by fwidth, iheight, xadder,
or yadder. The x and y coordinates are computed by using the border width, the screen
width and height, padding as specified by xadder and yadder, and the fheight and fwidth
times the width and height from the geometry specifications.

10.4 Parsing the Color Specifications

To parse color values, use XParseColor.

Status XParseColor (display, colonnap, spec, exact_deLreturn)
Display *display;
Colormap colonnap;
char *spec;
XColor *exact _ def_ return ;

display

c%nnap

spec

Specifies the connection to the X server.

Specifies the colormap.

Specifies the color name string; case is ignored.

Returns the exact color value for later use and sets the DoRed,
DoGreen, and DoBlue flags.

The XParseColor function provides a simple way to create a standard user interface to
color. It takes a string specification of a color, typically from a command line or
XGetDefaul t option, and returns the corresponding red, green, and blue values that are
suitable for a subsequent call to XAllocColor or XStoreColor. The color can be
specified either as a color name (as in XAllocNamedColor) or as an initial sharp sign
character followed by a numeric specification, in one of the following formats:

#RGB
#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB

(4 bits each)
(8 bits each)
(12 bits each)
(16 bits each)

The R, G, and B represent single hexadecimal digits (both uppercase and lowercase).
When fewer than 16 bits each are specified, they represent the most -significant bits of the
value. For example, #3a7 is the same as #3000aOOO7000. Th~ colormap is used only to
determine which screen to look up the color on. For example, you can use the screen's
default colormap.

Application Utility Functions 10 - 9

If the initial character is a sharp sign but the string otherwise fails to fit the above formats
or if the initial character is not a sharp sign and the named color does not exist in the
server's database, XParseColor fails and returns zero.

XParseColor can generate a BadColor error.

10.5 Generating Regions
Regions are arbitrary sets of pixel locations. Xlib provides functions for manipulating
regions. The opaque type Region is defined in <Xll/Xutil. h >.

To generate a region from a polygon, use XPolygonRegion.

Region XPolygonRegion (pointf, n, fill_rule)
XPoint pointf[] ;

points

n

int n;
int fillJUle;

Specifies an array of points.

Specifies the number of points in the polygon.

Specifies the fill-rule you want to set for the specified GC. You can pass
EvenOddRule or WindingRule.

The XPolygonRegion function returns a region for the polygon defined by the points
array. For an explanation of fill_rule, see XCreateGC.

To generate the smallest rectangle enclosing the region, use XClipBox.

XClipBox (r, rect return)
Region r;-
XRectangle *rect.!eturn;

r Specifies the region.

reet return Returns the smallest enclosing rectangle.

The XClipBox function returns the smallest rectangle enclosing the specified region.

10.6 Manipulating Regions
Xlib provides functions that you can use to manipuiate regions. This section discusses how
to:

• Create, copy, or destroy regions

10 -10 Application Utility Functions

• Move or shrink regions

• Compute with regions

• Determine if regions are empty or equal

• Locate a point or rectangle in a region

10.6.1 Creating, Copying, or Destroying Regions

To create a new empty region, use XCreateRegion.

Region XCreateRegion()

To set the clip-mask of a GC to a region, use XSetRegion.

XSetRegion (display, gc, r)
Display *display;
GC gc;
Region r;

display

gc

r

Specifies the connection to the X server.

Specifies the GC.

Specifies the region.

The XSetRegion function sets the clip-mask in the GC to the specified region. Once it
is set in the GC, the region can be destroyed.

To deallocate the storage associated with a specified region, use XDes troyRegion.

XDestroyRegion(r)
Region r;

r Specifies the region.

10.6.2 Moving or Shrinking Regions

To move a region by a specified amount, use XOffsetRegion.

XOffsetRegion(r, dx, ay)
Region r;
int dx, ay;

r Specifies the region.

Application Utility Functions 10 -11

dx
dy Specify the x and y coordinates, which define the amount you want to move the

specified region.

To reduce a region by a specified amount, use XShrinkRegion.

XShrinkRegion(r, dX, dY)
Region r;
int dX, dY;

r Specifies the region.

dx
dy Specify the x and y coordinates, which define the amount you want to shrink the

specified region.

Positive values shrink the size of the region, and negative values expand the region.

10.6.3 Computing with Regions

To compute the intersection of two regions, use Xlntersec tRegion.

XlntersectRegion (sra, srb, dr return)
Region sra, srb, dr .letum;

sra
srb

dr return

Specify the two regions with which you want to perform the computation.

Returns the result of the computation.

To compute the union of two regions, use XUnionRegion.

XUni onReg ion (sra, srb, dr return)
Region sra, srb, dr "Jetum ;

sra
srb

dr return

Specify the two regions with which you want to perform the computation.

Returns the result of the computation.

To create a union of a source region and a rectangle, use XUnionRectWithRegion.

XUnionRectWi thRegion (rectangle, src .legion, dest.legion .letum)
XRectangle *reaangre;
Region srcJegion;
Region dest _region_return ;

rectangle Specifies the rectangle.

10 -12 Application Utility Functions

src...!egion Specifies the source region to be used.

dest -legion ...!eturn Returns the destination region.

The XUnionRectWithRegion function updates the destination region from a union of
the specified rectangle and the specified source region.

To subtract two regions, use XSubtractRegion.

XSubtractRegion (sra, srb, dr return)
Region sra, srb, dr ..!etUrn ;

sra
srb

dr return

Specify the two regions with which you want to perform the computation.

Returns the result of the computation.

The XSubtractRegion function subtracts srb from sra and stores the results in
dr return.

To calculate the difference between the union and intersection of two regions, use
XXorRegion.

XXorRegion (sra, srb, dr return)
Region sra, srb, lIr ..!eturn ;

sra
srb

dr return

Specify the two regions with which you want to perform the computation.

Returns the result of the computation.

10.6.4 Determining if Regions Are Empty or Equal

To determine if the specified region is empty, use XEmptyRegion.

Bool XEmptyRegion(r)
Region r;

r Specifies the region.

The XEmptyRegion function returns True if the region is empty.

To determine if two regions have the same offset, size, and shape, use XEqualRegion.

Bool XEqualRegion (r1, r2)
Region r1, r2;

Application Utility Functions 10 -13

r1
r2 Specify the two regions.

The XEqualRegion function returns True if the two regions have the same offset, size,
and shape.

10.6.5 Locating a Point or a Rectangle in a Region

To determine if a specified point resides in a specified region, use XPointlnRegion.

Baal XPointlnRegion(r, x, y)
Region r;
int x, y;

r Specifies the region.

x
y Specify the x and y coordinates, which define the point.

The XPointlnRegion function returns True if the point (x, y) is contained in the
region r.

To determine if a specified rectangle is inside a region, use XRectlnRegion.

int XRectlnRegion (r, x, y, width, height)
Region r;
int x, y;
unsigned int width, height;

r Specifies the region.

x
y

width
height

Specify the x and y coordinates, which define the coordinates of the upper-left
corner of the rectangle.

Specify the width and height, which define the rectangle .

The XRectlnRegion function returns Rectangleln if the rectangle is entirely in the
specified region, RectangleOut if the rectangle is entirely out of the specified region,
and Rec tanglePart if the rectangle is partially in the specified region.

10 -14 Application Utility Functions

10.7 Using the Cut and Paste Buffers

Xlib provides functions that you can use to cut and paste buffers for programs using this
form of communications. Selections are a more useful mechanism for interchanging data
between clients because typed information can be exchanged. X provides property names
for properties in which bytes can be stored for implementing cut and paste between
windows (implemented by use of properties on the first root window of the display). It is
up to applications to agree on how to represent the data in the buffers. The data is most
often ISO Latin-l text. The atoms for eight such buffer names are provided and can be
accessed-as a ring or as explicit buffers (numbered 0 through 7). New applications are
encouraged to share data by using selections (see section 4.4).

To store data in cut buffer 0, use XStoreBytes.

XStoreBytes (display, bytes, nbytes)
Display *display;
char *bytes;
int nbytes;

Specifies the connection to the X server. display

bytes

nbytes

Specifies the bytes, which are not necessarily ASCII or null-terminated.

Specifies the number of bytes to be stored.

Note that the cut buffer's contents need not be text, so zero bytes are not special. The cut
buffer's contents can be retrieved later by any client calling XFetchBytes.

XStoreBytes can generate a BadAlloc error.

To store data in a specified cut buffer, use XStoreBuffer.

XStoreBuffer (display, bytes, nbytes, buffer)
Display *display;
char *bytes;
int nbytes;
int buffer;

Specifies the connection to the X server. display

bytes

nbytes

buffer

Specifies the bytes, which are not necessarily ASCII or null-terminated.

Specifies the number of bytes to be stored.

Specifies the buffer in which you want to store the bytes.

If the property for the buffer has never been created, a BadAtom error results.

Application Utility Functions 10 -IS

XStoreBuffer can generate BadAlloc and BadAtorn errors.

To return data from cut buffer 0, use XFetchBytes.

char *XFetchBytes (display, nbytes ..!etum)
Display *display;
int *nbytes ..!etum ;

display

nbytes ..!etum

Specifies the connection to the X server.

Returns the number of bytes in the buffer.

The XFetchBytes function returns the number of bytes in the nbytes return argument,
if the buffer contains data. Otherwise, the function returns NULL and sets nbytes to o.
The appropriate amount of storage is allocated and the pointer returned. The client must
free this storage when finished with it by calling XFree. Note that the cut buffer does not
necessarily contain text, so it may contain embedded zero bytes and may not terminate
with a null byte.

To return data from a specified cut buffer, use XFetchBuffer.

char *XFetchBuffer (display, nbytes ..!etum, buffer)
Display *display;
int *nbytes return;
int buffer; -

display

nbytes ..!etum

buffer

Specifies the connection to the X server.

Returns the number of bytes in the buffer.

Specifies the buffer from which you want the stored data returned.

The XFetchBuffer function returns zero to the nbytes return argument if there is no
data in the buffer. -

XFetchBuffer can generate a BadValue error.

To rotate the cut buffers, use XRotateBuffers.

XRotateBuffers(display, rotme)
Display "'display;
int rotme;

display Specifies the connection to the X server.

rotate Specifies how much to rotate the cut buffers.

10 -16 Application Utility Functions

The XRotateBuffers function rotates the cut buffers, such that buffer 0 becomes
buffer n, buffer 1 becomes n + 1 mod 8, and so on. This cut buffer numbering is global to
the display. Note that XRotateBuffers generates BadMatch errors if any of the
eight buffers have not been created.

10.8 Determining the Appropriate Visual Type

A single display can support multiple screens. Each screen can have several different
visual types supported at different depths. You can use the functions described in this
section to determine which visual to use for your application.

The functions in this section use the visual information masks and the XVisuallnfo
structure, which is defined in < Xll/Xutil. h > and contains:

j* Visual information mask bits * j

define
define
define
define
define
define
define
define
define
define
define

/* Values */

typedef struct {
Visual *visual;
VisualID visualid;
int screen;
unsigned int depth;
int class;

VisualNoMask
VisualIDMask
VisualScreenMask
VisualDepthMask
VisualClassMask
VisualRedMaskMask
VisualGreenMaskMask
VisualBlueMaskMask
VisualColormapSizeMask
VisualBitsPerRGBMask
VisualAllMask

unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
int colormap_size;
int bits-per_rgb;

} XVisualInfo;

OXO
Oxl
Ox2
Ox4
Ox8
OxlO
Ox20
Ox40
Ox80
OxlOO
OxlFF

Application Utility Functions 10 -17

To obtain a list of visual information structures that match a specified template, use
XGetVisuallnfo.

XVi sualInfo *XGet Vi sualInfo (display. vinfo _mask. vinfo _template. nitems Jeturn)
Display *display;
long vinfo mask;
XVisualInfo *vinfo _template;
int *nitems _return ;

display

vinfo_mask

vinfo _template

nitems return

Specifies the connection to the X server.

Specifies the visual mask value.

Specifies the visual attributes that are to be used in matching the
visual structures.

Returns the number of matching visual structures.

The XGetVisuallnfo function returns a list of visual structures that match the
attributes specified by vinfo template. If no visual structures match the template using the
specified vinfo_mask, XGetVisuallnfo returns a NULL. To free the data returned by
this function, use XFree.

To obtain the visual information that matches the specified depth and class of the screen,
use XMatchVisuallnfo.

Status XMatchVisualInfo (display. screen. depth. class. vinfo Jeturn)
Display *display;
int screen;
int depth;
int class;
XVisualInfo *vinfo _return ;

display

screen

depth

class

vinfo ..!eturn

Specifies the connection to the X server.

Specifies the screen.

Specifies the depth of the screen.

Specifies the class of the screen.

Returns the matched visual information.

The XMatchVisuallnfo function returns the visual information for a visual that
matches the specified depth and class for a screen. Because multiple visuals that match
the specified depth and class can exist, the exact visual chosen is undefined. If a visual is
found, XMatchVisuallnfo returns nonzero and the information on the visual to
vinfo_return. Otherwise, when a visual is not found, XMatchVisuallnfo returns zero.

10 -18 Application Utility Functions

10.9 Manipulating Images
Xlib provides several functions that perform basic operations on images. All operations on
images are defined using an Xlmage structure, as defined in < XII/Xl i b . h > .
Because the number of different types of image formats can be very large, this hides details
of image storage properly from applications.

This section describes the functions for generic operations on images. Manufacturers can
provide very fast implementations of these for the formats frequently encountered on their
hardware. These functions are neither sufficient nor desirable to use for general image
processing. Rather, they are here to provide minimal functions on screen format images.
The basic operations for getting and putting images are XGetlmage and XPutlmage.

Note that no functions have been defined, as yet, to read and write images to and from
disk files.

The Xlmage structure describes an image as it exists in the client's memory. The user can
request that some of the members such as height, width, and xoffset be changed when the
image is sent to the server . Note that bytes yer _line in concert with offset can be used to
extract a subset of the image. Other members (for example, byte order, bitmap unit, and
so forth) are characteristics of both the image and the server. If these members differ
between the image and the server, XPutlmage makes the appropriate conversions. The
first byte of the first line of plane n must be located at the address (data + (n * height *
bytes yer }ine)). For a description of the Xlmage structure, see section 6.7.

To allocate sufficient memory for an Xlmage structure, use XCreatelmage.

Xlmage *XCreatelmage (display I visual, depth I format I offset I data I width I height I bitmap yad I
bytes yerJine)

Display *display;
Visual *visual;
unsigned int depth;
int format;
int offset;
char *data;
unsigned int width;
unsigned int height;
int bitmap yad;
int bytes yerJine;

display

visual

Specifies the connection to the X server.

Specifies a pointer to the visual.

Specifies the depth of the image. depth

Application Utility Functions 10 -19

Jonnat

offset

data

width

height

bitmapyad

Specifies the format for the image. You can pass XYBi tmap,
XYPixmap,orZPixmap.

Specifies the number of pixels to ignore at the beginning of the
scanline.

Specifies a pointer to the image data.

Specifies the width of the image, in pixels.

Specifies the height of the image, in pixels.

Specifies the quantum of a scanline (8, 16, or 32). In other words, the
start of one scanline is separated in client memory from the start of
the next scanline by an integer multiple of this many bits.

Specifies the number of bytes in the client image between the start of
one scanline and the start of the next.

The XCrea te Image function allocates the memory needed for an Xlmage structure
for the specified display but does not allocate space for the image itself. Rather, it
initializes the structure byte-order, bit-order, and bitmap-unit values from the display and
returns a pointer to the Xlmage structure. The red, green, and blue mask values are
defined for Z format images only and are derived from the Visual structure passed in.
Other values also are passed in. The offset permits the rapid displaying of the image
without requiring each scanline to be shifted into position. If you pass a zero value in
bytes per line, Xlib assumes that the scanlines are contiguous in memory and calculates
the vi'lue ~f bytes _per _line itself.

Note that when the image is created using XCreatelmage, XGetlmage, or
XSublmage, the destroy procedure that the XDestroylmage function calls frees both
the image structure and the data pointed to by the image structure.

The basic functions used to get a pixel, set a pixel, create a subimage, and add a constant
offset to a Z format image are defined in the image object. The functions in this section
are really macro invocations of the functions in the image object and are defined in
<Xll/Xutil.h>.

To obtain a pixel value in an image, use XGetPixel.

unsigned long XGetPixel(ximage, x, y)
Xlmage *ximage;
int x;
int y;

ximage Specifies a pointer to the image.

10 -20 Application Utility Functions

x
y Specify the x and y coordinates.

The XGe tP ixe 1 function returns the specified pixel from the named image. The pixel
value is returned in normalized format (that is, the least -significant byte of the long is the
least-significant byte of the pixel). The image must contain the x and y coordinates.

To set a pixel value in an image, use XPutPixel.

int XPutPixel (ximage, x, y, pixe/)
Xlmage *ximage;
int x;
int y;
unsigned long pixel;

ximage Specifies a pointer to the image.

x
y Specify the x and y coordinates.

pixel Specifies the new pixel value.

The XPutPixel function overwrites the pixel in the named image with the specified
pixel value. The input pixel value must be in normalized format (that is, the least­
significant byte of the long is the least-significant byte of the pixel). The image must
contain the x and y coordinates.

To create a subimage, use XSubImage.

Xlmage *XSublmage (ximage, x, y, subimage _width, subimage _height)
Xlmage *ximage;
int x;
int y;
unsigned int subimage width;
unsigned int subimage "j1eight;

ximage

x
y

subimage _width

subimage _height

Specifies a pointer to the image.

Specify the x and y coordinates.

Specifies the width of the new subimage, in pixels.

Specifies the height of the new subimage, in pixels.

The XSubImage function creates a new image that is a subsection of an existing one. It
allocates the memory necessary for the new XImage structure and returns a pointer to
the new image. The data is copied from the source image, and the image must contain the
rectangle defined by x, y, subimage _ width, and subimage _ height.

Application Utility Functions 10·21

To increment each pixel in the pixmap by a constant value, use XAddPixel.

XAddPixel (ximage, value)
Xlmag e *ximage;
long value;

ximage

value

Specifies a pointer to the image.

Specifies the constant value that is to be added.

The XAddPixel function adds a constant value to every pixel in an image. It is useful
when you have a base pixel value from allocating color resources and need to manipulate
the image to that form.

To deallocate the memory allocated in a previous call to XCreateImage, use
XDestroyImage.

int XOestroylmage (ximage)
Xlmage *ximage;

ximage Specifies a pointer to the image.

The XDestroyImage function deallocates the memory associated with the XImage
structure.

Note that when the image is created using XCreateImage, XGetImage, or
XSub Image, the destroy procedure that this macro calls frees both the image structure
and the data pointed to by the image structure.

10.10 Manipulating Bitmaps
Xlib provides functions that you can use to read a bitmap from a file, save a bitmap to a
file, or create a bitmap. This section describes those functions that transfer bitmaps to and
from the client's file system, thus allowing their reuse in a later connection (for example,
from an entirely different client or to a different display or server).

The X version 11 bitmap file format is:

Iidefine name width width
#define name=height height
#define name_x_hot x
Iidefine name_y_hot y
static char name_bits [] = { Qy.NN, •••

10 -22 Application Utility Functions

The variables ending with _x_hot and J _ hot suffixes are optional because they are present
only if a hotspot has been defined for this bitmap. The other variables are required. The
bits array must be large enough to contain the size bitmap. The bitmap unit is eight. The

name is derived from the name of the file that you specified on the original command line
by deleting the directory path and extension.

To read a bitmap from a file, use XReadBitmapFile.

int XReadBitmapFile(dis'play, d, filename, width_return, heightJeturn, bitmapJeturn, x_hot_return,
y }tot_return)

Display *dis'play;
Drawable d;
char *filename;
unsigned int *width return, *height Jeturn ;
Pixmap *bitmap return-;
int *x_hotJetum, *y_hot_return;

display

d

filename

width return
height ..!eturn

bitmap _return

x hot return
y _hot ..!eturn

Specifies the connection to the X server.

Specifies the drawable that indicates the screen.

Specifies the file name to use. The format of the file name is
operating-system dependent.

Return the width and height values of the read in bitmap file.

Returns the bitmap that is created.

Return the hotspot coordinates.

The XReadBitmapFile function reads in a file containing a bitmap. The file can be
either in the standard X version 10 format (that is, the format used by X version 10 bitmap
program) or in the X version 11 bitmap format. If the file cannot be opened,
XReadBitmapFile returns BitmapOpenFailed. If the file can be opened but does
not contain valid bitmap data, it returns Bi tmapFilelnvalid. If insufficient working
storage is allocated, it returns Bi tmapNoMemory. If the file is readable and valid, it
returns Bi tmapSuccess.

XReadBitmapFile returns the bitmap's height and width, as read from the file, to
width_return and height_return. It then creates a pixmap of the appropriate size, reads the
bitmap data from the file into the pixmap, and assigns the pixmap to the caller's variable
bitmap. The caller must free the bitmap using XFreePixmap when finished. If
name x hot and name y hot exist, XReadBi tmapFile returns them to x hot return
and y=hot_return; othe~se, it returns -1,-1. - -

XReadBitmapFile can generate BadAlloc and BadDrawable errors.

Application Utility Functions 10 -23

To write out a bitmap to a file, use XWriteBitmapFiIe.

int XWriteBitmapFile(display, filename, bitmap, width, height, x_hot, yjtot)
Display *display;
char *filename;
Pixmap bitmap;
unsigned int width, height;
int x_hot, y_hot;

display

filename

bitmap

width
height

x hot
y_hot

Specifies the connection to the X server.

Specifies the file name to use. The format of the file name is operating­
system dependent.

Specifies the bitmap.

Specify the width and height.

Specify where to place the hotspot coordinates (or -1,-1 if none are present)
in the file.

The XWri teBi tmapFiIe function writes a bitmap out to a file. While
XReadBi tmapFiIe can read in either X version 10 format or X version 11 format,
XWriteBi tmapFiIe always writes out X version 11 format. If the file cannot be
opened for writing, it returns Bi tmapOpenFaiIed. If insufficient memory is allocated,
XWriteBitmapFiIe returns BitmapNoMemory; otherwise, on no error, it returns
Bi tmapSuccess. If x hot and y hot are not -1, -1, XWri teBi tmapFi Ie writes them
out as the hotspot coordinates for the bitmap.

XWriteBi tmapFile can generate BadDrawable and BadMatch errors.

To create a pixmap and then store bitmap-format data into it, use
XCreatePixmapFromBitmapData.

Pixmap XCreatePixmapFromBitmapData(display, d, data, width, height, fg, bg, depth)
Di splay *display;
Drawable d;
char *data;
unsigned int width, height;
unsigned long fg, bg;
unsigned int depth;

display

d

Specifies the connection to the X server.

Specifies the drawable that indicates the screen.

Specifies the data in bitmap format. data

10 ·24 Application Utility Functions

width
height

fg
bg

depth

Specify the width and height.

, Specify the foreground and background pixel values to use.

Specifies the depth of the pixmap.

The XCreatePixmapFromBi tmapData function creates a pixmap of the given depth
and then does a bitmap-format XPutlmage of the data into it. The depth must be
supported by the screen of the specified drawable, or a BadMa tch error results.

XCreatePixmapFromBitmapData can generate BadAlloc and BadMatch
errors.

To include a bitmap written out by XWriteBitmapFile in a program directly, as
opposed to reading it in every time at run time, use XCreateBi tmapFromData.

Pixmap XCreateBitmapFromData(display, d, data, width, height)
Display *display;
Drawable d;
char *data;
unsigned int width, height;

display

d

data

width
height

Specifies the connection to the X server.

Specifies the drawable that indicates the screen.

Specifies the location of the bitmap data.

Specify the width and height.

The XCreateBi tmapFromData function allows you to include in your C program
(using #include) a bitmap file that was written out by XWri teBi tmapFile (X version
11 format only) without reading in the bitmap file. The following example creates a gray
bitmap:

llinclude "gray.bitmap"

Pixmap bitmap;
bitmap = XCreateBitmapFromData(display, window, gray_bits, gray_width, gray_height);

If insufficient working storage was allocated, XCreateBi tmapFromData returns
None. It is your responsibility to free the bitmap using XFreePixmap when finished.

XCreateBitmapFromData can generate a BadAlloc error.

Application Utility Functions 10 -25

10.11 Using the Resource Manager

The resource manager is a database manager with a twist. In most database systems, you
perform a query using an imprecise specification, and you get back a set of records. The
resource manager, however, allows you to specify a large set of values with an imprecise
specification, to query the database with a precise specification, and to get back only a
single value. This should be used by applications that need to know what the user prefers
for colors, fonts, and other resources. It is this use as a database for dealing with X
resources that inspired the name "Resource Manager," although the resource manager
can be and is used in other ways.

For example, a user of your application may want to specify that all windows should have a
blue background but that all mail-reading windows should have a red background.
Presuming that all applications use the resource manager, a user can define this
information using only two lines of specifications. Your personal resource database usually
is stored in a file and is loaded onto a server property when you log in. This database is
retrieved automatically by Xlib when a connection is opened.

As an example of how the resource manager works, consider a mail-reading application
called xmh. Assume that it is designed so that it uses a complex window hierarchy all the
way down to individual command buttons, which may be actual small subwindows in some
toolkits. These are often called objects or widgets. In such toolkit systems, each user
interface object can be composed of other objects and can be assigned a name and a class.
Fully qualified names or classes can have arbitrary numbers of component names, but a
fully qualified name always has the same number of component names as a fully qualified
class. This generally reflects the structure of the application as composed of these objects,
starting with the application itself.

For example, the xmh mail program has a name "xmh" and is one of a class of "Mail"
programs. By convention, the first character of class components is capitalized, and the
first letter of name components is in lowercase. Each name and class finally has an
attribute (for example "foreground" or "font"). If each window is properly assigned a
name and class, it is easy for the user to specify attributes of any portion of the application.

At the top level, the application might consist of a paned window (that is, a window divided
into several sections) named "toc". One pane of the paned window is a button box window
named "buttons" and is filled with command buttons. One of these command buttons is
used to retrieve (include) new mail and has the name "include". This window has a fully
qualified name, "xmh.toc.buttons.include", and a fully qualified class,
"Xmh.VPaned.Box.Command". Its fully qualified name is the name of its parent,
"xmh.toc.buttons", followed by its name, "include". Its class is the class of its parent,

10 - 26 Application Utility Functions

"Xmh.VPaned.Box", followed by its particular class, "Command". The fully qualified
name of a resource is the attribute's name appended to the object's fully qualified name,
and the fully qualified class is its class appended to the object's class.

This include button needs the following resources:

• Title string

• Font

• Foreground color for its inactive state

• Background color for its inactive state

• Foreground color for its active state

• Background color for its active state

Each of the resources that this button needs are considered to be attributes of the button
and, as such, have a name and a class. For example, the foreground color for the button in
its active state might be named "activeForeground", and its class would be "Foreground."

When an application looks up a resource (for example, a color), it passes the complete
name and complete class of the resource to a look-up routine. After look up, the resource
manager returns the resource value and the representation type.

The resource manager allows applications to store resources by an incomplete
specification of name, class, and a representation type, as well as to retrieve them given a
fully qualified name and class.

10.11.1 Resource Manager Matching Rules

The algorithm for determining which resource name or names match a given query is the
heart of the database. Resources are stored with only partially specified names and
classes, using pattern matching constructs. An asterisk (*) is used to represent any number
of intervening components (including none). A period (.) is used to separate immediately
adjacent components. All queries fully specify the name and class of the resource needed.
A trailing period and asterisk are not removed. The library supports 100 components in a
name or class. The look-up algorithm then searches the database for the name that most
closely matches (is most specific) this full name and class. The rules for a match in order
of precedence are:

1. The attribute of the name and class must match. For example, queries for:

xterm.scrollbar.background
XTerm.Scrollbar.Background

(name)
(class)

Application Utility Functions 10 -27

will not match the following database entry:

xterm.scrollbar:on

2. Database entries with name or class prefixed by a period (.) are more specific than
those prefixed by an asterisk (*). For example, the entry xterm.geometry is more
specific than the entry xterm *geometry.

3. Names are more specific than classes. For example, the entry
"*scrollbar.background" is more specific than the entry "*Scrollbar.Background".

4. Specifying a name or class is more specific than omitting either. For example, the
entry "Scrollbar*Background" is more specific than the entry "*Background".

5. Left components are more specific than right components. For example,
"*vtlOO*background" is more specific than the entry "*scrollbar*background" for
the query ".vtlOO.scrollbar.background".

6. If neither a period (.) nor an asterisk (*) is specified at the beginning, a period (.) is
implicit. For example, "xterm.background" is identical to ".xterm.background".

Names and classes can be mixed. As an example of these rules, assume the following user
preference specification:

xmh*background:
*conmand.font:

red
8x13

*conmand.background: blue
*Conmand.Foreground: green
xmh.toc*Conmand.activeForeground:black

A query for the name "xmh.toc.messagefunctions.include.activeForeground" and class
"Xmh.VPaned.Box.Command.Foreground" would match
"xmh.toc*Command.activeForeground" and return "black". However, it also matches
"*Command.Foreground" .

Using the precedence algorithm described above, the resource manager would return the
value specified by "xmh.toc*Command.activeForeground".

1 0.11.2 Basic Resource Manager Definitions

The definitions for the resource manager's use are contained in
< XlljXresource. h >. Xlib also uses the resource manager internally to allow for
non-English language error messages.

10 -28 Application Utility Functions

Database values consist of a size, an address, and a representation type. The size is
specified in bytes. The representation type is a way for you to store data tagged by some
application-defined type (for example, "font" or "color"). It has nothing to do with the C
data type or with its class. The Xrm Val ue structure contains:

typedef struct {
unsigned int size;
caddr_t addr;

} XrmValue, *XrmValuePtr;

A resource database is an opaque type used by the look-up functions.

typedef struct _XrmHashBucketRec *XrmDatabase;

To initialize the resource manager, use Xrmlnitialize.

void Xrmlnitialize();

Most uses of the resource manager involve defining names, classes, and representation
types as string constants. However, always referring to strings in the resource manager can
be slow, because it is so heavily used in some toolkits. To solve this problem, a shorthand
for a string is used in place of the string in many of the resource manager functions.
Simple comparisons can be performed rather than string comparisons. The shorthand
name for a string is called a quark and is the type XrmQuark. On some occasions, you
may want to allocate a quark that has no string equivalent.

A quark is to a string what an atom is to a string in the server, but its use is entirely local to
your application.

To allocate a new quark, use XrmUniqueQuark.

XrmQuark XrmUniqueQuark()

The XrmUniqueQuark function allocates a quark that is guaranteed not to represent
any string that is known to the resource manager.

To allocate some memory you will never give back, use Xpermalloc.

char *Xpermalloc(sae)
unsigned int size;

The Xpermalloc function is used by some toolkits for permanently allocated storage
and allows some performance and space savings over the completely general memory
allocator.

Each name, class, and representation type is typedefd as an XrmQuark.

Application Utility Functions 10 -29

typedef int XrmQuark, *XrmQuarkList;
typedef XrmQuark XrmName;
typedef XrmQuark XrmClass;
typedef XrmQuark XrmRepresentation;

Lists are represented as null-terminated arrays of quarks. The size of the array must be
large enough for the number of components used.

typedef XrmQuarkList XrmNameList;
typedef XrmQuarkList XrmClassList;

To convert a string to a quark, use XrmS tringToQuark.

#define XrmStringToName(string) XrmStringToQuark(string)
#define XrmStringToClass(string) XrmStringToQuark(string)
#define XrmStringToRepresentation(string) XrmStringToQuark(string)

XrmQuark XrmStringToQuark(suing)
char *suing;

string Specifies the string for which a quark is to be allocated.

To convert a quark to a string, use XrmQuarkToString.

#define XrmNameToString(name) XrmQuarkToString(name)
#define XrmClassToString(class) XrmQuarkToString(class)
#define XrmRepresentationToString(type) XrmQuarkToString(type)

char *XrmQuarkToString(quank)
XrmQuark quank;

quark Specifies the quark for which the equivalent string is desired.

These functions can be used to convert to and from quark representations. The string
pointed to by the return value must not be modified or freed. If no string exists for that
quark, XrmQuarkToString returns NULL.

To convert a string with one or more components to a quark list, use
XrmStringToQuarkList.

#define XrmStringToNameList(str, name) XrmStringToQuarkList«str), (name»
#define XrmStringToClassList(str,class) XrmStringToQuarkList«str), (class»

void XrmStringToQuarkList (suing, quanks Jetum)
char *suing;
XrmQuarkList quanks Jeturn;

string Specifies the string for which a quark is to be allocated.

10 -30 Application Utility Functions

quarks ..!etum Returns the list of quarks.

The XrmS tringToQuarkLis t function converts the null-terminated string (generally a
fully qualified name) to a list of quarks. The components of the string are separated by a
period or asterisk character.

A binding list is a list of type XrmBindingLis t and indicates if components of name or
class lists are bound tightly or loosely (that is, if wildcarding of intermediate components is
specified).

typedef enum {XrmBindTightly, XrmBindLoosely} XrmBinding, *XrmBindingList;

XrmBindTightly indicates that a period separates the components, and
XrmBindLoosely indicates that an asterisk separates the components.

To convert a string with one or more components to a binding list and a quark list, use
XrmStringToBindingQuarkList.

XrmStringToBindingQuarkList (string, bindings Jetum, quarks Jeturn)
char *string;
XrmBindingList bindings return;
XrmQuarkList qu~_return;

string

bindings ..!etum

quarks ..!etum

Specifies the string for which a quark is to be allocated.

Returns the binding list. The caller must allocate sufficient space for
the binding list before calling
XrmStringToBindingQuarkList.

Returns the list of quarks. The caller must allocate sufficient space
for the quarks list before calling
XrmStringToBindingQuarkList.

Component names in the list are separated by a period or an asterisk character. If the
string does not start with a period or an asterisk, a period is assumed. For example,
"*a.b*c" becomes:

quarks a
bindings loose

b
tight

c
loose

10.11.3 Resource Database Access

Xlib provides resource management functions that you can use to manipulate resource
databases. The next sections discuss how to:

• Store and get resources

Application Utility Functions 10 -31

• Get database levels

• Merge two databases

• Retrieve and store databases

Storing Into a Resource Database
To store resources into the database, use XrmPutResource or XrmQPutResource.
Both functions take a partial resource specification, a representation type, and a value.
This value is copied into the specified database.

void XrrnPutResource(database, specifier, type, value)
XrrnDatabase *database;
char *specifier;
char *type;
XrrnValue *Value;

database

specifier

type

value

Specifies a pointer to the resource database.

Specifies a complete or partial specification of the resource.

Specifies the type of the resource.

Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmPutResource creates a new database and returns a
pointer to it. XrmPutResource is a convenience function that calls
XrmStringToBindingQuarkList followed by:

XrmQPutResource(database, bindings, quarks, XrmStringToQuark(type), value)

void XrrnQPutResource (database, bindings, quarks, type, value)
XrrnDatabase *database;
XrrnBindingList bindings;
XrrnQuarkList qu~;
XrrnRepresentation type;
XrrnValue *Value;

database

bindings

quarks

type

value

Specifies a pointer to the resource database.

Specifies a list of bindings.

Specifies the complete or partial name or the class list of the resource.

Specifies the type of the resource.

Specifies the value of the resource, which is specified as a string.

10 -32 Application Utility Functions

If database contains NULL, XrmQPutResource creates a new database and returns a
pointer to it.

To add a resource that is specified as a string, use XrmPutStringResource.

void XrmPutStringResource <database, specifier, value)
XrmDatabase *database;
char *specifier;
char *value;

database

specifier

value

Specifies a pointer to the resource database.

Specifies a complete or partial specification of the resource.

Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmPutStringResource creates a new database and
returns a pointer to it. XrmPutStringResourc~ adds a resource with the specified
value to the specified database. XrmPutStringResource is a convenience routine
that takes both the resource and value as null-terminated strings, converts them to quarks,
and then calls XrmQPutResource, using a "String" representation type.

To add a string resource using quarks as a specification, use
XrmQPutStringResource.

void XrmQPutStringResource <database, bindings, quarks, value)
XrmDatabase *database;
XrmBindingList bindings;
XrmQuarkList qu~;
char *value;

database

bindings

quarks

value

Specifies a pointer to the resource database.

Specifies a list of bindings.

Specifies the complete or partial name or the class list of the resource.

Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmQPutStringResource creates a new database and
returns a pointer to it. XrmQPutStringResource is a convenience routine that
constructs an XrmValue for the value string (by calling strlen to compute the size)
and then calls XrmQPutResource, using a "String" representation type.

To add a single resource entry that is specified as a string that contains both a name and a
value, use XrmPutLineResource.

void XrmPutLineResource <database, line)
XrmDatabase *database;
char *line;

Application Utility Functions 10 -33

database

line

Specifies a pointer to the resource database.

Specifies the resource value pair as a single string. A single colon (:)
separates the name from the value.

If database contains NULL, XrmPutLineResource creates a new database and
returns a pointer to it. XrmPutLineResource adds a single resource entry to the
specified database. Any white space before or after the name or colon in the line
argument is ignored. The value is terminated by a new-line or a NULL character. To
allow values to contain embedded new-line characters, a "\n" is recognized and replaced
by a new-line character. For example, line might have the value
"xterm*background:green\n". Null-terminated strings without a new line are also
permitted.

Looking Up from a Resource Database
To retrieve a resource from a resource database, use XrmGetResource or
XrmQGetResource.

Baal XrrnGetResaurce (database, str_name, str_class, strJype ..!eturn, value ..!eturn)
XrmDatabase database;
char *str name;
char *str -class;
char **s(; type return;
XrrnValue *valUe ..!eturn;

database

str name

str class

value return

Specifies the database that is to be used.

Specifies the fully qualified name of the value being retrieved (as a
string).

Specifies the fully qualified class of the value being retrieved (as a
string).

Returns a pointer to the representation type of the destination (as a
string).

Returns the value in the database.

Baal XrrnQGetResaurce (database, quark_name, quark_class, quark_type ..!etum, value ..!etum)
XrmDatabase database;
XrrnNameList quark name;
XrrnClassList quaik class;
XrrnRepresentatian -*quark type return;
XrmValue *ValueJetum; - -

database Specifies the database that is to be used.

10 -34 Application Utility Functions

value return

Specifies the fully qualified name of the value being retrieved (as a
quark).

Specifies the fully qualified class of the value being retrieved (as a
quark).

Returns a pointer to the representation type of the destination (as
a quark).

Returns the value in the database.

The XrmGetResource and XrmQGetResource functions retrieve a resource from
the specified database. Both take a fully qualified name/class pair, a destination resource
representation, and the address of a value (size/address pair). The value and returned type
point into database memory; therefore, you must not modify the data.

The database only frees or overwrites entries on XrmPutResource,
XrmQPutResource, or XrmMergeDatabases. A client that is not storing new
values into the database or is not merging the database should be safe using the address
passed back at any time until it exits. If a resource was found, both XrmGetResource
and XrmQGetResource return True; otherwise, they return False.

Database Search Lists
Most applications and toolkits do not make random probes into a resource database to
fetch resources. The X toolkit access pattern for a resource database is quite stylized. A
series of from 1 to 20 probes are made with only the last name/class differing in each
probe. The XrmGetResource function is at worst a 2n algorithm, where n is the length
of the name/class list. This can be improved upon by the application programmer by
prefetching a list of database levels that might match the first part of a name/class list.

To return a list of database levels, use XrmQGetSearchList.

typedef XrmHashTable *XrmSearchList;

Bool XrmQGetSearchList (database, names, classes, listJetum, list_length)
XrmDatabase database;
XrmNarneList names;
XrmClassList classes;
XrmSearchList list return;
int listJength; -

database

names

classes

Specifies the database that is to be used.

Specifies a list of resource names.

Specifies a list of resource classes.

Application Utility Functions 10 - 35

list return

list}ength

Returns a search list for further use. The caller must allocate sufficient
space for the list before calling XrmQGetSearchList.

Specifies the number of entries (not the byte size) allocated for
list return.

The XrmQGetSearchList function takes a list of names and classes and returns a list
of database levels where a match might occur. The returned list is in best-to-worst order
and uses the same algorithm as XrmGetResource for determining precedence. If
list return was large enough for the search list, XrmQGetSearchList returns True;
otherwise, it returns False.

The size of the search list that the caller must allocate is dependent upon the number of
levels and wildcards in the resource specifiers that are stored in the database. The worst
case length is 3n

, where n is the number of name or class components in names or classes.

When using XrmQGetSearchList followed by multiple probes for resources with a
common name and class prefix, only the common prefix should be specified in the name
and class list to XrmQGetSearchList.

To search resource database levels for a given resource, use
XrmQGetSearchResource.

Bool XrmQGetSearchResource (list, name, class, type_return, value Jeturn)
XrmSearchList list;
XrmN arne name;
XrmClass class;
XrmRepresentation *type return ;
XrmValue *Value ..!eturn; -

list

name

Specifies the search list returned by XrmQGetSearchList.

Specifies the resource name.

class

typeJeturn

value return

Specifies the resource class.

Returns data representation type.

Returns the value in the database.

The XrmQGetSearchResource function searches the specified database levels for the
resource that is fully identified by the specified name and class. The search stops with the
first match. XrmQGetSearchResource returns True if the resource was found;
otherwise, it returns False.

A call to XrmQGetSearchList with a name and class iist containing all but the iast
component of a resource name followed by a call to XrmQGetSearchResource with
the last component name and class returns the same database entry as
XrmGetResource and XrmQGetResource with the fully qualified name and class.

10 -36 Application Utility Functions

Merging Resource Databases
To merge the contents of one database into another database, use
XrmMergeDatabases.

void Xrni1ergeDatabases (source db, target db)
XrmDatabase source_db, *target_db;-

source db Specifies the resource database that is to be merged into the target
database.

Specifies a pointer to the resource database into which the source database
is to be merged.

The XrrnMergeDatabases function merges the contents of one database into another.
It may overwrite entries in the destination database. This function is used to combine
databases (for example, an application specific database of defaults and a database of user
preferences). The merge is destructive; that is, the source database is destroyed.

Retrieving and Storing Databases
To retrieve a database from disk, use XrrnGetFileDatabase.

XrmDatabase XrmGetFileDatabase(filename)
char *filename;

filename Specifies the resource database file name.

The XrrnGetFileDatabase function opens the specified file, creates a new resource
database, and loads it with the specifications read in from the specified file. The specified
file must contain lines in the format accepted by XrrnPutLineResource. If it cannot
open the specified file, XrmGetFileDatabase returns NULL.

To store a copy of a database to disk, use XrrnPutFileDatabase.

void XrmPutFileDatabase (database, stored db)
XrmDatabase database; -
char *stored _ db ;

database

stored db

Specifies the database that is to be used.

Specifies the file name for the stored database.

The XrrnPutFileDatabase function stores a copy of the specified database in the
specified file. The file is an ASCII text file that contains lines in the format that is
accepted by XrrnPutLineResource.

To create a database from a string, use XrrnGetStringDatabase.

Application Utility Functions 10 -37

XrmDatabase XrmGetStringDatabase(data)
char *data;

data Specifies the database contents using a string.

The XrmGetStringDatabase function creates a new database and stores the
resources specified in the specified null-terminated string. XrmGetStringDatabase
is similar to XrmGetFileDatabase except that it reads the information out of a string
instead of out of a file. Each line is separated by a new-line character in the format
accepted by XrmPutLineResource.

10.11.4 Parsing Command Line Options

The XrmParseCommand function can be used to parse the command line arguments to
a program and modify a resource database with selected entries from the command line.

typedef enum {
XrmoptionNoArg,
XrmoptionIsArg,
XrmoptionStickyArg,
XrmoptionSepArg,
XrmoptionResArg,
XrmoptionSkipArg,
XrmoptionSkipLine

XrmOptionKind;

typedef struct {

1* Value is specified in OptionDescRec.value *1
1* Value is the option string itself *1
1* Value is characters immediately following option *1
1* Value is next argument in argv *1
1* Resource and value in next argument in argv *1
1* Ignore this option and the next argument in argv *1
1* Ignore this option and the rest of argv *1

char *option; 1* Option specification string in argv *1
char *resourceName; 1* Binding and resource name (sans application name) *1
XrmOptionKind argKind; 1* Which style of option it is *1
caddr_t value; 1* Value to provide if XrmoptionNoArg *1

XrmOptionDescRec, *XrmOptionDescList;

To load a resource database from a C command line, use XrmParseCommand.

void XrmParseConmand(database, table, table_count, name, argc_in_oul, argv_in_out,)
XrmDatabase *database;
XrmOptionDescList table;
int table count;
char *name;
int *argc in out;
char **aigv]'! _out;

database

table

Specifies a pointer to the resource database.

table count

Specifies the table of command line arguments to be parsed.

Specifies the number of entries in the table.

name Specifies the application name.

10 -38 Application Utility Functions

Specifies the number of arguments and returns the number of remaining
arguments.

Specifies a pointer to the command line arguments and returns the
remaining arguments.

The XrmParseCommand function parses an (argc, argv) pair according to the specified
option table, loads recognized options into the specified database with type "String," and
modifies the (argc, argv) pair to remove all recognized options.

The specified table is used to parse the command line. Recognized entries in the table are
removed from argv, and entries are made in the specified resource database. The table
entries contain information on the option string, the option name, the style of option, and a
value to provide if the option kind is XrmoptionNoArg. The argc argument specifies
the number of arguments in argv and is set to the remaining number of arguments that
were not parsed. The name argument should be the name of your application for use in
building the database entry. The name argument is prefixed to the resourceName in the
option table before storing the specification. No separating (binding) character is inserted.
The table must contain either a period (.) or an asterisk (*) as the first character in each
resourceName entry. To specify a more completely qualified resource name, the
resourceName entry can contain multiple components.

For example, the following is part of the standard option table from the X Toolkit
Xtlni tialize function:

static XrmOptionDescRec opTable[]
{"-background", "*background",
{"-bd", "*borderColor",
{"-bg", "*background",
{"-borderwidth", "*TopLevelShell.borderWidth",
{"-bordercolor", "*borderColor",
{"-bw", "*TopLevelShell.borderWidth",
{"-display", ".display",
{"-fg",
{"-fn",
{"-font",
{"-foreground",
{"-geometry",
{"-iconic",
{"-name" ,
{"-reverse",

"*foreground",
"*font" ,
"*font" ,
"*foreground",
".TopLevelShell.geometry",
". TopLevelShell. iconic",
".name" ,
"*reverseVideo",

{If_ rv", "*reverseVideo",
{"-synchronous", ".synchronous",
{"-title", ". TopLevelShell. title",
{"-xrm", NULL,
};

XrmoptionSepArg,(caddr_t) NULL},
XrmoptionSepArg,(caddr_t) NULL},
XrmoptionSepArg,(caddr_t) NULL},
XrmoptionSepArg,(caddr_t) NULL},
XrmoptionSepArg,(caddr_t) NULL},
XrmoptionSepArg,(caddr_t) NULL},
XrmoptionSepArg,(caddr_t) NULL},
XrmoptionSepArg,(caddr_t) NULL},
XrmoptionSepArg,(caddr_t) NULL},
XrmoptionSepArg,(caddr_t) NULL},
XrmoptionSepArg,(caddr_t) NULL},
XrmoptionSepArg,(caddr_t) NULL},
XrmoptionNoArg, (caddr_t) "on"},
XrmoptionSepArg,(caddr_t) NULL},
XrmoptionNoArg, (caddr_t) "on"},
XrmoptionNoArg, (caddr_t) "on"},
XrmoptionNoArg, (caddr_t) "on"},
XrmoptionSepArg,(caddr_t) NULL},
XrmoptionResArg,(caddr_t) NULL},

Application Utility Functions 10 -39

In this table, if the -background (or -bg) option is used to set background colors, the stored
resource specifier matches all resources of attribute background. If the -borderwidth
option is used, the stored resource specifier applies only to border width attributes of class
TopLevelShell (that is, outer-most windows, including pop-up windows). If the -title option
is used to set a window name, only the topmost application windows receive the resource.

When parsing the command line, any unique unambiguous abbreviation for an option
name in the table is considered a match for the option. Note that uppercase and lowercase
matter.

10.12 Using the Context Manager

The context manager provides a way of associating data with a window in your program.
Note that this is local to your program; the data is not stored in the server on a property
list. Any amount of data in any number of pieces can be associated with a window, and
each piece of data has a type associated with it. The context manager requires knowledge
of the window and type to store or retrieve data.

Essentially, the context manager can be viewed as a two-dimensional, sparse array: one
dimension is subscripted by the window and the other by a context type field. Each entry
in the array contains a pointer to the data. Xlib provides context management functions
with which you can save data values, get data values, delete entries, and create a unique
context type. The symbols used are in <Xll/Xutil. h >.

To save a data value that corresponds to a window and context type, use
XSaveContext.

int XSaveContext (display I W I context I data)
Display *display;
Window w;
XContext context;
caddr_t data;

display Specifies the connection to the X server.

w

context

data

Specifies the window with which the data is associated.

Specifies the context type to which the data belongs.

Specifies the data to be associated with the window and type.

If an entry with the specified window and type already exists, XSaveContext overrides
it with the specified context. The XSaveContext function returns a nonzero error code
if an error has occurred and zero otherwise. Possible errors are XCNOMEM (out of
memory).

10 - 40 Application Utility Functions

To get the data associated with a window and type, use XFindContext.

int XFindContext (display, w, context, data Jeturn)
Display *display i
Window wi
XContext context i
c addr _ t *data _return i

display Specifies the connection to the X server.

w

context

data return

Specifies the window with which the data is associated.

Specifies the context type to which the data belongs.

Returns a pointer to the data.

Because it is a return value, the data is a pointer. The XFindContext function returns
a nonzero error code if an error has occurred and zero otherwise. Possible errors are
XCNOENT (context-not-found).

To delete an entry for a given window and type, use XDeleteContext.

int XDeleteContext(display, w, context)
Display *display i
Window wi
XContext context i

display Specifies the connection to the X server.

w

context

Specifies the window with which the data is associated.

Specifies the context type to which the data belongs.

The XDeleteContext function deletes the entry for the given window and type from
the data structure. This function returns the same error codes that XFindContext
returns if called with the same arguments. XDeleteContext does not free the data
whose address was saved.

To create a unique context type that may be used in subsequent calls to XSaveContext
and XFindContext, use XUniqueContext.

XContext XUniqueContext()

Application Utility Functions 10 - 41

Xlib Functions and Protocol Requests A
This appendix provides two tables that relate to Xlib functions and the X protocol. The
following table lists each Xlib function (in alphabetical order) and the corresponding
protocol request that it generates.

Xlib Function

XActivateScreenSaver
XAddHost
XAddHosts
XAddToSaveSet
XAllocColor
XAllocColorCells
XAllocColor Planes
XAllocN amedColor
XAllowEvents
XAutoRepeatOff
XAutoRepeatOn
XBell
XChangeActivePointerGrab
XChangeGC
XChangeKeyboardControl
XChangeKeyboardMapping
XChangePointerControl
XChangeProperty
XChangeS aveS et
XChange WindowAttributes
XCirculateSubwindows
XCirculateSubwindowsDown
XCirculateSubwindowsUp
XClearArea
XClearWindow
XConfigure Window
XConvertSelection
XCopyArea

Protocol Request

ForceScreenSaver
ChangeHosts
ChangeHosts
ChangeSaveSet
AllocColor
AllocColorCells
AllocColor Planes
AllocNamedColor
AllowEvents
ChangeKeyboardControl
ChangeKeyboardControl
Bell
ChangeActivePointerGrab
ChangeGC
ChangeKeyboardControl
ChangeKeyboardMapping
ChangePointerControl
ChangeProperty
ChangeSaveSet
Change WindowAttributes
Circulate Window
Circulate Window
Circulate Window
ClearArea
ClearArea
ConfigureWindow
ConvertS election
CopyArea

Xlib Functions and Protocol Requests A-I

XCopyColormapAndFree
XCopyGC
XCopyPlane
XCreateBitmapFromData

XCreateColormap
XCreateFontCursor
XCreateGC
XCreateGlyphCursor
XCreatePixmap
XCreatePixmapCursor
XCreatePixmapFromData

XCreateSimple Window
XCreate Window
XDefineCursor
XDeleteProperty
XDestroySubwindows
XDestroyWindow
XDisableAccessControl
XDrawArc
XDrawArcs
XDrawlmageString
XDrawlmageString16
XDrawLine
XDrawLines
XDrawPoint
XDrawPoints
XDrawRectangle
XDrawRectangles
XDrawSegments
XDrawString
XDrawString16
XDrawrext
XDraWI'ext16
XEnableAccessControl
XFetchBytes
XFetchName
XFillArc

CopyColormapAndFree
CopyGC
CopyPlane
CreateGC
CreatePixmap
FreeGC
PutImage
CreateColormap
CreateGlyphCursor
CreateGC
CreateGlyphCursor
CreatePixmap
CreateCursor
CreateGC
CreatePixmap
FreeGC
PutImage
CreateWindow
CreateWindow
ChangeWindowAttributes
DeleteProperty
DestroySubwindows
DestroyWindow
SetAccessControl
PolyArc
PolyArc
ImageText8
ImageText16
PolySegment
PolyLine
PolyPoint
PolyPoint
PolyRectangle
PolyRectangle
PolySegment
PoIYfext8
PoIYfext16
PoIYfext8
PolyText16
SetAccessControl
GetProperty
GetProperty
PolyFillArc

A -2 Xlib Functions and Protocol Requests

XFillArcs PolyFillArc
XFillPolygon FillPoly
XFillRectangle PolyFillRectangle
XFillRectangles PolyFillRectangle
XForceScreenSaver ForceScreenSaver
XFreeColormap FreeColormap
XFreeColors FreeColors
XFreeCursor FreeCursor
XFreeFont CloseFont
XFreeGC FreeGC
XFreePixmap FreePixmap
XGetAtomName GetAtomName
XGetFontPath GetFontPath
XGetGeometry GetGeometry
XGetIconSizes GetProperty
XGetImage GetImage
XGetInputFocus GetInputFocus
XGetKeyboardControl GetKeyboardControl
XGetKeyboardMapping GetKeyboardMapping
XGetModifierMapping GetModifier Mapping
XGetMotionEvents GetMotionEvents
XGetModifierMapping GetModifier Mapping
XGetNormalHints GetProperty
XGetPointerControl GetPointerControl
XGetPointerMapping GetPointerMapping
XGetScreenSaver GetScreenSaver
XGetSelectionOwner GetSelectionOwner
XGetSizeHints GetProperty
XGet~Hints GetProperty
XGetWindowAttributes GetWindowAttributes

GetGeometry
XGetWindowProperty GetProperty
XGetZoomHints GetProperty
XGrabButton GrabButton
XGrabKey GrabKey
XGrabKeyboard GrabKeyboard
XGrabPointer GrabPointer
XGrabServer GrabServer
XInitExtension QueryExtension
XInstallColormap InstallColormap
XInternAtom InternAtom
XKillClient KillClient
XListExtensions ListExtensions

Xlib Functions and Protocol Requests A-3

XListFonts
XListFontsWithlnfo
XListHosts
XListInstalledColormaps
XListProperties
XLoadFont
XLoadQueryFont

XLookupColor
XLowerWindow
XMapRaised

XMapSubwindows
XMapWindow
XMoveResizeWindow
XMoveWindow
XNoOp
XOpenDisplay
XParseColor
XPutImage
XQueryBestCursor
XQueryBestSize
XQueryBestStipple
XQueryBestTile
XQueryColor
XQueryColors
XQueryExtension
XQueryFont
XQueryKeymap
XQueryPointer
XQueryTextExtents
XQueryTextExtents16
XQueryTree
XRaise Window
XReadBitmapFile

XRecolorCursor
XRemoveFromSaveSet
XRemoveHost
XRemoveHosts
XReparentWindow

ListFonts
ListFontsWithlnfo
ListHosts
ListInstalledColormaps
ListProperties
OpenFont
OpenFont
QueryFont
LookupColor
ConfigureWindow
ConfigureWindow
MapWindow
MapSubwindows
MapWindow
ConfigureWindow
ConfigureWindow
NoOperation
CreateGC
LookupColor
PutImage
QueryBestSize
QueryBestSize
QueryBestSize
QueryBestSize
QueryColors
QueryColors
OueryExtension
QueryFont
QueryKeymap
QueryPointer
QueryTextExtents
QueryTextExtents
QueryTree
ConfigureWindow
CreateGC
CreatePixmap
FreeGC
PutImage
RecolorCursor
ChangeS aveS et
ChangeHosts
ChangeHosts
ReparentWindow

A -4 Xlib Functions and Protocol Requests

XResetScreenSaver
XResizeWindow
XRestackWindows
XRotateBuffers
XRotateWindowProperties
XSelectInput
XSendEvent
XSetAccessControl
XSetArcMode
XSetBackground
XSetClipMask
XSetClipOrigin
XSetClipRectangles
XSetCloseDownMode
XSetCommand
XSetDashes
XSetFillRule
XSetFillStyle
XSetFont
XSetFontPath
XSetForeground
XSetFunction
XSetGraphicsExposures
XSetIconName
XSetIconSizes
XSetInputFocus
XSetLineAttributes
XSetModifierMapping
XSetNormalHints
XSetPlaneMask
XSetPointer Mapping
XSetScreenSaver

ForceScreenSaver
ConfigureWindow
ConfigureWindow
RotateProperties
RotateProperties
ChangeWindowAttributes
SendEvent
SetAccessControl
ChangeGC
ChangeGC
ChangeGC
ChangeGC
SetClipRectangles
SetCloseDownMode
ChangeProperty
SetDashes
ChangeGC
ChangeGC
ChangeGC
SetFontPath
ChangeGC
ChangeGC
ChangeGC
ChangeProperty
ChangeProperty
SetInputFocus
ChangeGC
SetModifierMapping
ChangeProperty
ChangeGC
SetPointerMapping
SetScreenSaver

XSetSelectionOwner SetSelectionOwner
XSetSizeHints ChangeProperty
XSetStandardProperties ChangeProperty
XSetState ChangeGC
XSetStipple ChangeGC
XSetSubwindowMode ChangeGC
XSetTile ChangeGC
XSetTSOrigin ChangeGC
XSetWMHints ChangeProperty
XSetWindowBackground ChangeWindowAttributes
XSetWindowBackgroundPixmapChangeWindowAttributes

Xlib Functions and Protocol Requests A - 5

XSetWindowBorder
XSetWindowBorderPixmap
XSetWindowBorderWidth
XSetWindowColormap
XSetZoomHints
XStoreBuffer
XStoreBytes
XStoreColor
XStoreColors
XStoreName
XStoreNamedColor
XSync
XTranslateCoordinates
XUndefineCursor
XUngrabButton
XUngrabKey
XU ngrabKeyboard
XUngrabPointer
XUngrabServer
XU ninstallColormap
XUnloadFont
XUnmapSubwindows
XUnmapWindow
XWarpPointer

ChangeWindowAttributes
ChangeWindowAttributes
ConfigureWindow
ChangeWindowAttributes
ChangeProperty
ChangeProperty
ChangeProperty
StoreColors
StoreColors
ChangeProperty
StoreNamedColor
GetInputFocus
TranslateCoordinates
ChangeWindowAttributes
UngrabButton
UngrabKey
UngrabKeyboard
U ngrabPointer
UngrabServer
UninstallColormap
CloseFont
UnmapSubwindows
UnmapWindow
WarpPointer

A - 6 Xlib Functions and Protocol Requests

The following table lists each X protocol request (in alphabetical order) and the Xlib
functions that reference it.

Protocol Request

AllocColor
AllocColorCells
AllocColor Planes
AllocNamedColor
AllowEvents
Bell
SetAccessControl

ChangeActivePointerGrab
SetCloseDownMode
ChangeGC

ChangeHosts

Xlib Function

XAllocColor
XAllocColorCells
XAllocColorPlanes
XAllocNamedColor
XAllowEvents
XBell
XDisableAccessControl
XEnableAccessControl
XSetAccessControl
XChangeActivePointerGrab
XSetCloseDownMode
XChangeGC
XSetArcMode
XSetBackground
XSetClipMask
XSetClipOrigin
XSetFillRule
XSetFillStyle
XSetFont
XSetForeground
XSetFunction
XSetGraphicsExposures
XSetLineAttributes
XSetPlaneMask
XSetState
XSetStipple
XSetSubwindowMode
XSetTile
XSetTSOrigin
XAddHost
XAddHosts
XRemoveHost
XRemoveHosts

ChangeKeyboardControl XAutoRepeatOff
XAutoRepeatOn
XChangeKeyboardControl

ChangeKeyboardMapping XChangeKeyboardMapping

Xlib Functions and Protocol Requests A-7

ChangePointerControl
ChangeProperty

ChangeSaveSet

ChangeWindowAttributes

Circulate Window

ClearArea

CloseFont

ConfigureWindow

ConvertS election
CopyArea

XChangePointerControl
XChangeProperty
XSetCommand
XSetIconName
XSetIconSizes
XSetNormalHints
XSetSizeHints
XSetStandardProperties
XSetWMHints
XSetZoomHints
XStoreBuffer
XStoreBytes
XStoreName
XAddToSaveSet
XChangeSaveSet
XRemoveFromSaveSet
XChangeWindowAttributes
XDefineCursor
XSelectInput
XSetWindowBackground
XSetWindowBackgroundPixmap
XSetWindowBorder
XSetWindowBorderPixmap
XSetWindowColormap
XUndefineCursor
XCirculateSubwindowsDown
XCirculateSubwindowsU p
XCirculateSubwindows
XClearArea
XClearWindow
XFreeFont
XUnloadFont
XConfigure Window
XLowerWindow
XMapRaised
XMoveResize Window
XMoveWindow
XRaiseWindow
XResizeWindow
XRestackWindows
XSetWindowBorderWidth
XConvertSelection
XCopyArea

A - 8 Xlib Functions and Protocol Requests

CopyColormapAndFree
CopyGC
CopyPlane
CreateColormap
CreateCursor
CreateGC

CreateGlyphCursor

CreatePixmap

Create Window

DeleteProperty
DestroySubwindows
DestroyWindow
FillPoly
ForceScreenSaver

FreeColormap
FreeColors
FreeCursor
FreeGC

FreePixmap
GetAtomName
GetFontPath
GetGeometry

GetImage
GetInputFocus

GetKeyboardControl
GetKeyboardMapping
GetModifierMapping

XCopyColormapAndFree
XCopyGC
XCopyPlane
XCreateColormap
XCreatePixmapCursor
XCreateGC
XCreateBitmapFromData
XCreatePixmapFromData
XOpenDisplay
XReadBitmapFile
XCreateFontCursor
XCreateGlyphCursor
XCreatePixmap
XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile
XCreateSimple Window
XCreateWindow
XDeleteProperty
XDestroySubwindows
XDestroyWindow
XFillPolygon
XActivateScreenSaver
XForceScreenSaver
XResetScreenSaver
XFreeColormap
XFreeColors
XFreeCursor
XFreeGC
XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile
XFreePixmap
XGetAtomName
XGetFontPath
XGetGeometry
XGetWindowAttributes
XGetImage
XGetInputFocus
XSync
XGetKeyboardControl
XGetKeyboardMapping
XGetModifierMapping

Xlib Functions and Protocol Requests A - 9

GetMotionEvents XGetMotionEvents
GetPointerControl XGetPointerControl
GetPointerMapping XGetPointerMapping
GetProperty XFetchBytes

XFetchName
XGetIconSizes
XGet~or~alfIints
XGetSizeHints
XGetWMHints
XGetWindowProperty
XGet~o~Hints

GetSelectionOwner XGetSelectionOwner
GetWindowAttributes XGetWindowAttributes
GrabButton XGrabButton
GrabKey XGrabKey
GrabKeyboard XGrabKeyboard
GrabPointer XGrabPointer
GrabServer XGrabServer
1m ageText 16 XDrawI~ageString16

I~ageText8 XDrawI~ageString
InstallColor~ap XInstallColor~ap

InternAto~ XInternAto~

KillClient XKillClient
ListExtensions XListExtensions
ListFonts XListFonts
ListFonts Withlnfo XListFonts Withlnfo
ListHosts XListHosts
ListInstalledColor~aps XListInstalledColormaps
ListProperties XListProperties
LookupColor XLookupColor

XParseColor
MapSubwindows XMapSubwindows
MapWindow XMapRaised

XMapWindow
~oOperation ~oOp

OpenFont XLoadFont
XLoadQueryFont

PolyArc XDrawArc
XDrawArcs

PolyFillArc XFillArc
XFillArcs

PolyFillRectangle XFillRectangle
XFillRectangles

A-1O Xlib Functions and Protocol Requests

PolyLine XDrawLines
PolyPoint XDrawPoint

XDrawPoints
PolyRectangle XDrawRectangle

XDrawRectangles
PolySegment XDrawLine

XDrawSegments
PolyText16 XDrawString16

XDrawrext16
PolyText8 XDrawString

XDrawrext
PutImage XPutImage

XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile

QueryBestSize XQueryBestCursor
XQueryBestSize
XQueryBestStipple
XQueryBestTile

QueryColors XQueryColor
XQueryColors

QueryExtension XlnitExtension
XQueryExtension

QueryFont XLoadQueryFont
XQueryFont

QueryKeymap XQueryKeymap
QueryPointer XQueryPointer
QueryTextExtents XQueryTextExtents

XQueryTextExtents16
QueryTree XQueryTree
RecolorCursor XRecolorCursor
ReparentWindow XReparentWindow
RotateProperties XRotateBuffers

XRotate WindowProperties
SendEvent XSendEvent
SetClipRectangles XSetClipRectangles
SetCloseDownMode XSetCloseDownMode
SetDashes XSetDashes
SetFontPath XSetFontPath
SetInputFocus XSetInputFocus
SetModifier Mapping XSetModifierMapping
SetPointerMapping XSetPointer Mapping
SetScreenSaver XGetScreenSaver

Xlib Functions and Protocol Requests A-11

SetS election Owner
StoreColors

StoreNamedColor
TranslateCoordinates
UngrabButton
UngrabKey
UngrabKeyboard
UngrabPointer
UngrabServer
UninstallColormap
UnmapSubwindows
UnmapWindow
WarpPointer

XSetScreenSaver
XSetSelectionOwner
XStoreColor
XStoreColors
XStoreNamedColor
XTranslateCoordinates
XUngrabButton
XUngrabKey
XUngrabKeyboard
XUngrabPointer
XUngrabServer
XUninstallColormap
XUnmapSubWindows
XUnmapWindow
XWarpPointer

A -12 Xlib Functions and Protocol Requests

Xlib Font Cursors B
The following are the available cursors that can be used with XCreateFontCursor.

4fdefine XC_X_cursor 0
#define XC_arrow 2
4;define XC based arrow_down 4
#define XC_based_arrow_up 6
#define XC_boat 8
4;define XC_bogosity 10
#define XC_bottom_left_corner 12
4fdefine XC_bottom_right_corner 14
#define XC_bottom_side 16
#define XC_bottom_tee 18
#define XC_box_spiral 20
#define XC_centerytr 22
#define XC_circle 24
#define XC clock 26
4fdefine XC_caffee_mug 28
#define XC_cross 30
4;define XC_crass_reverse 32
#define XC_crosshair 34
#define XC_diamond_cross 36
#define XC_dot 38
#define XC_dot_box_mask 40
4fdefine XC_double_arrow 42
4;define XC_draft_large 44
#define XC_draft_small 46
#define XC_draped_box 48
#define XC_exchange 50
4;define XC_fleur 52
#define XC_gobbler 54
#define XC_gumby 56
#define XC_hand 58
#define XC_hand1_mask 60
4fdefine XC_heart 62
4fdefine XC_icon 64
#define XC_iran_cross 66
4;define XC_leftytr 68
#define XC_left_side 70
#define XC_left_tee 72
#define XC_leftbutton 74

#define XC_ll_angle 76
#define XC_lr_angle 78
#define XC_man 80
#define XC_middlebutton 82
#define XC_mouse 84
#define XCyencil 86
#define XCyirate 88
#define XCylus 90
#define XC_question_arrow 92
#define XC_rightytr 94
#define XC_right_side 96
#define XC_right_tee 98
#define XC_rightbutton 100
#define XC_rtl_logo 102
#define XC_sailboat 104
#define XC_sb_down_arrow 106
#define XC_sb_h_double_arrow 108
#define XC_sb_left_arrow 110
#define XC_sb_right_arrow 112
#define XC_sb_up_arrow 114
#define XC_sb_v_double_arrow 116
#define XC_shuttle 118
#define XC_sizing 120
#define XC_spider 122
#define XC_spraycan 124
#define XC_star 126
#define XC_target 128
#define XC_tcross 130
#define XC_top_left_arrow 132
#define XC_top_left_corner 134
#define XC_top_right_corner 136
#define XC_tap_side 138
#define XC_tap_tee 140
#define XC_trek 142
#define XC_ul_angle 144
#define XC_umbrella 146
#define XC_ur_angle 148
#define XC_watch 150
#define XC_xterm 152

Xlib Font Cursors B -1

Extensions c
Because X can evolve by extensions to the core protocol, it is important that extensions not
be perceived as second class citizens. At some point, your favorite extensions may be
adopted as additional parts of the X Standard.

Therefore, there should be little to distinguish the use of an extension from that of the core
protocol. To avoid having to initialize extensions explicitly in application programs, it is
also important that extensions perform "lazy evaluations" and automatically initialize
themselves when called for the first time.

This appendix describes techniques for writing extensions to Xlib that will run at essentially
the same performance as the core protocol requests.

NOTE

It is expected that a given extension to X consists of multiple
requests. Defining ten new features as ten separate extensions is a
bad practice. Rather, they should be packaged into a single
extension and should use minor opcodes to distinguish the requests.

The symbols and macros used for writing stubs to Xlib are listed in
< Xll/Xlibint. h >.

C.1 Basic Protocol Support Routines

The basic protocol requests for extensions are XQueryExtension and
XListExtensions.

Baal XQueryExtension(display, name, major opcode return, first event return, first error return)
Display *display; - - - - --
char *name;
int *major opcode return;
int *first event return;
int *firs(error Jeturn ;

Extensions C -1

XQueryExtension determines if the named extension is present. If so, the major
opcode for the extension is returned (if it has one); otherwise, False is returned. Any
minor opcode and the request formats are specific to the extension. If the extension
involves additional event types, the base event type code is returned; otherwise, Fa 1 s e is
returned. The format of the events is specific to the extension. If the extension involves
additional error codes, the base error code is returned; otherwise, Fa Is e is returned. The
format of additional data in the errors is specific to the extension.

The extension name should be in the ISO Latin-l encoding, and uppercase and lowercase
do matter.

char **XListExtensions(display, nextensions return)
Display *display; -
int *nextensions Jeturn ;

XLis tExtens ions returns a list of all extensions supported by the server.

XFreeExtensionList(list)
char **list;

XFreeExtensionList frees the memory allocated by XListExtensions.

C.2 Hooking into Xlib

These functions allow you to hook into the library. They are not normally used by
application programmers but are used by people who need to extend the core X protocol
and the X library interface. The functions, which generate protocol requests for X, are
typically called stubs.

In extensions, stubs first should check to see if they have initialized themselves on a
connection. If they have not, they then should call Xlni tExtens ion to attempt to
initialize themselves on the connection.

If the extension needs to be informed of GC/font allocation or de allocation or if the
extension defines new event types, the functions described here allow the extension to be
called when these events occur.

The XExtCodes structure returns the information from XlnitExtension and is
defined in < XII/Xl ib . h >:

c -2 Extensions

typedef struct _XExtCodes
int extension;

/* public to extension, cannot be changed */
/* extension number */

int major_opcode;
int first_event;
int first_error;

/* major op-code assigned by server */
/* first event number for the extension */
/* first error number for the extension */

} XExtCodes;

XExtCodes *XlnitExtension(d~pl~, name)
Display *d~pl~;
char *name;

Xlni tExtens ion determines if the extension exists. Then, it allocates storage for
maintaining the information about the extension on the connection, chains this onto the
extension list for the connection, and returns the information the stub implementor will
need to access the extension. If the extension does not exist, Xlni tExtens ion returns
NULL.

In particular, the extension number in the XExtCodes structure is needed in the other
calls that follow. This extension number is unique only to a single connection.

XExtCodes *XAddExtension (d~pl~)
Display *d~pl~;

For local Xlib extensions, XAddExtension allocates the XExtCodes structure, bumps
the extension number count, and chains the extension onto the extension list. (This
permits extensions to Xlib without requiring server extensions.)

C.3 Hooks into the Library

These functions allow you to define procedures that are to be called when various
circumstances occur. The procedures include the creation of a new GC for a connection,
the copying of a GC, the freeing a GC, the creating and freeing of fonts, the conversion of
events defined by extensions to and from wire format, and the handling of errors.

All of these functions return the previous routine defined for this extension.

int (*XESetCloseDisplay(d~pl~, extension, proc»()
Display *displ~; /* display */
int extension; /* extension number * /
int (*proc)(); /* routine to call when display closed */

You use this procedure to define a procedure to be called whenever XCloseDisplay is
called. This procedure returns any previously defined procedure, usually NULL.

When XCloseDisplay is called, your routine is called with these arguments:

Extensions C -3

(*proc) (display, codes)
Display *display;
XExtCodes *codes;

int (*XESetCreateGC (display, extension, proc»()
Display *display; /* display */
int extension; /* extension number * /
int (*proc)(); /* routine to call when GC created */

You use this procedure to define a procedure to be called whenever a new GC is created.
This procedure returns any previously defined procedure, usually NULL.

When a GC is created, your routine is called with these arguments:

(*proc) (display, gc, codes)
Display *display;
GC gc;
XExtCodes *codes;

int (*XESetCopyGC (display, extension, proc» ()
Display *display; /* display */
int extension; /* extension number */
int (*proc)(); /* routine to call when GC copied */

You use this procedure to define a procedure to be called whenever a GC is copied. This
procedure returns any previously defined procedure, usually NULL.

When a GC is copied, your routine is called with these arguments:

(*proc) (display, gc, codes)
Display *display;
GC gc;
XExtCodes *codes;

int (*XESetFreeGC (display , extension, proc»()
Display *display; /* display */
int extension; /* extension number */
int (*proc)(); /* routine to call when GC freed */

You use this procedure to define a procedure to be called whenever a GC is freed. This
procedure returns any previously defined procedure, usually NULL.

When a GC is freed, your routine is called with these arguments:

c -4 Extensions

(*proc) (display, gc, codes)
Display *display;
GC gc;
XExtCodes *codes;

int (*XESetCreateFont (display, extension, proc» ()
Display *display; /* display */
int extension; /* extension number * /
int (*proc)(); /* routine to call when font created */

You use this procedure to define a procedure to be called whenever XLoadQueryFont
and XQueryFont are called. This procedure returns any previously defined procedure,
usually NULL.

When XLoadQueryFont or XQueryFont is called, your routine is called with these
arguments:

(*proc) (display, fs, codes)
Display *display;
XFontStruct *fs;
XExtCodes *codes;

int (*XESetFreeFont (display, extension, proc» ()
Display *display; /* display */
int extension; 1* extension number * /
int (*proc) () ; 1* routine to call when font freed * /

You use this procedure to define a procedure to be called whenever XFreeFont is
called. This procedure returns any previously defined procedure, usually NULL.

When XFreeFont is called, your routine is called with these arguments:

(*proc) (display, fs, codes)
Display *display;
XFontStruct *fs;
XExtCodes *codes;

The next two functions allow you to define new events to the library.

Extensions C -5

NOTE

There is an implementation limit such that your host event structure
size cannot be bigger than the size of the XEven t union of
structures. There also is no way to guarantee that more than 24
elements or 96 characters in the structure will be fully portable
between machines.

int (*XESetWireToEvent (display, event number, proc» ()
Display *display; - 1* display *1
int event number; 1* event routine to replace *1
Bool (*pnoC)(); 1* routine to call when converting event *1

You use this procedure to define a procedure to be called when an event needs to be
converted from wire format (xEvent) to host format (XEvent). The event number
defines which protocol event number to install a conversion routine for. This procedure
returns any previously defined procedure.

NOTE

You can replace a core event conversion routine with one of your
own, although this is not encouraged. It would, however, allow you
to intercept a core event and modify it before being placed in the
queue or otherwise examined.

When Xlib needs to convert an event from wire format to host format, your routine is
called with these arguments:

Status (*proc) (display, re, event)
Display *display;
XEvent *re;
xEvent *event;

Your routine must return status to indicate if the conversion succeeded. The re argument
is a pointer to where the host format event should be stored, and the event argument is the
32-byte wire event structure. In the XEvent structure you are creating, type must be the
first member and window must be the second member. You should fill in the type
member with the type specified for the xEvent structure. You should copy all other
members from the xEvent structure (wire format) to the XEvent structure (host
format). Your conversion routine should return True if the event should be placed in the
queue or False if it should not be placed in the queue.

C - 6 Extensions

Status (*XESetEventToWire(display, event number, proc»()
Display *display; 1* display * /
int event number; /* event routine to replace */
int (*proc)(); /* routine to call when converting event */

You use this procedure to define a procedure to be called when an event needs to be
converted from host format (XEvent) to wire format (xEvent) form. The event
number defines which protocol event number to install a conversion routine for. This
procedure returns any previously defined procedure. It returns zero if the conversion fails
or nonzero otherwise.

NOTE

You can replace a core event conversion routine with one of your
own, although this is not encouraged. It would, however, allow you to
intercept a core event and modify it before being sent to another
client.

When Xlib needs to convert an event from wire format to host format, your routine is
called with these arguments:

(*proc) (display, re, event)
Display *display;
XEvent *re;
xEvent *event;

The re argument is a pointer to the host format event, and the event argument is a pointer
to where the 32-byte wire event structure should be stored. In the XEvent structure that
you are forming, you must have "type" as the first member and "window" as the second.
You then should fill in the type with the type from the xEvent structure. All other
members then should be copied from the wire format to the XEvent structure.

int (*XESetError (display , extension, proc»()
Display *display; /* display */
int extension; /* extension number * /
int (*proc) () ; /* routine to call when X error happens * /

Inside Xlib, there are times that you may want to suppress the calling of the external error
handling when an error occurs. This allows status to be returned on a call at the cost of
the call being synchronous (though most such routines are query operations, in any case,
and are typically programmed to be synchronous).

When Xlib detects a protocol error in _ XRep 1 y, it calls your procedure with these
arguments:

Extensions C -7

int (*proc) (display, err, codes, ret_code)
Display *display;
xError *err;
XExtCodes *codes;
int *ret_code;

The err argument is a pointer to the 32-byte wire format error. The codes argument is a
pointer to the extension codes structure. The ret code argument is the return code you
may want _ XRep 1 y returned to. -

If your routine returns a zero value, the error is not suppressed, and the client's error
handler is called. (For further information, see section 8.12.2.) If your routine returns
nonzero, the error is suppressed, and _XReply returns the value of ret_code.

char .,. (*XESetErrorString (display, extension, proc» ()
Display *display; 1* display *1
int extension; 1* extension number *1
char *(*proc)(); 1* routine to call to obtain an error string *1

The XGetErrorText function returns a string to the user for an error.
XESetErrorString allows you to define a routine to be called that should return a
pointer to the error message. The following is an example.

(*proc) (display, code, codes, buffer, nbytes)
Display *display;
int code;
XExtCodes *codes;
char *buffer;
int nbytes;

Your procedure is called with the error code for every error detected. You should copy
nbytes of a null-terminated string containing the error message into buffer.

int (*XESetFlushGC(display, extension, proc» ()
Display *display; 1* display *1
int extension; 1* extension number *1
char * (*proc) () ; 1* routine to call when 1/0 error happens *1

The XESetFlushGC procedure is identical to XESetCopyGC except that
XESetFlushGC is called when a GC cache needs to be updated in the server.

C -8 Extensions

C.4 Hooks onto Xlib Data Structures
Various Xlib data structures have provisions for extension routines to chain extension
supplied data onto a list. These structures are GC, Visual, Screen,
ScreenFormat, Display, and XFontStruct. Because the list pointer is always the
first member in the structure, a single set of routines can be used to manipulate the data
on these lists.

The following structure is used in the routines in this section and is defined in
<Xll/Xlib.h>:

typedef struct _XExtData {
int number; /* number returned by XlnitExtension */
struct _XExtData *next;
int (*free) () ;

/* next item on list of data for structure */
/* if defined, called to free private */

char *private; /* data private to this extension. */
} XExtData;

When any of the data structures listed above are freed, the list is walked, and the
structure's free routine (if any) is called. If free is NULL, then the library frees both the
data pointed to by the private member and the structure itself.

union {Display *display;
GC gc;
Visual *visual;
Screen *screen;
ScreenFormat *pixmap_format;
XFontStruct *font } XEDataObject;

XExtData **XEHeadOfExtensionList(object)
XEDataObject object;

XEHeadOfExtensionList returns a pointer to the list of extension structures
attached to the specified object. In concert with XAddToExtensionList,
XEHeadOfExtensionList allows an extension to attach arbitrary data to any of the
structures of types contained in XEDa taOb j ec t.

XAddToExtensionList (structure, ext data)
struct XExtData **structune;/* pointer to structure to add */
XExtDat~ *ext_data;/* extension data structure to add */

The structure argument is a pointer to one of the data structures enumerated above. You
must initialize ext_ data- > number with the extension number before calling this routine.

Extensions C -9

XExtData *XFindOnExtensionList(strncture, number)
struct XExtData **strncture;
int number;/* extension number from XInitExtension */

XFindOnExtensionList returns the first extension data structure for the extension
numbered number. It is expected that an extension will add at most one extension data
structure to any single data structure's extension data list. There is no way to find
additional structures.

The XAllocID macro" which allocates and returns a resource ID, is defined in
<Xll/Xlib. h >.

XAllocID (display)
Display *display;

This macro is a call through the Display structure to the internal resource ID allocator.
It returns a resource ID that you can use when creating new resources.

C.s GC Caching
GCs are cached by the library to allow merging of independent change requests to the
same GC into single protocol requests. This is typically called a write-back cache. Any
extension routine whose behavior depends on the contents of a GC must flush the GC
cache to make sure the server has up-to-date contents in its GC.

The FlushGC macro checks the dirty bits in the library's GC structure and calls
_XFlushGCCache if any elements have changed. The FlushGC macro is defined as
follows:

FlushGC (display, gc)
Display *display;
GC gc;

Note that if you extend the GC to add additional resource ID components, you should
ensure that the library stub sends the change request immediately. This is because a client
can free a resource immediately after using it, so if you only stored the value in the cache
without forcing a protocol request, the resource might be destroyed before being set into
the GC. You can use the _XFlushGCCache procedure to force the cache to be flushed.
The _XFlushGCCache procedure is defined as follows:

_XFlushGCCache (display, gc)
Display *display;
GC gc;

C -10 Extensions

C.6 Graphics Batching
If you extend X to add more poly graphics primitives, you may be able to take advantage of
facilities in the library to allow back-to-back single calls to be transformed into poly
requests. This may dramatically improve performance of programs that are not written
using poly requests. A pointer to an xReq, called last req in the display structure, is the
last request being processed. By checking that the last-request type, drawable, gc, and
other options are the same as the new one and that there is enough space left in the buffer,
you may be able to just extend the previous graphics request by extending the length field
of the request and appending the data to the buffer. This can improve performance by five
times or more in naive programs. For example, here is the source for the XDrawPoint
stub. (Writing extension stubs is discussed in the next section.)

Extensions C -11

#include "copyright.h"

#include "Xlibint.h"

/* precompute the maximum size of batching request allowed */

static int size = sizeof(xPolyPointReq) + EPERBATCH * sizeof(xPoint);

XDrawPoint(dpy, d, gc, x, y)
register Display *dpy;
Drawable d;

{

GC gc;
int x, y; /* INT16 */

xPoint *point;
LockDisplay(dpy);
FlushGC(dpy, gc);
{

register xPolyPointReq *req = (xPolyPointReq *) dpy->last_req;
/* if same as previous request, with same drawable, batch requests */
if (

(req->reqType == X_PolyPoint)
&& (req->drawable == d)
&& (req->gc == gc->gid)
&& (req->coordMode == CoordModeOrigin)
&& «dpy->bufptr + sizeof (xPoint» <= dpy->bufmax)
&& «(char *)dpy->bufptr - (char *)req) < size)) {

point = (xPoint *) dpy->bufptr;
req->length += sizeof (xPoint) » 2;
dpy->bufptr += sizeof (xPoint);
}

else {
GetReqExtra(PolyPoint, 4, req); /* 1 point 4 bytes */
req->drawable = d;
req->gc = gc->gid;
req->coordMode = CoordModeOrigin;
point = (xPoint *) (req + 1);
}

point->x = x;
point->y = y;
}
UnlockDisplay(dpy);
SyncHandle();

To keep clients from generating very long requests that may monopolize the server, there
is a symbol defined in <Xll/Xlibint. h > of EPERBATCH on the number of
requests batched. Most of the performance benefit occurs in the first few merged
requests. Note that FlushGC is called before picking up the value of last req, because it
may modify this field.

C -12 Extensions

C.7 Writing Extension Stubs

All X requests always contain the length of the request, expressed as a 16-bit quantity of 32
bits. This means that a single request can be no more than 256K bytes in length. Some
servers may not support single requests of such a length. The value of
dpy->max_request_size contains the maximum length as defined by the server
implementation. For further information, see "X Window System Protocol", available
from MIT.

C.8 Requests, Replies, and Xproto.h
The < Xll/Xproto. h > file contains three sets of definitions that are of interest to the
stub implementor: request names, request structures, and reply structures.

You need to generate a file equivalent to <Xll/Xproto. h > for your extension and
need to include it in your stub routine. Each stub routine also must include
<Xll/Xlibint. h >.

The identifiers are deliberately chosen in such a way that, if the request is called
X DoSomething, then its request structure is xDoSomethingReq, and its reply is
xDoSomethingReply. The GetReq family of macros, defined in < Xll/Xlibint. h >,
takes advantage of this naming scheme.

For each X request, there is a definition in < Xll/Xproto. h > that looks similar to this:

#define X_DoSomething 42

In your extension header file, this will be a minor opcode, instead of a major opcode.

e.g Request Format

Every request contains an 8-bit major opcode and a 16-bit length field expressed in units of
four bytes. Every request consists of four bytes of header (containing the major opcode,
the length field, and a data byte) followed by zero or more additional bytes of data. The
length field defines the total length of the request, including the header. The length field
in a request must equal the minimum length required to contain the request. If the
specified length is smaller or larger than the required length, the server should generate a
BadLength error. Unused bytes in a request are not required to be zero.

long XMaxRequestSize(display)
Display *display;

Extensions C -13

XMaxRequestSize returns the maximum request size (in 4-byte units) supported by
the server. Single protocol requests to the server can be no longer than this size.
Extensions should be designed in such a way that long protocol requests can be split up
into smaller requests. The protocol guarantees the size to be no smaller than 4096 unit
(16384 bytes).

Major opcodes 128 through 255 are reserved for extensions. Extensions are intended to
contain multiple requests, so extension requests typically have an additional minor opcode
encoded in the "spare" data byte in the request header, but the placement and
interpretation of this minor opcode as well as all other fields in extension requests are not
defined by the core protocol. Every request is implicitly assigned a sequence number
(starting with one) used in replies, errors, and events.

To help but not cure portability problems to certain machines, the B16 and B32 macros
have been defined so that they can become bitfield specifications on some machines. For
example, on a Cray, these should be used for all 16-bit and 32-bit quantities, as discussed
below.

Most protocol requests have a corresponding structure typedef in < Xll/Xproto . h >,
which looks like:

typedef struct _DoSomethingReq {
CARDB reqType;
CARDB someDatum;
CARD16 length B16;

1* request-specific data *1

} xDoSomethingReq;

1* X_DoSomething *1
1* used differently in different requests *1
1* total # of bytes in request, divided by 4 *1

If a core protocol request has a single 32-bit argument, you need not declare a request
structure in your extension header file. Instead, such requests use < Xll/Xpro to . h > 's
xResourceReq structure. This structure is used for any request whose single argument
is a Window, Pixmap, Drawable, GContext, Font, Cursor,Colorma p,Atom,
or VisualID.

typedef struct _ResourceReq {
CARDS reqType;
BYTE pad;
CARD16 length B16;
CARD32 id B32;

} xResourceReq;

1* the request type, e.g. X_DoSomething *1
1* not used *1
1* 2 (= total # of bytes in request, divided by 4) *1
1* the Window, Drawable, Font, GContext, etc. *1

If convenient, you can do something similar in your extension header file.

C -14 Extensions

In both of these structures, the reqType field identifies the type of the request (for
example, X MapWindow or X CreatePixmap). The length field tells how long the request
is in units of 4-byte longwords. This length includes both the request structure itself and
any variable length data, such as strings or lists, that follow the request structure. Request
structures come in different sizes, but all requests are padded to be multiples of four bytes
long.

A few protocol requests take no arguments at all. Instead, they use < Xll/Xproto . h > 's
xReq structure, which contains only a reqType and a length (and a pad byte).

If the protocol request requires a reply, then <Xll/Xproto. h > also contains a reply
structure typedef:

typedef struct _DoSomethingReply {
BYTE type;
BYTE someDatum;
CARD16 sequenceNumber B16;
CARD32 length B32;

1* request-specific data *1

} xDoSomethingReply;

1* always X Reply *1
1* used differently in different requests *1
1* # of requests sent so far *1
1* # of additional bytes, divided by 4 *1

Most of these reply structures are 32 bytes long. If there are not that many reply values,
then they contain a sufficient number of pad fields to bring them up to 32 bytes. The length
field is the total number of bytes in the request minus 32, divided by 4. This length will be
nonzero only if:

• The reply structure is followed by variable length data such as a list or string.

• The reply structure is longer than 32 bytes.

Only GetWindowAttributes, QueryFont, QueryKeymap, and
GetKeyboardControl have reply structures longer than 32 bytes in the core protocol.

A few protocol requests return replies that contain no data. < Xll/Xproto . h > does
not define reply structures for these. Instead, they use the xGenericReply structure,
which contains only a type, length, and sequence number (and sufficient padding to make
it 32 bytes long).

C.10 Starting to Write a Stub Routine

An Xlib stub routine should always start like this:

11include "Xlibint.h"

Extensions C -15

XDoSomething (arguments, ...
f* argument declarations *f
{

register XDoSomethingReq *req;

If the protocol request has a reply, then the variable declarations should include the reply
structure for the request. The following is an example:

xDoSomethingReply rep;

C.11 Locking Data Structures

To lock the display structure for systems that want to support multithreaded access to a
single display connection, each stub will need to lock its critical section. Generally, this
section is the point from just before the appropriate GetReq call until all arguments to the
call have been stored into the buffer. The precise instructions needed for this locking
depend upon the machine architecture. Two calls, which are generally implemented as
macros, have been provided.

LockDisplay(display)
Display *display;

UnlockDisplay(display)
Display "'display;

C.12 Sending the Protocol Request and Arguments

After the variable declarations, a stub routine should call one of four macros defined in
<XlljXlibint.h>: GetReq, GetReqExtra, GetResReq, or GetEmptyReq.
All of these macros take, as their first argument, the name of the protocol request as
declared in <Xll/Xproto. h > except with X removed. Each one declares a
Display structure pointer, called dpy, and a pointer to a request structure, called req,
which is of the appropriate type. The macro then appends the request structure to the
output buffer, fills in its type and length field, and sets req to point to it.

If the protocol request has no arguments (for instance, X GrabServer), then use
GetEmptyReq.

GetEmptyReq (DoSomething);

C -16 Extensions

If the protocol request has a single 32-bit argument (such as a Pixmap, Window,
Drawable, Atom, and so on), then use GetResReq. The second argument to the
macro is the 32-bit object. X_MapWindow is a good example.

GetResReq (DoSomething, rid);

The rid argument is the Pixmap, Window, or other resource ID.

If the protocol request takes any other argument list, then call GetReq. After the
GetReq, you need to set all the other fields in the request structure, usually from
arguments to the stub routine.

GetReq (DoSomething);
1* fill in arguments here */
req->argl = argl;
req->arg2 = arg2;

A few stub routines (such as XCreateGC and XCreatePixmap) return a resource ID
to the caller but pass a resource ID as an argument to the protocol request. Such routines
use the macro XAllocID to allocate a resource ID from the range of IDs that were
assigned to this client when it opened the connection.

rid = req->rid = XAllocID();
return (rid);

Finally, some stub routines transmit a fixed amount of variable length data after the
request. Typically, these routines (such as XMoveWindow and XSetBackground) are
special cases of more general functions like XMoveResizeWindow and XChangeGC.
These special case routines use GetReqExtra, which is the same as GetReq except
that it takes an additional argument (the number of extra bytes to allocate in the output
buffer after the request structure). This number should always be a multiple of four.

C.13 Variable Length Arguments

Some protocol requests take additional variable length data that follow the
xDoSomethingReq structure. The format of this data varies from request to request.
Some requests require a sequence of 8-bit bytes, others a sequence of 16-bit or 32-bit
entities, and still others a sequence of structures.

It is necessary to add the length of any variable length data to the length field of the
request structure. That length field is in units of 32-bit longwords. If the data is a string or
other sequence of 8-bit bytes, then you must round the length up and shift it before adding:

req->length += (nbytes+3»>2;

Extensions C -17

To transmit variable length data, use the Data macros. If the data fits into the output
buffer, then this macro copies it to the buffer. If it does not fit, however, the Data macro
calls _XSend, which transmits first the contents of the buffer and then your data. The
Da ta macros take three arguments: the Display, a pointer to the beginning of the data,
and the number of bytes to be sent.

Data (display , (char *) data, nbytes);

Data16 (display , (short *) data, nbytes);

Data32 (display , (long *) data, nbytes);

Data, Data16, and Data32 are macros that may use their last argument more than
once, so that argument should be a variable rather than an expression such as
"nitems*sizeof(item)". You should do that kind of computation in a separate statement
before calling them. Use the appropriate macro when sending byte, short, or long data.

If the protocol request requires a reply, then call the procedure _ XS end instead of the
Data macro. _XSend takes the same arguments, but because it sends your data
immediately instead of copying it into the output buffer (which would later be flushed
anyway by the following call on _XReply), it is faster.

C.14 Replies
If the protocol request has a reply, then call _ XRep 1 y after you have finished dealing
with all the fixed and variable length arguments. _XReply flushes the output buffer and
waits for an xReply packet to arrive. If any events arrive in the meantime, _XReply
places them in the queue for later use.

Status _XReply(display, rep, extra, discard)
Display *display;
xReply *rep;
int extra; /* number of 32-bit words expected after the reply */
Baal discard; /* should I discard data following "extra" words? */

_XReply waits for a reply packet and copies its contents into the specified rep.
_ XRe ply handles error and event packets that occur before the reply is received.
_ XRe ply takes four arguments:

• A Display * structure

• A pointer to a reply structure (which must be cast to an xReply *)

• The number of additional bytes (beyond sizeof(xReply) = 32 bytes) in the reply
structure

C -18 Extensions

• A Boolean that indicates whether _XReply is to discard any additional bytes
beyond those it was told to read

Because most reply structures are 32 bytes long, the third argument is usually O. The only
core protocol exceptions are the replies to GetWindowAttributes, QueryFont,
QueryKeymap, and GetKeyboardControl, which have longer replies.

The last argument should be False if the reply structure is followed by additional
variable length data (such as a list or string). It should be True if there is not any variable
length data.

NOTE

This last argument is provided for upward-compatibility reasons to
allow a client to communicate properly with a hypothetical later
version of the server that sends more data than the client expected.
For example, some later version of GetWindowAttributes
might use a larger, but compatible,
xGetWindowAttributesReply that contains additional
attribute data at the end.

_XReply returns True if it received a reply successfully or False if it received any sort
of error.

For a request with a reply that is not followed by variable length data, you write something
like:

_XReply(display, (xReply *)&rep, 0, True);
*retl = rep.retl;
*ret2 = rep.ret2;
*ret3 = rep.ret3;
UnlockDisplay(dpy);
SyncHandle();
return (rep.ret4);
}

If there is variable length data after the reply, change the True to False, and use the
appropriate _XRead function to read the variable length data.

_ XRead (display, data, nbytes)
Display *display;
char *data;
long nbytes;

_ XRead reads the specified number of bytes into data.

Extensions C -19

_ XRe ad16 (display, data, nbytes)
Display *display;
short *data;
long nbytes;

_ XRe ad16 reads the specified number of bytes, unpacking them as 16-bit quanities, into
the specified array as shorts.

_ XRe ad3 2 (display, data, nbytes)
Display *display;
long *data;
long nbytes;

_XRead32 reads the specified number of bytes, unpacking them as 32-bit quanities, into
the specified array as longs.

_XRead16Pad(display, data, nbytes)
Display *display;
short *data;
long nbytes;

_XRead16Pad reads the specified number of bytes, unpacking them as 16-bit quanities,
into the specified array as shorts. If the number of bytes is not a multiple of four,
_XRead16Pad reads up to three additional pad bytes.

_XReadPad(display, data, nbytes)
Display *display;
char *data;
long nbytes;

_ XReadP ad reads the specified number of bytes into data. If the number of bytes is not
a multiple of four, _XReadPad reads up to three additional pad bytes.

Each protocol request is a little different. For further information, see the Xlib sources for
examples.

C.1S Synchronous Calling

To ease debugging, each routine should have a call, just before returning to the user, to a
routine called SyncHandle. This routine generally is implemented as a macro. If
synchronous mode is enabled (see XSynchronize), the request is sent immediately.
The library, however, waits until any error the routine could generate at the server has
been handled.

c -20 Extensions

C.16 Allocating and Deallocating Memory

To support the possible reentry of these routines, you must observe several conventions
when allocating and de allocating memory, most often done when returning data to the user
from the window system of a size the caller could not know in advance (for example, a list
of fonts or a list of extensions). The standard C library routines on many systems are not
protected against signals or other multithreaded uses. The following analogies to standard
I/O library routines have been defined:

XmallocO Replaces mallocO

XfreeO

XcallocO

Replaces freeO

Replaces callocO

These should be used in place of any calls you would make to the normal C library
routines.

If you need a single scratch buffer inside a critical section (for example, to pack and
unpack data to and from the wire protocol),
the general memory allocators may be too expensive to use (particularly in output

routines, which are performance critical). The routine below returns a scratch buffer for
your use:

char * _XAllocScratchCdisplay J nbytes)
Display *display;
unsigned long nbytes;

This storage must only be used inside of the critical section of your stub.

Extensions C -21

C.17 Portability Considerations

Many machine architectures, including many of the more recent RISC architectures, do
not correctly access data at unaligned locations; their compilers pad out structures to
preserve this characteristic. Many other machines capable of unaligned references pad
inside of structures as well to preserve alignment, because accessing aligned data is usually
much faster. Because the library and the server use structures to access data at arbitrary
points in a byte stream, all data in request and reply packets must be naturally aligned; that
is, 16-bit data starts on 16-bit boundaries in the request and 32-bit data on 32-bit
boundaries. All requests must be a multiple of 32 bits in length to preserve the natural
alignment in the data stream. You must pad structures out to 32-bit boundaries. Pad
information does not have to be zeroed unless you want to preserve such fields for future
use in your protocol requests. Floating point varies radically between machines and should
be avoided completely if at all possible.

This code may run on machines with 16-bit ints. So, if any integer argument, variable, or
return value either can take only nonnegative values or is declared as a CARD16 in the
protocol, be sure to declare it as unsigned int and not as int. (This, of course, does not
apply to Booleans or enumerations.)

Similarly, if any integer argument or return value is declared CARD32 in the protocol,
declare it as an unsigned long and not as int or long. This also goes for any internal
variables that may take on values larger than the maximum 16-hit unsigned int.

The library currently assumes that a char is 8 bits, a short is 16 bits, an int is 16 or 32 bits,
and a long is 32 bits. The PackData macro is a half-hearted attempt to deal with the
possibility of 32 bit shorts. However, much more work is needed to make this work
properly.

C.18 Deriving the Correct Extension Opcode

The remaining problem a writer of an extension stub routine faces that the core protocol
does not face is to map from the call to the proper major and minor opcodes. While there
are a number of strategies, the simplest and fastest is outlined below.

1. Declare an array of pointers, NFILE long (this is normally found in < stdio. h >
and is the number of file descriptors supported on the system) of type XExtCodes.
Make sure these are all initialized to NULL.

c -22 Extensions

2. When your stub is entered, your initialization test is just to use the display pointer
passed in to access the file descriptor and an index into the array. If the entry is
NULL, then this is the first time you are entering the routine for this display. Call
your initialization routine and pass it to the display pointer.

3. Once in your initialization routine, call Xlni tExtens ion; if it succeeds, store the
pointer returned into this array. Make sure to establish a close display handler to
allow you to zero the entry. Do whatever other initialization your extension requires.
(For example, install event handlers and so on). Your initialization routine would
normally return a pointer to the XExtCodes structure for this extension, which is
what would normally be found in your array of pointers.

4. After returning from your initialization routine, the stub can now continue normally,
because it has its major opcode safely in its hand in the XExtCodes structure.

Extensions C -23

Version 10 Compatibility Functions D

D.1 Drawing and Filling Polygons and Curves

Xlib provides functions that you can use to draw or fill arbitrary polygons or curves. These
functions are provided mainly for compatibility with X10 and have no server support. That
is, they call other Xlib functions, not the server directly. Thus, if you just have straight lines
to draw, using XDrawLines or XDrawSegments is much faster.

The functions discussed here provide all the functionality of the X10 functions XDr aw,
XDrawFilled, XDrawPatterned, XDrawDashed, and XDrawTiled. They are
as compatible as possible given XlI's new line drawing functions. One thing to note,
however, is that VertexDrawLastPoint is no longer supported. Also, the error status
returned is the opposite of what it was under X10 (this is the X11 standard error status).
XAppendVertex and XClearVertexFlag from X10 also are not supported.

The setup of the graphics context determines whether you get dashes, and so on. Lines are
properly joined if they connect and include the closing of a closed figure (see
XDrawLines). The functions discussed here fail (return zero) only if they run out of
memory or are passed a Vertex list that has a Vertex with VertexStartClosed
set that is not followed by a Vertex with VertexEndClosed set.

XDraw achieves the effects of X10 XDrawDashed, and XDrawPatterned.

#include <Xll/Xl0.h>

Status XDraw(display, d, ge, vlist, vcount)
Display *display;
Drawable d;
GC ge;
Vertex *vlist;
int vcount;

display

d

Specifies the connection to the X server.

Specifies the drawable.

gc Specifies the GC.

Version 10 Compatibility Functions D -1

vlist

vcount

Specifies a pointer to the list of vertices that indicate what to draw.

Specifies how many vertices are in vlist.

XDr aw draws an arbitrary polygon or curve. The figure drawn is defined by the specified
list of vertices (vlist). The points are connected by lines as specified in the flags in the
vertex structure.

Each Vertex, as defined in < XII/Xl 0 . h >, is a structure with the following members:

typedef struct _Vertex {
short x,y;
unsigned short flags;

} Vertex;

The x and y members are the coordinates of the vertex that are relative to either the
upper-left inside corner of the drawable (if VertexRelative is zero) or the previous
vertex (if VertexRelative is one).

The flags, as defined in < XII/Xl 0 . h >, are as follows:

VertexRelative
VertexDontDraw
VertexCurved
VertexStartClosed
VertexEndClosed

0x0001
0x0002
0x0004
0x0008
0x0010

/* else absolute * /
/* else draw * /
/* else straight * /
/* else not * /
/* else not * /

• If VertexRelative is not set, the coordinates are absolute (that is, relative to
the drawable's origin). The first vertex must be an absolute vertex.

• If VertexDontDraw is one, no line or curve is drawn from the previous vertex to
this one. This is analogous to picking up the pen and moving to another place before
drawing another line.

• If VertexCurved is one, a spline algorithm is used to draw a smooth curve from
the previous vertex through this one to the next vertex. Otherwise, a straight line is
drawn from the previous vertex to this one. It makes sense to set VertexCurved
to one only if a previous and next vertex are both defined (either explicitly in the
array or through the definition of a closed curve).

• It is permissible for VertexDontDraw bits and VertexCurved bits both to be
one. This is useful if you want to define the previous point for the smooth curve but
do not want an actual curve drawing to start until this point.

D - 2 Version 10 Compatibility Functions

• If VertexStartClosed is one, then this point marks the beginning of a closed
curve. This vertex must be followed later in the array by another vertex whose
effective coordinates are identical and that has a VertexEndClosed bit of one.
The points in between form a cycle to determine predecessor and successor vertices
for the spline algorithm.

This function uses these GC components: function, plane-mask, line-width, line-style,
cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.
It also uses these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawTiled achieves the effects ofXlO and XDrawFilled, use XDrawFilled.

#include <Xll/Xl0.h>

Status XDrawFilled(display, d, ge, vlist, vcount)
Display *display;
Drawable d;

display

d

gc

vlist

vcount

GC ge;
Vertex *Vlist;
int vcount;

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

Specifies a pointer to the list of vertices that indicate what to draw.

Specifies how many vertices are in vlist.

XDrawFilled draws arbitrary polygons or curves and then fills them.

This function uses these GC components: function, plane-mask, line-width, line-style,
cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.
It also uses these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, dash-list, fill-style, and fill-rule.

Version 10 Compatibility Functions D-3

0.2 Associating User Data with a Value
These functions are superseded by the context management functions (see section 10.12).
It is often necessary to associate arbitrary information with resource IDs. Xlib provides
the XAssocTable functions used in making such an association. Application programs
often must easily refer to their own data structures when an event arrives. The
XAssocTable system provides users of the X library with a method for associating their
own data structures with X resources (Pixmaps, Fonts, Windows, etc.).

An XAssocTable can be used to type X resources. For example, the user may want to
have three or four types of windows, each with different properties. This can be
accomplished by associating each X window ID with a pointer to a window property data
structure defined by the user. A generic type has been defined in the X library for
resource IDs. It is called an XID.

There are a few guidelines that should be observed when using an XAssocTable:

• All XIDs are relative to the specified display.

• Because of the hashing scheme used by the association mechanism, the
following rules for determining the size ofaXAssocTable should be followed.
Associations will be made and looked up more efficiently if the table size
(number of buckets in the hashing system) is a power of two and if there are not
more than 8 XIDs per bucket.

To return a pointer to a new XAssocTable, use XCreateAssocTable.

XAssocTable *XCreateAssocTable(sue)
int size;

size Specifies the number of buckets in the hash system of XAssocTable.

The size argument specifies the number of buckets in the hash system of XAssocTable.
For reasons of efficiency the number of buckets should be a power of two. Some size
suggestions might be: use 32 buckets per 100 objects, and a reasonable maximum
number of objects per buckets is 8. If an error allocating memory for the
XAssocTable occurs, a NULL pointer is returned.

To create an entry in a given XAssocTable, use XMakeAssoc.

XMakeAssoc (display, table, x id, data)
Display *dispiay; -
XAssocTable *table;
XID x id;
char *data;

D - 4 Version 10 Compatibility Functions

display

table

Specifies the connection to the X server.

Specifies the assoc table.

Specifies the X resource ID. x id

data Specifies the data to be associated with the X resource ID.

XMakeAssoc inserts data into an XAssocTable keyed on an XID. Data is inserted
into the table only once. Redundant inserts are ignored. The queue in each association
bucket is sorted from the lowest XID to the highest XID.

To obtain data from a given XAssocTable, use XLookUpAssoc.

char *XLookUpAssoc(d~pl~, tabk, x_id)
Display *d~pl~;
XAssocTable *table;
XID x_id;

display

table

Specifies the connection to the X server.

Specifies the assoc table.

x id Specifies the X resource ID.

XLookUpAssoc retrieves the data stored in an XAssocTable by its XID. If an
appropriately matching XID can be found in the table, XLookUpAssoc returns the data
associated with it. If the x)d cannot be found in the table, it returns NULL.

To delete an entry from a given XAssocTable, use XDeleteAssoc.

XDeleteAssoc(d~pl~, table, x id)
Display *d~pl~; -
XAssocTable *table;
XID x_id;

display

table

Specifies the connection to the X server.

Specifies the assoc table.

x id Specifies the X resource ID.

XDeleteAssoc deletes an association in an XAssocTable keyed on its XID.
Redundant deletes (and deletes of nonexistent XIDs) are ignored. Deleting associations in
no way impairs the performance of an XAssocTable.

XAssocTable Frees memory associated with a given XDestroyAssocTable.

XDestroyAssocTable (table)
XAssocTable *table;

Version 10 Compatibility Functions D - 5

table Specifies the assoc table.

D -6 Version 10 Compatibility Functions

HP Extensions E
To provide better integration with existing products and peripherals available with HP 9000
computers, a number of extensions have been added to the X Window System. These
extensions add to the existing X standard, creating a superset of functionality. These
features will work among all networked HP 9000 computers, but may not work with other
vendor's systems on the same network.

E.1 Input Device Extensions

The standard input model for X consists of a keyboard and a mouse. The actual devices
used may be something other than a keyboard or mouse, but the model assumes that one
device has keys and is treated like a keyboard and the other is a pointer that is treated like
a mouse. This input model meets the needs of most users and is what standard X client
programs expect.

This standard model of input has some limitations. For example, it does not provide a way
to easily use multiple input devices at the same time. In addition, in some applications a
mouse may not be the appropriate input device.

To meet this need and provide greater flexipility in the use of HP-HIL input devices with
X, an extended set of input features have been built into the X server and an extended
features library called libXhp 11.a. A programmatic interface is provided that can be used
by new or modified client programs.

None of these features are required in order for the X server or X clients to operate
correctly if only the standard input devices are desired. They are provided as extensions to
the capabilities of X that may be used in addition to the standard input features.

By default, the X server uses a mouse as the pointer device and a keyboard as its key
device (if they are attached). For information specifying other devices as the X pointer and
keyboard, refer to Using the X Window System (HP Part Number 98794-90001).

HP Extensions E -1

E.1.1 Programming with Extended Input

Existing client programs may be modified, or new client programs may be written to take
advantage of the extended input functions. These functions allow client programs to
determine what input devices are available, determine information about each device, and
access individual devices.

E.1.2 Listing Available Devices

To obtain a list of available input devices, use XHPListlnputDevices.

XHPDeviceList *XHPListlnputDevices (display, ndevices)
Display *display;
int *ndevices; 1* RETURN *1

display Specifies the connection to the X server.

ndevices Specifies as a return value the number of devices available.

XHPListlnputDevices returns information about the input devices that are available
to the X server, including the standard X keyboard and pointer devices. Each time it is
called it returns a pointer to an array of XHPDeviceList structures that contains
information about each device. The ndevices value returned specifies the number of
XHPDeviceList structures in the array. In <Xll/XHPlib. h >, the
XHPDeviceList structure is defined as follows:

typedef struct
{
unsigned int
unsigned short
unsigned short
} XHPaxis_info;

typedef struct
{

XID x_id;
char *name;
XHPaxis_info
unsigned short
unsigned short
unsigned short
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
} XHPDeviceList;

E -2 HP Extensions

resolution;
min_val;
max_val;

waxes;
type;
min_keycode;
max_keycode;
hil_id;
mode;
num_axes;
num_buttons;
num_keys;
io_byte;
pad[8]

1* resolution in countsl meter*1
1* min value this axis returns*1
1* max value this axis returns*1

1* device X identifier
1* device name
1* pointer to axes array
1* device type
1* min X keycode from this
1* max X keycode from this
1* device HIL identifier
1* ABSOLUTE or RELATIVE
1* I axes this device has
1* I buttons on this device

*1
*1
*1
*1

dev*1
dev*1

*1
*1
*1
*1

f* I keys on this device wi
1* 1/0 descriptor byte for dev*1
1* reserved for future use *1

The axes field of the HPDeviceLis t structure contains the address of an array of
XHPaxis_info structures. The num_axes field contains the number of elements in
this array. If the num _axe s field contains 0 (zero), the contents of the axe s field will
be NULL. In the XHPaxis info structure the resolution field contains the
resolution of the device in counts per meter. If the mode field of the XHPDeviceList
structure is ABSOLUTE, then the min_val and max_val fields contain the minimum
and maximum values the device can report. For relative pointing devices, these fields
contain 0 (zero).

The X pointer device is always the first device listed and has an x id field equal to the
constant XPOINTER. The X keyboard device is always listed second and has an x}d field
equal to the constant XKEYBOARD. In general, attempting to access the X keyboard or
pointer devices using the HP extension functions generates a BadDevice error.

A variety of device types are defined in <Xll/XHPlib. h >.

Name

MOUSE
TABLET
KEYBOARD
TOUCHSCREEN
TOUCHPAD
BUTTONBOX
BARCODE
ONE KNOB
NINE KNOB
TRACKBALL
QUADRATURE

Device Type

HP-HIL mouse
HP-HIL graphics tablet
HP-HIL keyboard
HP-HIL touchscreen
HP-HIL touchpad
HP-HIL buttonbox
HP-HIL barcode reader
HP-HIL single knob box
HP-HIL nine knob box
HP -HIL trackball
HP-HIL quadrature

XHPDeviceList returns NULL if there are no input devices to list.

E.1.3 Freeing the DeviceList

To free an XHPDeviceList array created by XHPListlnputDevices, use
XHPFreeDeviceList.

void XHPFreeDeviceList(ust)
XHPDeviceList *list;

list Specifies the XHPDeviceList to free.

HP Extensions E -3

When XHPListInputDevices is called it allocates memory to place the
XHPDeviceList array into. To free this allocated memory call
XHPFreeDeviceLis t with the XHPDeviceLis t list pointer as an argument. This
frees the memory previously allocated.

E.1.4 Enabling Extended Input Devices

To enable an extended input device, use XHPSetInputDevice.

int XHPSetlnputDevice (display ,deviceid ,mode)
Display *display;
XID deviceid;
int mode;

display

deviceid

mode

Specifies the connection to the X server.

Specifies the device to open or close. This is a deviceid listed in the
XHPDeviceList structure.

Controls the mode to which the device is set (ON I SYSTEM_EVENTS,
ON I DEVICE_EVENTS, or OFF).

XHPSetInputDevice allows a client program to request the server to open a device or
to close a device when it is no longer needed. The client may cause the device to be
treated as an extension of the X keyboard or X pointer by using the mode
SYSTEM_EVENTS, or as an individually-selectable device by using the mode
DEVICE_EVENTS. Valid values for the mode parameter are ON I SYSTEM_EVENTS,
ON I DEVICE_EVENTS, or OFF.

Most clients will want to use DEVICE_EVENTS so that the events generated by an
extended input device can be distinguished from those generated by the X keyboard and
pointer devices.

XHPSetInputDevice may return BadDeviceor BadMode errors. A BadMode
error is generated if another client has opened the device with a conflicting mode.

E.1.5 Getting the Event Select Mask and Event Type

Event masks and event types for the events returned by extended input devices are not
constants. Instead, they are allocated by the X server during its initialization. Therefore,
client programs must request from the server the event masks to be used to select
extended input and the event types to be compared with an event when it is received.

To obtain an event mask and event type for a specific extended input event, use
XHPGetExtEventMask.

E - 4 HP Extensions

int XHPGetExtEventMask (display, event constant, eventtype , mask)
Display *display; -
long event constant;
long *even-ttype; 1* RETURN *1
long *mask; 1* RETURN *1

display

event constant

eventtype

mask

Specifies the connection to the X server.

Specifies the constant corresponding to the extended event you wish
to receive.

Address of a variable into which the server can return the event type
for the extended input event.

Address of a variable into which the server can return the event mask
to use in selecting that event.

The client program must request the event mask and event type to be used in selecting the
events returned by devices. It does this by calling the server with a constant that
corresponds to the desired event. The server returns the event mask and event type for the
desired event. Valid constants that may be used by the client to request corresponding
event masks and types are shown in the following table:

HP Extensions E -5

Mask Request Description

HPDeviceKeyPressreq Request HPDeviceKeyPress event mask and
event type for a extended device.

HPDeviceKeyReleasereq Request HPDeviceKeyRelease event mask and
event type for an extended device.

HPDeviceButtonPressreq Request HPDeviceButtonPress event mask
and event type for an extended device.

HPDeviceButtonReleasereq Request HPDeviceButtonRelease event mask
and event type for an extended device.

HPDeviceMotionNotifyreq Request HPDeviceMotionNotify event mask
and event type for an extended device.

HPDeviceFocuslnreq Request HPDeviceFocusln event mask and
event type for an extended device.

HPDeviceFocusOutreq Request HPDeviceFocusOut event mask and
event type for an extended device.

HPProximitylnreq Request HPProximityln event mask and event
type for an extended device.

HPProximi tyOutreq Request HPProximi tyOut event mask and
event type for an extended device.

HPDeviceKeymapNotifyreq Request HPDeviceKeymapNotify event mask
and event type for an extended device.

HPDeviceMappingNotifyreq Request HPDeviceMapping event type for an
extended device. (There is no event mask for this
event.)

XHPGetExtMask may return a BadType error.

E.1.6 Selecting Input From Extended Input Devices

To select input from an extended input device, use XHPSelectExtensionEvent.

E -6 HP Extensions

XHPSelectExtensionEvent (display, window, deviceid, mask)
Display *display;
Window window;
XID deviceid;
Mask mask;

Specifies the connection to the X server. display

window Specifies the window ID. Client applications interested in an event for a
particular window pass that window's ID.

deviceid

mask

Specifies the device from which input is desired.

Specifies the mask of input events.

The XHPSelectExtensionEvent function is provided to support the use of input
devices other than the X keyboard and X pointer device. It allows input from extended
input devices, selected independently of those events generated by the X pointer and
keyboard.

XHPSelectExtensionEvent requests that the server send an extended event that
matches the specified event mask and is issued from the specified device and window. To
use this function, the client program must first determine the appropriate deviceid by
using the XHPListlnputDevice function, and the appropriate event mask by using
the XHPGetExtEventMask function. Multiple event masks returned by
XHPGetExtEventMask maybe OR'd together and specified in a single request to
XHPSelectExtensionEvent.

XHPSelectExtensionEvent cannot be used to select any of the core X events, or to
receive input from the X pointer or keyboard devices. Use the XSelectlnput function
for that purpose.

XHPSelectExtensionEvent may return a BadDeviceor BadWindow errors.

E.1.7 Grabbing Extended Input Devices

To actively grab an extended input device, use XHPGr abDevice.

XHPGrabDevice(display, deviceid, grab window, pointer mode, deviceytode, owner_events, time)
Display *display; - -
char deviceid;
Window grab window;
int pointer mode;
int device mode;
Bool owner events;
Time time;-

display Specifies the connection to the X server.

HP Extensions E -7

device id

grab _window

device mode

owner events

time

Specifies the ID of the device to grab.

Specifies the window ID of the window associated with the extended
input device being grabbed.

Specifies the pointer mode. Only the constant GrabModeAsync is
currently supported.

Specifies the device mode. Only the constant GrabModeAsync is
currently supported.

Specifies a boolean value of Trueor False.

Specifies the time. You can pass either a timestamp, expressed in
milliseconds, or CurrentTime.

The XHPGrabDevice function actively grabs control of the device and generates
HPDeviceFocusln and HPDeviceFocusOut events. Further device events are
reported only to the grabbing client. This function overrides any active input device grab
by this client. If owner events is False, all generated key events are reported with
respect to grab windo;. If owner events is True, then if a generated device event would
normally be reported to this client~ it is reported normally; otherwise the event is reported
with respect to the grab window. Regardless of any event selection by the client, both
HPDeviceKeyPress and HPDeviceKeyRelease events are always reported.

XHPGrabDevice cannot be used to grab the X pointer device or the X keyboard device.
The standard XGrabKeyboard and XGrabPointer functions should be used for that
purpose.

XHPGrabDevice can generate BadValue and BadWindow errors.

E.1.8 Ungrabbing Extended Input Devices

To release a previously grabbed extended input device, use XHPUngr abDevice.

*XHPUngr abDevi c e (display, deviceid, time)
Display *display;
XID deviceid;
Time time;

display

deviceid

time

Specifies the connection to the X server.

Specifies the ID of the device to grab.

Specifies the time. You can pass either a timestamp, expressed in
milliseconds, or CurrentTime.

E - 8 HP Extensions

The XHPUngrabDevice function releases the input device. The function does not
release the device and any queued events if the specified time is earlier than the last-grab
time or is later than the current X server time. It also generates HPDeviceFocus In
and HPDeviceFocusOut events. If the event window for an active device grab
becomes unviewable, the X server automatically performs an XHPUngrabDevice
request.

XHPUngrabDevice can generate a BadDevice error.

E.1.9 Grabbing Extended Input Device Buttons

To passively grab a particular button on an extended input device, use
XHPGrabDeviceButton.

XHPGrabDeviceButton(display, deviceid, button, modifiers, grab window, owner_events,
event mask, pointer mode, device mode) -

Display *display; - - -
XID deviceid;
unsigned int button;
unsigned int modifiers i
Window grab _window;
Bool owner events i
unsigned £nt event mask i
int pointer_mode, device_mode;

display

deviceid

button

modifiers

grab _window

owner events

event mask

Specifies the connection to the X server.

Specifies the ID of the desired device.

Specifies the code of the button that is to be grabbed. You can pass
either the button or Any Button.

Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: ShiftMask, LockMask, ControlMask,
ModlMask, Mod2Mask, Mod3Mask, Mod4Mask, ModSMask. You
can also pass AnyModifier, which is equivalent to issuing the grab
request for all possible modifier combinations (including the
combination of no modifiers).

Specifies the ID of a window associated with the device specified above.

Specifies a boolean value of either Trueor False.

Specifies which device events are to be reported to the client. They can
be the bitwise inclusive OR of these device mask bits:
DeviceButtonPressMask, DeviceButtonReleaseMask,
DevicePointerMotionMask,DeviceKeymapStateMask.

HP Extensions E -9

pointer_mode

device mode

Only the constant GrabModeAsync is currently supported.

Only the constant Gr abModeAsync is currently supported.

XHPGrabDeviceButton is provided to support the use of input devices other than the
X keyboard and the X pointer device. It allows a client to establish passive grab on a
button on an extended input device. That device must have previously been opened (turned
on) using XHPSetlnputDevice.

XHPGrabDeviceButton produces a BadAccess error if some other client has
issued a XHPGrabDeviceButton with the same device and button combination on the
same window. When using AnyModifier or AnyButton, the request fails completely
and the X server generates a BadAccess error and no grabs are established if there is a
conflicting grab for any combination.

XHPGrabDeviceButton can generate BadDevice, BadAccess, BadWindow,
and BadValue errors.

This function cannot be used to grab a button on the X pointer device. The core
XGrabButton function should be used for that purpose.

E.1.10 Ungrabbing Extended Input Device Buttons

To release previously grabbed extended input device buttons, use
XHPUngrabDeviceButton.

XHPUngr abDevi c eBut ton (display, deviceid, button, modifiers, ungrab _window)
Display *display;
XID deviceid;
unsigned int button;
unsigned int modifiers;
Window ungrab _window;

display

deviceid

button

modifiers

Specifies the connection to the X server.

Specifies the ID of the desired device.

Specifies the code of the button that is to be ungrabbed. You can pass
either the button or AnyButton.

Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: ShiftMask, LockMask, ControlMask,
ModlMask, Mod2Mask, Mod3Mask, Mod4Mask, ModSMask.
You can also pass AnyModifier, which is equivalent to issuing the
ungrab request for all possible modifier combinations (including the
combination of no modifiers).

E -10 HP Extensions

ungrab _window Specifies the ID of a window associated with the device specified
above.

XHPUngrabDeviceButton is provided to support the use of input devices other than
the X keyboard and the X pointer device. It allows a client to remove a grab on a button
on an extended input device. That device must have previously been opened (turned on)
using XHPSetlnputDevice.

XHPUngrabDeviceButton can generate BadDevice and BadWindow errors.

XHPUngrabDeviceButton cannot be used to ungrab a button on the X pointer
device. Use the core XUngrabButton function for that purpose.

E.1.11 Grabbing Extended Input Device Keys

To passively grab a particular key on an extended input device, use
XHPGrabDeviceButton.

XHPGrabDeviceKey (display. deviceid. keycode. modifiers. grab window. owner_events.
pointer mode. device mode) -

Display *display; - -
XID deviceid;
unsigned int bunon;
unsigned int modifiers;
Window grab window;
Bool owner events;
int pointer]node. device_mode;

display

deviceid

Specifies the connection to the X server.

Specifies the ID of the desired device.

button

modifiers

grab _window

owner events

Specifies the code of the key that is to be grabbed. You can pass either
the button or AnyKey.

Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: ShiftMask, LockMask, ControlMask,
ModlMask,Mod2Mask,Mod3Mask,Mod4Mask,ModSMask. You
can also pass AnyModifier, which is equivalent to issuing the grab
request for all possible modifier combinations (including the
combination of no modifiers).

Specifies the ID of a window associated with the device specified above.

Specifies a boolean value of either Trueor False.

HP Extensions E ·11

event mask

pointer_mode

device mode

Specifies which device events are to be reported to the client. They can
be the bitwise inclusive OR of these device mask bits:
DeviceButtonPressMask, DeviceButtonReleaseMask,
DevicePointerMotionMask,DeviceKeymapStateMask.

Only the constant GrabModeAsync is currently supported.

Only the constant GrabModeAsync is currently supported.

XHPGrabDeviceKey is provided to support the use of input devices other than the X
keyboard and the X pointer device. It allows a client to establish passive grab on a button
on an extended input device. That device must have previously been opened (turned on)
using XHPSetlnputDevice.

XHPGrabDeviceKey produces a BadAccess error if some other client has issued a
XHPGrabDeviceKey with the same device and button combination on the same
window. When using AnyModifier or AnyKey, the request fails completely and the X
server generates a BadAccess error and no grabs are established if there is a conflicting
grab for any combination.

XHPGrabDeviceKey can generate BadDevice, BadAccess, BadWindow, and
BadValue errors.

This function cannot be used to grab a key on the X keyboard device. The core
XGr abKey function should be used for that purpose.

E.1.12 Ungrabbing Extended Input Device Keys

To release previously grabbed extended input device keys on an extended input device, use
XHPUngrabDeviceKey.

XHPUngrabDeviceKey (display, deviceid, keycode, modifiers, ungrab _window)
Di splay *display;
XID deviceid;
unsigned int keycode;
unsigned int modifiers;
Window ungrab _window;

display

deviceid

keycode

Specifies the connection to the X server.

Specifies the ID of the desired device.

Specifies the code of the key that is to be ungrabbed. You can pass
either the key or AnyKey.

E -12 HP Extensions

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: ShiftMask, LockMask, ControlMask,
ModlMask, Mod2Mask, Mod3Mask, Mod4Mask, ModSMask.
You can also pass AnyModifier, which is equivalent to issuing the
ungrab request for all possible modifier combinations (including the
combination of no modifiers).

ungrab _window Specifies the ID of a window associated with the device specified
above.

XHPUngr abDeviceKey is provided to support the use of input devices other than the X
keyboard and the X pointer device. It allows a client to remove a grab on a key on an
extended input device. That device must have previously been opened (turned on) using
XHPSetlnputDevice.

XHPUngrabDeviceKey can generate BadDevice and BadWindow errors.

E.1.13 Getting Extended Input Device Focus

To obtain the focus window id and current focus state of an extended input device, use
XHPGetDeviceFocus.

XHPGetDeviceFocus (display, deviceid, focus return, revert to return)
Display *display; - - -
XID deviceid;
Window *focus return; /* RETURN * /
int *revert _to_return; /* RETURN * /

display

deviceid

Specifies the connection to the X server.

Specifies the ID of the device to examine.

focus Jeturn

revert to return

Returns the focus window ID, or either PointerRoot, or None.

Returns the current focus state. The function can return
RevertToParent,RevertToPointerRoot,or
RevertToNone.

The XHPGetDeviceFocus function returns the focus window ID and the current focus
state of the specified extended input device.

E.1.14 Setting Extended Input Device Focus

To set the input focus of an extended input device, use XHPSetDeviceFocus.

HP Extensions E -13

XHPSetDeviceFocus (display, deviceid, focus, revert_to, time)
Display *display;
KID deviceid;
Window focus;
int revert to;
Time time-;

display Specifies the connection to the X server.

Specifies the ID of the extended device. deviceid

focus

revert to

time

Specifies the window ID. This is the window in which you want to set the
input focus. You can pass a window ID or either PointerRoot or None.

Specifies which window the input focus reverts to if the window becomes not
viewable. You can pass RevertToParent, RevertToPointerRoot,
or RevertToNone.

Specifies the time. You can pass either a timestamp, expressed in
milliseconds, or CurrentTime.

The XHPSe tDeviceFocus function changes the input focus and the last-focus-change
time. The function has no effect if the specified time is earlier than the current last-focus­
change time or is later than the current X server time. Otherwise, the last -focus-change
time is set to the specified time (CurrentTime is replaced by the current X server
time). This function causes the X server to generate XHPDeviceFocusln and
XHPDeviceFocusOut events.

Depending on what value you assign to the focus argument, XHPSetDeviceFocus
executes as follows:

• If you assign None to the focus argument, all device events are discarded until a new
focus window is set, and the revert_to argument is ignored.

• If you assign a window ID to the focus argument, it becomes the device's focus
window. If a generated device event would normally be reported to this window or
one of its inferiors, the event is reported normally. Otherwise, the event is reported
relative to the focus window.

• If you assign PointerRoot to the focus argument, the focus window is
dynamically taken to be the root window of whatever screen the pointer is on at each
device event. In this case, the revert_to argument is ignored.

The specified focus window must be viewable at the time XHPSetDeviceFocus is
called. Otherwise, a Bad.~a tch error is generated. If the focus window later becomes
not viewable, the X server evaluates the revert to argument to determine the new focus
window: -

E ·14 HP Extensions

• If you assign RevertToParent to the revert to argument, the focus reverts to the
parent (or the closest viewable ancestor), and the new revert_to value is taken to be
RevertToNone .

• If you assign RevertToPointerRoot or RevertToNone to the revert to
argument, the focus reverts to PointerRoot or None, respectively. The-X server
generates HPDeviceFocusln and HPDeviceFocusOut events when the focus
reverts, but the last -focus-change time is not affected.

XHPSetDeviceFocus can generate BadMatch, BadValue, BadWindow, and
BadDevice errors.

E.1.15 Getting Current Extended Input Event Selection Masks

To obtain the current event selection mask for a specified extended input device and
window, use XHPGetCurrentDeviceMask.

XBPGetCurrentDeviceMask (display, window, deviceid, mask _ retum)
Display *display;
Window window i
XID deviceid;
Mask mask_return; /* RETURN */

display

window

deviceid

mask return

Specifies the connection to the X server.

Specifies the window ID of the window to examine.

Specifies the ID of the device to examine.

Returns the current extended input event mask.

XHPGetCurrentDeviceMask returns the current event selection mask for the
specified extended input device and the specified window. For standard input events, this
information is returned by the XGetWindowAttributes function.

XHPGetCurrentDeviceMask can return BadWindow, or BadDevice errors.

E.1.16 Getting Extended Device Motion History

To get the motion history for a specified extended device, window, and time, use
XHPGetDeviceMotionEvents.

This function is provided for client programs that need to receive every motion event
generated by the X server (such as graphics programs that allow the user to "paint" on the
screen). For most other programs, selecting motion events is sufficient. The X server
compresses motion events for the X pointer device and extended input devices.

HP Extensions E -IS

XHPXTimeCoord *XHPGetDeviceMotionEvents (display, deviceid,
W, start, stop, nevents Jetum)

Display *display;
XID deviceid;
Window w;
Time start, stop;
int *nevents Jetum ; /* RETURN */

display

deviceid

w

starl
stop

nevents return

Specifies the connection to the X server.

Specifies the extended input device.

Specifies the window ID. The only value currently supported for this
parameter is the constant: ALLWINDOWS.

Specify the time interval in which the events are returned from the
motion history buffer. You can pass a time stamp, expressed in
milliseconds, or CurrentTime. If the stop time is in the future, it is
equivalent to specifying CurrentTime.

Returns the number of events from the motion history buffer.

The XHPGetDeviceMotionEvents function returns all events in the motion history
buffer that fall between the specified start and stop times inclusive. If the start time is later
than the stop time or if the start time is in the future, no events are returned. The return
type for this function is a structure defined as follows:

typedef struct {
Time time;
short *data;

} XHPTimeCoord;

The time member is set to the time, in milliseconds. The data member is a pointer to an
array of motion values. The number of elements in this array is determined by the
num_axes field of the XHPDeviceList structure associated the device. You should
use XFree to free the data returned from this call.

XHPGetDeviceMotionEvents can generate a BadWindow, or BadDevice errors.

E.1.17 Enabling Auto-Repeat for Extended Input Device~

To enable auto-repeat for an extended input device, use XHPDeviceAutoRepeatOn.

XHPDeviceAutoRepeatOn(display, deviceid, mode)
Display *display;
XID deviceid;
unsigned int mode;

E -16 HP Extensions

display

deviceid

Specifies the connection to the X server.

Specifies the ID of the desired device.

mode Specifies the auto-repeat rate. Valid values are REPEAT_30, which causes
repeats to take place every l/30th of a second, and REPEAT_60, which
causes repeats to take place every l/6Oth of a second.

XHPDeviceAutoRepeatOn is provided to support the use of input devices other than
the X keyboard and X pointer device. It cannot be used to turn auto-repeat on for the X
keyboard device. The core XAutoRepeatOn function should be used for that purpose.

XHPDeviceAutoRepeatOn can generate BadDevice and BadValue errors.

E.1.18 Disabling Auto-Repeat for Extended Input Devices

To disable auto-repeat for an extended input device, use XHPDeviceAutoRepeatOff.

XHPDeviceAutoRepeatOff (display, deviceid)
Display *display;
XID deviceid;

display

deviceid

Specifies the connection to the X server.

Specifies the ID of the desired device.

XHPDeviceAutoRepeatOff is provided to support the use of input devices other than
the X keyboard and X pointer device. It cannot be used to turn auto-repeat off for the X
keyboard device. The core XAutoRepeatOff function should be used for that purpose.

XHPDeviceAutoRepeatOff can generate BadDevice and BadValue errors.

E.1.19 Sending a Prompt to Extended Input Devices

To turn on a prompt on an extended input device, use XHPPrompt.

XHPPrompt (display, deviceid, prompt)
Display *display;
XID deviceid;
unsigned int prompt;

display

deviceid

Specifies the connection to the X server.

Specifies the ID of the desired device.

prompt Specifies the prompt to be sent. Valid values are; ~ENERAL _PROMPT,
PROMPT_l,PROMPT_2,PROMPT_3,PROMPT_4,PROMPT_S,
PROMPT _6, and PROMPT _7.

HP Extensions E -17

XHPPrompt sends a prompt to an input device. For example, you can use this function to
turn on the prompt light on the HP 46086A 32-button box.

The io byte field of the XHPDeviceLis t structure, which is returned by the
XHPListlnputDevices function, reports which prompts and acknowledges are
supported by the device. Bit 7 of the io _byte field corresponds to GENERAL_PROMPT,
while bits 6,5, and 4 are taken as a number between 1 and 7, meaning that prompts
numbered 1 through that number are supported.

XHPPrompt can generate BadDevice and BadValue errors.

E.1.20 Sending an Acknowledge to Extended Input Devices

To send an acknowledge signal to an extended input device, use XHPAcknowledge.

XHPAcknowledge (display, deviceid, acknowledge)
Display *display;
XID deviceid;
unsigned int acknowledge;

display

deviceid

acknowledge

Specifies the connection to the X server.

Specifies the ID of the desired device.

Specifies the acknowledge to be sent. Valid values are:
GENERAL_ACKNOWLEDGE, ACKNOWLEDGE_I, ACKNOWLEDGE_2,
ACKNOWLEDGE_3,ACKNOWLEDGE_4,ACKNOWLEDGE_S,
ACKNOWLEDGE_ 6, and ACKNOWLEDGE _7.

XHPAcknowledge sends a acknowledge to an input device. For example, you can use
this function to turn off the prompt light on the HP 46086A 32-button box.

The io byte field of the XHPDeviceList structure (returned by the
XHPL:LstlnputDevices function) reports which prompts and acknowledges are
supported by the device. Bit 7 of the io byte field corresponds to
GENERAL_ACKNOWLEDGE, while bits 6,5, and 4 are taken as a number between 1 and 7,
meaning that acknowledges numbered 1 through that number are supported.

XHPAcknowledge can generate BadDevice and BadValue errors.

E.1.21 Getting Control Attributes of Extended Input Devices

To get the control attributes of an extended input device, use XHPGetDeviceControl.

XHPGetDeviceControl (display, deviceid, values return)
Display *display; -
XID deviceid;
XHPDeviceState *values ..!eturn ;

E -18 HP Extensions

display Specifies the connection to the X server.

deviceid

values return

Specifies the ID of the device whose attributes are to be changed.

Specifies a pointer to the XHPDeviceState structure in which the
device values will be returned.

XHPGetDeviceControl returns the control attributes of input devices (other than the
X keyboard and X pointer devices). The specified device must have previously been
opened (turned on) with XHPSetlnputDevice.

XHPGetDeviceControl returns the control attributes of the device in the
XHPDeviceState structure defined as follows:

typedef struct {
int key_click-percent;
int bell-percent;
unsigned int bell-pitch;
unsigned int bell_duration;
unsigned long led_mask;
int global_auto_repeat;
int accelNumerator;
int accelDenominator;
int threshold;
char auto_repeats[32];

} XHPDeviceState;

For the LEDs, the lease significant bit of led mask corresponds to LED one, and each bit
set to 1 in led mask indicates an LED that is-lit. The auto repeats member is a bit vector.
Each bit set to' 1 indicates that auto repeat is enabled for the corresponding key. The
vector is represented as 32 bytes. BYte N (from 0) contains the bits for keys SN to SN + 7,
with the least significant bit in the byte representing key SN. The global_auto _repeat
member can be set to either AutoRepeatModeOn or AutoRepeatModeOff.

This function generates a BadValue error if the specified device does not exist, was not
previously enabled with XHPSetlnputDevice, or is the X system pointer or X system
keyboard.

E.1.22 Setting Control Attributes of Extended Input Devices

To set control attributes of an extended input device, use XHPChangeDeviceControl.

XHPChangeDeviceControl (display, deviceid, value_mask, values)
Display *display;
XID deviceid;
unsigned long value mask;
XHPDeviceControl *Values;

display Specifies the connection to the X server.

HP Extensions E -19

deviceid Specifies the ID of the device whose attributes are to be changed.

value mask Specifies which attributes are to be changed. Each bit in the mask specifies
one attribute of the specified device.

values Specifies a pointer to the XHPDeviceControl structure containing the
values to be changed.

XHPChangeDeviceControl allows the control attributes of input devices (other than
the X keyboard and X pointer devices) to be changed. The specified device must have
previously been opened (turned on) with XHPSetlnputDevice.

The attributes to be changed are specified in the XHPDeviceAttributes structure.
They are not actually changed unless the corresponding bit is set is set in the value _mask
parameter. The following masks can be ORed into the value_mask:

#define DVKeyClickPercent
#define DVBellPercent
#define DVBellPitch
#define DVBellDuration
#define DVLed
#define DVLedMode
#define DVKey
#define DVAutoRepeatMode
#define DVAccelNum
#define DVAccelDenom
#define DVThreshold

(1L«0)
(1L«1)
(1L«2)
(1L«3)
(lL«4)
(1L«5)
(1L«6)
(lL«7)
(1L«8)
(1L«9)
(lL«10)

The fields of the XHPDeviceControl structure are defined as follows:

typedef struct {
int key_click-percentj
int bell-percentj
int bell-pitchj
int bell_durationj
int ledj
int led_modej
int keyj
int auto_repeat_modej
int accelNumeratorj
int accelDenominatorj
int thresholdj

} XHPDeviceControlj

The key_click yercent and bell yercent members set the volume for key clicks or bell.
Allowed values are 0 (off) through 100 (loud). The bell yitch member sets the pitch (in
Hz) of the bell, if possible. The bell_duration member sets the duration (in miHiseconds)
of the bell, if possible. A value of -1 for any of these members restores the respective
default value. Any other negative value generates a BadValue error.

E -20 HP Extensions

If both the led and led mode members are specified, the state of that LEO is changed, if
possible. The led mode member can be set to LedModeOn or LedModeOff. If only
led mode is specified, the state of all LEOs are changed, if possible. At most, 32 LEOs
(miinbered from one) are supported. No standard interpretation of LEOs is defined. If an
led is specified without an led_mode, a BadMa tch error is generated.

If both the auto repeat mode and key members are specified, the key and
auto repeat mOde metiibers are specified, the auto repeat mode of that key is changed
according to-Au toRepea tModeOn, Au toRepea tModeOf f, or
AutoRepeatModeDefaul t, if possible. If only auto repeat mode is specified, the
global auto repeat mode for the entire device is changed and does not affect the per key
settings. If ;- key is specified without and auto repeat mode, a BadMatch error is -
generated. - -

E.1.23 Getting the Key Mapping of Extended Input Devices

To get the key mapping of an extended input device, use XHPGetDeviceKeyMapping.

XHPGetDevi c eKeyMapping (display I deviceid I first J'eycode _wanted I keycode _count I keysyms"per _ keycode Jetum)
Display *display;
XID deviceid;
KeyCode first _ keycode _wanted;
int keycode count;
in t keysyms yer _ keycode Jetum ;

display

deviceid

first _ keycode _wanted

keycode _count

Specifies the connection to the X server.

Specifies the 10 of the device whose keymap is to be
returned.

Specifies the first keycode to be returned.

Specifies the number of keycodes that are to be
returned.

Specifies the number of keysyms per keycode.

XHPGetDeviceKeyMapping allows a client program to read and use the key symbols
for the keycodes generated by an extended input device (other than the X keyboard and X
pointer devices). The specified device must have previously been opened (turned on) with
XHPSetlnputDevice.

HP Extensions E -21

Starting with first_keycode_wanted, XHPGetDeviceKeyMapping returns the symbols
for the specified number of KeyCodes. The specified first keycode must be greater than
or equal to min _ keycode supplied at connection setup and stored in the Dis play
structure. Also, max keycode must be greater than first keycode + keycode count - 1. If
either of these conditions is not met, the function returns a BadValue erro~. The number
of elements in the KeySyms list is: keycode _count * keysyms yer _code + N.

KeySym number N, counting from zero, for KeyCode K has the following index in
keysyms: (K - first_ keycode _wanted) * keysyms yer _ keycode _return + N.

The specified keysyms yer _ keycode _return can be chosen arbitrarily by the client to be
large enough to hold all desired symbols. A special KeySym value of NoSyrnbol should
be used to fill in unused elements for individual KeyCodes.

XHPGetDeviceKeyMapping can generate BadDevice and BadValue errors.

E.1.24 Changing the Key Mapping of Extended Input Devices

To change the key mapping of an extended input device, use
XHPChangeDeviceKeyMapping.

XHPChangeDevi c eKeyMapping (display, deviceid, first _ keycode, keysyms yer _ keycode, keysyms, num _codes)
Display *display;
XID deviceid;
int first keycode;
int keysyms yer _ keycode ;
KeySyms *keysyms;
int num_codes;

display

deviceid

keysyms yeT _ keycode

keysyms

num codes

Specifies the connection to the X server.

Specifies the ID of the device whose key map is to be changed.

Specifies the first keycode that is to be changed.

Specifies the number of keysyms per keycode.

Specifies a pointer to an array of keysyms that are to be used.

Specifies the number of keycodes that are to be changed.
XHPDeviceState structure in which the device values will be
returned.

XHPChangeDeviceKeyMapping allows a client program to define the key symbols
for the keycodes generated by an extended input device (other than the X keyboard and X
pointer devices). The specified device must have previously been opened (turned on) with
XHPSetlnputDevice.

E -22 HP Extensions

Starting with first keycode, XHPChangeDeviceKeyMapping defines the symbols for
the specified number of keycodes. The symbols for keycods outside this range remain
unchanged. The number of elements must be: num _codes * keysyms yer _ keycode.
(Otherwise, a BadLength error is generated.)

The specified first_ keycode must be greater than or equal to min _ keycode supplied at
connection setup and stored in the Display structure. Also, max_keycode must be
greater than first_ keycode + (num _codes / keysyms yer _ keycode) - 1. If either of these
conditions is not met, the function returns a BadVa 1 ue error.

KeySym number N, counting from zero, for KeyCode K has the following index in
keysyms: (K - first_ keycode) * keysyms yer _ keycode + N.

The specified keysyms yer _ keycode can e chosen arbitrarily by the client to be large
enough to hold all desired symbols. A special KeySym value of NOSymbol should be used
to fill in unused elements for individual KeyCodes. NOSymbolmaya KeyCode.
XHPChangeDeviceKeyMapping generates a MappingNotify event.

There is no requirement that the X server interpret this mapping. It is merely stored for
reading and writing by clients.

E.1.25 Setting the Modifier Mapping of Extended Input Devices

To change the modifier mapping of an extended input device, use
XHPSetDeviceModifierMapping.

XHPSetDeviceModifierMapping (display, deviceid, modmap)
Display *display;
XID deviceid;
int *modmap;

Specifies the connection to the X server. display

deviceid Specifies the 10 of the device whose whose keymap is to be changed.

modmap Specifies a pointer to an XModifierKeymap structure.

XHPSetDeviceModifierMapping allows a client program to define the keycodes
that are to be used as modifiers for an extended input device (other than the X keyboard
and X pointer devices). The specified device must have previously been opened (turned
on) with XHPSetlnputDevice.

XHPSetDeviceModifierMapping specifies the KeyCodes of the keys, if any, that
are to be used as modifiers for the specified input device. X permits up to eight modifier
keys. If more than eight are specified in the XModifierKeymap structure, a
BadLength error is generated.

HP Extensions E· 23

There are eight modifiers, and the modifiermap member of the XModifierKeymap
structure contains eight sets of max keypermod KeyCodes, one for each modifier in the
order Shift, Lock, Control, ModI, Mod2, Mod3, Mod4, and ModS Only nonzero
KeyCodes have meaning in each set (zero KeyCodes are ignored). If a nonzero KeyCode
is given outside the range specified by min keycode and max keycode in the Display
structure, or a KeyCode appears more them once in the entire map, a BadValue error is
generated.

An X server can impose restrictions on how modifiers can be changed (for example, if
certain keys do not generate up transitions in hardware or if multiple modifier keys are not
supported). If some such restriction is violated, the status reply is MappingFailed, and
none of the modifiers are changed. If the new KeyCodes specified for a modifier differ
from those currently defined and any (current or new) keys for that modifier are in the
logically down state, the status reply is MappingBusy, and no modifier is changed.
XHPSetDeviceModifierMapping generates a DeviceMappingNotify event
when it returns MappingSuccess.

XHPSetDeviceModifierMapping can generate BadDevice, BadLength, and
BadValue errors.

E.1.26 Getting the Modifier Mapping of Extended Input Devices

To get the modifier mapping of an extended input device, use
XHPGetDeviceModifierMapping.

XHPGetDeviceModifierMapping (display, deviceid)
Display *display;
XID deviceid;

display

deviceid

Specifies the connection to the X server.

Specifies the ID of the device whose modifier map is requested.

XHPGetDeviceModifierMapping allows a client program to read and use the keys
being used as modifiers for an extended input device.

XHPGetDeviceModifierMapping returns a newly created XModifierKeymap
structure that contains the keys being used as modifiers for the specified device. The
structure should be freed after use by calling XFreeModifiermap. If only zero values
appear in the set for any modifier, that modifier is disabled.

XHPGetDeviceModifierMappi~g can generate a BadDevice error.

E -24 HP Extensions

E.1.27 Getting the Server Mode

Some displays have both image and overlay planes. For those displays, there are four
combinations of image and overlay planes in which the server can run. To get the current
mode of a specified screen, use XHPGetServerMode.

XHPGetServerMode (display, screen)
Display *display i
int screen i

display Specifies the connection to the X server.

screen Specifies the number of the screen whose mode is requested.

XHPGetServerMode allows a client program to determine the mode of a particular
screen. The mode returned is an integer that can be compared against the following
predefined modes:

XHPOVERLAY MODE The X server is running in the overlay planes.

XHPlMAGE MDOE The X server is running in the image planes.

XHPSTACKED_SCREENS_MODE The X server is running with the overlay and image
planes on different screens.

XHPCOMBINED MODE The X server is running in both the overlay and
image planes.

These constants can be obtained by including the file <Xll/XHPproto. h>. For more
information on using these modes, refer to chapters 7 and 9 in Using the X Window System
(HP part number 98794-90001).

If an invalid screen number is used, a -1 is returned by this function.

E.2 Image Input/Output Library Functions

The image I/O library functions describe in this section are provided to enable developers
to produce window or pixmap hardcopy from within their application programs. These
functions provide a path to and from image files stored in the xwd format.

The functions all return a zero result on successful completion. Integer error numbers
(defined in <Xll/XHPlmageIO. h» are returned if problems are encountered.

HP Extensions E - 25

E.2.1 Saving the Contents of a Window

To save the contents of a rectangular window area in a file, use XHPWindowToFi Ie.

int XHPrlindowToFile (display I w I X I Y I width I height I plane mask I format I filename)
Display *display i -
Window wi
int X, Yi
unsigned int width I height i
long plane mask i
int format;
char *filename i

display

w

x
y

width
height

plane_mask

format

Specifies the connection to the X server.

Specifies the window ID. This is the where the image to be saved is found.

Specify the x and y coordinates. These coordinates define the upper left
corner of the rectangle and are relative to the origin of the drawable.

Specify the width and height of the subimage. These arguments define the
dimensions of the rectangle.

Specifies the plane mask.

Specifies the format for the image. You can pass one of these constants:
XYPixmap or ZPixmap.

filename Specifies the file name to use. The format of the file name is operating
system specific.

The XHPWindowToFile function saves the specified window rectangle in the format
defined by the xwd (X Window Dump) utility program. This stores a file header and color
map along with the image.

The plane_mask parameter controls which image planes will be included in the file. A
value of NO (or -1) can be given to have all image planes stored.

Images saved using XHPWindowToFile may be viewed using the xwud utility or
restored under program control using XHPFileToWindow or XHPFileToPixmap.

Hardcopy of a saved image can be generated using the xpr utility or by translating the
image into Starbase format using xwd2sb and piping the result to the pcl trans utility.
This can be done under program control using the system(3S) library routine to issue the
appropriate shell command.

E -26 HP Extensions

E.2.2 Saving a Pixmap

To save the contents of a rectangular pixmap area in a file, use XHPPixmapToFile.

int XHPPixmapToFile (dis-play, pixmap, color _ w, x, y, width, height, plane_mask, format, filename)
Display *dis-play;
Pixmap pixmap ;
Window color w;
int x, y; -
unsigned int width, height;
long plane mask;
int format;
char *filename;

display

pixmap

color w

x
y

width
height

plane_mask

fonnat

Specifies the connection to the X server.

Specifies the pixmap ID. This is the where the image to be saved is found.

Specifies a window ID. This wir :!ow's colormap will be saved in the image
file. Visual attributes associated with this window are used in constructing
the image file header.

Specify the x and y coordinates. These coordinates define the upper left
corner of the rectangle and are relative to the origin of the drawable.

Specify the width and height of the subimage. These arguments define the
dimensions of the rectangle.

Specifies the plane mask.

Specifies the format for the image. You can pass one of these constants:
XYPixmap or ZPixmap.

filename Specifies the file name to use. The format of the file name is operating
system specific.

The XHPPixmapToFile function is similar to XHPWindowToFile but requires an
additional parameter to specify the color map to be stored with the image. If the color w
parameter is zero then the root window associated with the pixmap is used to derive vi;ual
attributes and the colormap which gets stored in the image file.

E.2.3 Displaying a Stored Image

To transfer an image stored in a file into a window, use XHPFileToWindow.

HP Extensions E - 27

int XHPFileToWindow(display, w, modify_cmap, ge, src_x, srcy, dst_x, dsty, width, height, filename>
Display *display;
Window w;
int modify cmap;
GC gc; -
int src_x, srcy;
int dst_x, dsty;
unsigned int width, height;
char *filename;

display Specifies the connection to the X server.

w Specifies the window ID. This is where the image will be placed.

modify _cmap Specifies color map modification. If zero the window's color map is
unchanged, if nonzero the window's color map will be updated from color
map data contained in the image file.

gc Specifies the graphics context.

src x
srcy

dst x
dsty

width
height

Specify the x and y coordinates of the upper left corner of the rectangle to
be transferred from the image file.

Specify the x and y coordinates within the window where the upper left
corner of the image will be drawn.

Specify the width and height of the subimage. These arguments define
the dimensions of the rectangle.

filename Specifies the file name to use. The format of the file name is operating
system specific.

The XHPFileToWindow function transfers an image saved in a file in the xwd (X
Window Dump) format into a window.

The graphics context specified by the gc parameter is used to control image transfer
details. Refer to the "Transferring Images Between Client and Server" section in chapter
6 of this manual.

If the gc parameter is zero then the default graphics context for the display's default screen
will be used.

E -28 HP Extensions

E.2.4 Displaying a Stored Pixmap

To transfer an image stored in a file into a pixmap, use XHPFileToPixmap.

int XHPFileToPixmap(display, pixmap, cmap, ge, src_x, srcy, dst_x, dsty, width, height, filename)
Display *displuy;
Pixmap pixmap ;
Colormap cmap;
GC ge;
int src _x, src y ;
int dst_x, dsty;
unsigned int width, height;
char *filename;

display

pixmap

cmap

gc

src X

srcy

dst X

dsty

width
height

Specifies the connection to the X server.

Specifies the pixmap ID. This is the where the image will be placed.

Specifies the color map ID. If nonzero, this color map will be updated from
the color map data contained in the image file.

Specifies the graphics context.

Specify the x and y coordinates of the upper left corner of the rectangle to be
transferred from the image file.

Specify the x and y coordinates within the window where the upper left corner
of the image will be drawn.

Specify the width and height of the subimage. These arguments define the
dimensions of the rectangle.

filename Specifies the file name to use. The format of the file name is operating
system specific.

The XHPFileToPixmap function is similar to XHPFileToWindow but has a cmap
parameter to directly specify the color map to be modified by the colormap stored in the
image file. If cmap is zero no colormap modification will occur.

E.2.S Getting the Image File Header Structure

Use XHPQuerylmageFile to get an image file header structure for a particular image
file. For example, you might use this function to determine the size (or other attributes) of
an image before displaying it.

HP Extensions E -29

int XHPQuerylmageFile (filename, xwd header return)
char *filename; --
XWDFileHeader *xwd _header Jeturn ;

filename

xwd header return - -

Specifies the file name to use. The format of the file name is
operating system specific.

Returns information about the stored image in the
XWDFileHeader structure.

The file <Xll/XWDFile. h> is listed here for reference. Using the
XHPQuerylmageFile function, the programmer can access information in an image
file's header structure.

E -30 HP Extensions

'include <X11/copyright.h>

1* Copyright 1985, 1986, Massachusetts Institute of Technology *1

1* $Header: XWDFile.h,v 1.1 87109/23 10:05:36 leichner Exp $ *1
1*
* XWDFile.hMIT Project Athena, X Window system window raster
* image dumper, dump file format header file.

* * Author: Tony Della Fera, DEC
* 27-Jun-85

*
William F. Wyatt, SAO * Modifier:

* 18-Nov-86 - version 6 for saving/restoring color maps
*1

typedef unsigned long xwdval;

typedef struct xwd file header {
xwdval he~de~size; 1* Size of the entire file header (bytes). *1
xwdval file_version; 1* XWD_FILE_VERSION *1
xwdval pixmap_format; 1* Pixmap format *1
xwdval pixmap_depth; 1* Pixmap depth *1
xwdval pixmap_width; 1* Pixmap width *1
xwdval pixmap_height; 1* Pixmap height *1
xwdval xoffset; 1* Bitmap x offset *1
xwdval byte_order; 1* MSBFirst, LSBFirst *1
xwdval bitmap_unit; 1* Bitmap unit *1
xwdval bitmap_bit_order; 1* MSBFirst, LSBFirst *1
xwdval bitmap-pad; 1* Bitmap scanline pad *1
xwdval bits-per-pixel; 1* Bits per pixel *1
xwdval bytes-per_line; 1* Bytes per scanline *1
xwdval visual_class; 1* Class of colormap *1
xwdval red_mask; 1* Z red mask *1
xwdval green_mask; 1* Z green mask *1
xwdval blue_mask; 1* Z blue mask *1
xwdval bits-per_rgb; 1* Log base 2 of distinct color values */
xwdval colormap_entries; 1* Number of entries in colormap *1
xwdval ncolors; 1* Number of Color structures */
xwdval window_width; 1* Window width *1
xwdval Window_height; /* Window height *1
long window x; /* Window upper left X coordinate */
long window=y; 1* Window upper left Y coordinate */
xwdval window_bdrwidth; 1* Window border width */

XWDFileHeader;

HP Extensions E -31

E.3 National Language I/O Support
The X Library (Xlib) supports input and output of both 8-bit and 16-bit characters in many
situations. The 16-bit I/O capability is implemented by the National Language I/O
subsystem available for HP 9000 computers. (The national language subsystem is available
in several Asian languages.) This extends the standard X font functionality to provide

• mixed 8- and 16-bit character output for applications using the XII Library.

• 16-bit character input and output for applications using the Xr1llibrary for input
and output. See the Programming with the Xrlib User Interface Toolbox manual for
more information.

National language I/O is supported for 16-bit character fonts that are indexed by"HP-IS"
code. Each font typically includes both 8-bit and 16-bit characters.

E.3.1 Xlib Support

The Xl1 Library (Xlib) provides transparent text handling capability, independent of the
difference between 8-bit and 16-bit characters, for the following six Xlib functions.

• XTextWidth

• XTextExtents

• XQueryTextExtents

• XDrawText

• XDrawString

• XDrawImageString

For the these functions to use a single 8-bit and 16-bit mixed font, the following five Xlib
functions provide the capability which concurrently loads and unloads separated 8-bit
(font) and 16-bit (associate font) files.

• XLoadFont

• XQueryFont

• XLoadQueryFont

• XFreeFont

• XUnloadFont

E -32 HP Extensions

If the following conditions are fulfilled when loading a font with XLoadFont, and
XLoadQueryFont, an 8- and 16-bit mixed font will be loaded by Xlib, until
XFreeFont or XUnloadFont are called.

1. There exists a language designation in the specified font.

2. The XLoadFont and XLoadQueryFont functions look for the language
designation in the following order.

• First examine the value of the font property LANGUAGE. This is a 8-bit
STRING type property.

• Next examine the value of the environment variable LANG.

Currently, "japanese", "korean", "chinese-s", and "chinese-t" are supported as
valid LANGUAGE property or LANG environment variable designations.

• There exists the associate font designation in the specified font.

XLoadFont and XLoadQueryFont look for the associate font via the
following mechanism:

• First examine the value of the font property ASSOCIATE_FONT. This is an
8-bit STRING type property.

• Next examine the value of the environment variable XASSOCFONT.

• If neither the ASSOCIATE_FONT property or XASSOCFONT environment
variable are set, then the name of the font file is used as the associate font.

XLoadFont and XLoadQueryFont look for the font properties LANGUAGE and
ASSOCIATE_FONT in the specified font first. If either or both are undefined, then the
environment variables LANG and XASSOCFONT are examined instead. If neither
properties or environment values are defined the name of the font file is used as the
associate font designation.

If the logically mixed font is implicitly specified as the font argument for XTextWidth,
XTextExtents,XQueryTextExtents, XDrawText, XDrawString, 0 r
XDrawImageString, then the string argument for these functions may point to a string
containing mixed 8- and 16-bit characters encoded by HP-15. Otherwise, all the characters
will be interpreted as 8-bit characters. This provides transparency with standard XII fonts.

HP Extensions E -33

E.3.2 Getting the Associate Font

For a font, which includes both the language and the associate font designations,
XQueryFont and XLoadQueryFont return a pointer to the XFontStruct
structure of the specified font as expected. To obtain the XFontStruct of the associate
font, use the XHPGet16bitMixedFontStruct.

XFontStruct *XHPGet16bitMixedFont(font)
XFontStruct font;

font Specifies the font ID.

XHPGet16bitMixedFontStruct returns a pointer to an XFontStruct structure
of the associated font, if the specified font is a mixed 8- and 16-bit font. If the font
specified is not a 8- and 16-bit mixed font, then NULL is returned.

E.3.3 Checking for 16-bit Characters

To determine if two bytes are defined as a 16-bit character for a specified font, use
XHPIs16bitCharacter.

Bool XHPIs16bi tCharacter (font, by tel , byte2)
Font font;
unsigned char by tel ,

byte2;

font specifies the font to check for a 16-bit character.

by tel specifies the first byte of a 16-bit character.

byte2 specifies the second byte of a 16-bit character. XHPIs16bitCharacter
returns True if by tel and byte2 are defined as the first and second bytes of a 16-
bit character. In this function, the 16-bit character is based on HP-15 encoding
determined by the language designation included in the specified font.

E.3.4 Conversions Between X11 Keysyms and HP Roman 8 codes

To convert an Xll Keysym into an HP Roman 8 character, use the
XHPKeysymToRoman8 function.

int XHPKeysymToRoman8 (keysym, r8 return)
Keysym keysym; -
char *r8..!eturn; 1* RETURN *1

keysym Specifies an Xll KeySym.

E -34 HP Extensions

r8 return Specifies a pointer to a location to receive the converted Roman 8 character
to keysym, if any.

XHPKeysymToRornan8 takes an Xll KeySym and converts it to an HP Roman 8
character. The character is returned to the location pointed to by r8 return. If no Roman
8 character for keysym exists, then XHPKeysyrnToRornan8 returns 0' (zero) and
*r8..!eturn remains unchanged.

Some Keysyms are unique to Hewlett-Packard equipment because Roman 8 contains
characters that were not encoded in the Keysyms distributed by MIT. To convert an HP
Roman 8 character into an Xll KeySym, use XHPRornan8ToKeysym.

Keysym XHPRoman8ToKeysym (r8 char)
char r8_char; -

XHPRornan8ToKeysyrn takes an HP Roman 8 character and returns a KeySym.

NOTE

Most of the KeySyms returned by XHPRornan8ToKeysym will be
ISO Latin-l and various terminal functions. Two of the characters in
the Roman 8 set (,S' with caron and's' with caron) convert to
Keysyms in the ISO Latin-2 set.

E.4 Locking an X Display

To provide better security for workstations and allow client programs to disable the key
sequence used to reset the X server, the following functions may be used.

E.4.1 Disabling the Reset Key Sequence.

The X server may be terminated by pressing a particular set of keys. By default, that set is
left shift, control, and reset.

To disable the reset key sequence, use XHPDisableReset.

XHPDisableReset(d~play)
Display d~play;

display specifies the display.

HP Extensions E -35

This function is intended for use by client programs such as xsecure that provide security to
systems running the X Window System. If a client program disables the reset sequence and
exits without reenabling it, the reset sequence is automatically enabled by the server.

XHPDisableReset will fail with a BadAccess error, if another client has already
disabled the reset key sequence.

E.4.2 Enabling the Reset Key Sequence.

To enable the reset key sequence, use XHPEnableReset.

XHPEnableReset(d~pl~)
Display d~pl~;

display specifies the display.

XHPEnableReset enables the key sequence that is pressed to reset the X server. This
function will fail with a BadAccess error, if this client did not previously disable the key
sequence with XHPDisableReset.

E.S Support for Multiple Error Handlers

To establish multiple error handling routines for a single process (up to one routine per
connection to the server), use XHPSetErrorHandler.

#include <Xll/XHPlib.h>
typedef int (*PFI) ();
XHPSetErrorHandler (d~pl~, routine)

Display *d~pl~;
int (*routine) ();

int routine (d~pl~, error)
Display *d~pl~ ;
XErrorEvent *error;

This function registers with Xlib the address of a routine to handle X errors. It is intended
to be used by libraries and drivers that wish to establish an error handing routine without
interfering with any error handling routine that may have been established by the client
program.

XHPSetErrorHandler records one error handling routine per connection to the
server. Therefore, for a library or driver to set up its own error handling routine without
affecting that of the client, the library or driver must first have established its own
connection to the server via XOpenDisplay.

E - 36 HP Extensions

When an XErrorEvent is received by the client, which error handling routine is invoked
is determined by the display associated with the error. If the display matches that
associated with a driver error handling routine, that error handling routine is invoked. If it
does not match any driver routine, the error handling routine established by the client, if
any exists, is invoked. Otherwise, the default Xlib error handler is invoked.

XHPSetErrorHandler returns the address of the previously established error handler.
If that error handler was the default error handler, NULL is returned.

A driver or library may remove its error handler by invoking XHPSetErrorHandler
with a NULL error handling routine.

HP Extensions E -37

HP Window Manager
Programmatic Interface F
This appendix describes the programmatic interface to the Hewlett-Packard Window
Manager (hpwm). The conventions presented here (and earlier in this manual) describe
how clients can be written to be "good citizens" in the X environment.

The purpose of the programmatic interface is to allow clients to communicate preferences
to the window manager. This includes information about the size and placement of the
window on the screen, the name of the window, the image on the icon, and so on. The
general X window management philosophy is that clients should work without knowing or
caring which window manager is being used (or even whether one is being used at all). If a
window manager is present, the client should abide by the decisions of that window
manager. For example, if the window manager denies a resize request, the client should
make do with its current size.

F.1 Window Management Calls
Clients communicate with the window manager through properties associated with top­
level windows, synthetic events (generated using XSendEvent ()) and standard X
events. Programmatically this communication involves Xlib calls, either directly or through
libraries such as the Xt Intrinsics. Clients may programmatically interact with hpwm (or
any X window manager) in the following ways:

• Implicit programmatic access. In this case clients do not set up any window
properties or execute any call that directly communicates with the window manager.
Communication occurs when the state of the client window is changed (such as when
the window is mapped, unmapped, configured, or has a colormap change). To work
with hpwm, clients are not required to do anything more than what is required when
a window manager is not being used.

• High-level programmatic access. To establish and maintain standard
communications with hpwm, clients can make high-level Xlib calls (such as
XSetStandardProperties ()) or calls to certain libraries built on Xlib (such
as the Xt Intrinsics calls Xtlni tialize () and XtMainLoop ()). Developers
are encouraged to use the Xt Intrinsics for client/window manager communication
unless the client has some specialized window management requirements.

HP Window Manager Programmatic Interface F -1

• Low-level programmatic access. Clients with special window management
requirements can use low-level Xlib calls (such as XStoreName () and
XSetWMHints (» to ~ommunicate with the window manager.

The following Xlib calls are typically used to communicate with hpwm:

• XSetStandardProperties () sets WM NAME, WM ICON NAME,
WM HINTS, WM COMMAND and WM NORMAL HiNTS. it does not set
WM - ClASS (which should be set to allow bpwm to be-optimally configured for a
particular class of client windows).

• XStoreName () sets the WM NAME property (used for window titles).

• XSetlconName () sets the WM _ICON _NAME property (used for the icon label).

• XS e tCommand () sets the WM _ COMMAND property.

• XSetWMHints () sets the WM _HINTS property.

• XSetNormalHints() sets the WM_NORMAL_HINTS property.

• XGetlconSizes () gets a list ofhpwm supported icon sizes.

• XSetClassHint() sets the WM_ClASS property.

• XSetTransientForHint() sets the WM_TRANSIENT_FOR property.

• XGetStandardColormap() gets standard colormap information.

The following Xt Intrinsics calls are typically used to communicate with hpwm (refer to the
Programming With the Xt Intrinsics manual for a complete description of each function):

• Xt I ni t ial ize () makes a top-level window and sets up the WM _NAME,
WM ICON NAME, WM NORMAL HINTS, WM HINTS, WM COMMAND
and WM _ CLASS properties. - - -

• XtCreateApplicationShell () creates a top-level window and sets up the
WM NAME, WM ICON NAME, WM NORMAL HINTS, WM HINTS,
WM - ClASS, WM -COMMAND, and WM TRANSIENT FOR (fur transient shell
class-widgets) properties. - -

• XtMainLoop () handles window reconfiguration messages.

F -2 HP Window Manager Programmatic Interface

F.2 Creating a Top-Level Window

When a window is created with XCreateSimpleWindow(), client properties must be
established using calls such as XStoreName (). The recommended alternative to using
XCreateSimpleWindow() is to use the Xt Intrinsics to create a top-level window.

F.2.1 Client Properties

This section supplements the information provided in chapter 9, "Predefined Property
Functions."

WM NAME

The WM NAME string is displayed in the title area of the client window frame. The
HP Wind~w Manager dynamically changes the window title if the WM NAME
property value is changed by the client.

If this property is not set, the res name part of the WM CLASS property is used as
the window title. If res_name is undefined, "*****,, is used as the window title.

It is assumed that the encoding of the string passed in the WM NAME property is
compatible with the font being used for the window title. -

WM ICON NAME - -
The WM ICON NAME string is displayed in the label part of the client's icon. The
HP Wind~w Mcmager dynamically changes the displayed icon title if the
WM _ICON _NAME property value is changed by the client.

If this property is not set, the icon name is set using the window title.

It is assumed that the encoding of the string passed in the WM ICON NAME
property is compatible with the font being used for the icon label. -

WM NORMAL HINTS - -
The fields of the WM NORMAL HINTS property are/lags, min width, min height,
max_width, max_height, width }nc;height _inc, min_aspect, and max_aspect. -

flags:

If the window size and position are specified by the user (using USPos i tion or
USS ize), hpwm places the window on the screen based on the configured window
position and size. If the window position is not provided }-j the user and hpwm is
configured for interactive placement, the user is allowed to interactively position or

HP Window Manager Programmatic Interface F -3

size the window on the screen. Otherwise, the configured window position and size
are used. Initial window placement is affected by the hpwm pos i tionlsFrame
and positionOnScreen resource settings.

min_width, min_height:

If min width or min height is not greater than 0 or has not been set, a value of 1x1
or larger is used by hpwm. The actual minimum size used by hpwm is based on the
minimum frame size for the frame type being used.

max _width, max_height:

If the maximumClientSize resource is not specified, max width and
max height are used to set a maximum client window size. Ifmax width or
max-height is not set, the maximum window size is set such that when the window is
at its maximum size the window and window frame exactly fit the screen. If
(max_width / max_height) is less than (min_width / min_height), the maximum
window size is set to (min width / min height). The maximum size is limited if the
max imwnMaximum resource is specified. The HP Window Manager maximize
function makes the window the maximum size.

width _inc, height_inc:

When sizing windows, hpwm reports the current window size in a status window.
The units of size are in terms of the width inc and height inc. If width inc and
height_inc are not set, the sizing increment is set to I pixcl. -

min _aspect, max_aspect:

The HP Window Manager does not apply the aspect ratio constraint.

Changes to the WM NORMAL HINTS property are tracked by the window
manager. Changes to the size a;d position fields are ignored, and changes to other
fields affect subsequent window reconfiguration.

WM HINTS

The fields of the WM_HINTS property are/lags, input, initial_state, iconyixmap,
icon _window, icon _x, icon y, icon_mask, window..,group.

Except for changes to the icon yixmap, the WM _HINTS property is only interpreted
by hpwm when the client window goes from the withdrawn state (that is, when the
window is not managed by hpwm) to the nonnal or iconic state.

flags:

This field identifies which of the fields are defined.

F -4 HP Window Manager Programmatic Interface

input:

This field is ignored by hpwm. If the user selects a window to have the keyboard
input focus, that window is given the focus event even if this field is set to 0 (false).
The client can always ignore keyboard input.

initial state:

The value of this field determines the initial state of the client when its top-level
window is mapped. A value of 1 causes the window to be visible (NormalState); a
value of3 causes the icon to be visible (IconicState).

icon yixmap:

If the icon yixmap is larger than the maximum icon image size (set by the hpwm
iconlmageMaximum resource), it is clipped to the maximum size. If the
icon yixmap is smaller than the minimum icon image size (set by the hpwm
iconlmageMinimum resource), it is not used. If the icon yixmap is being used
for the icon image (that is, an icon window is not specified and the user has not
specified an icon for this class of client window), hpwm changes the icon image when
the iconyixmap is changed.

The foreground and background colors for the icon yixmap are specified in the
hpwm resource files. (Many other resources may also be specified. Refer to Using
the X Window System, HP part number 98794-90001.)

icon _x, icon y:

The (icon_x, icon _y) coordinate is a hint to hpwm for the icon position.

icon mask:

The icon_mask value is not used by hpwm.

icon window:

Icon windows are supported by hpwm. If the icon window is larger than the
maximum icon image size (set by the iconlmag;Maximum resource), it is
reconfigured to the maximum size. If the icon window is smaller than the minimum
icon image size (set by the iconlmageMini~um resource), it is reconfigured to
the minimum size. If both the icon_window and icon yixmap are passed, the
icon_window is used for the icon image.

window poup:

The window_group value is not used by hpwm.

HP Window Manager Programmatic Interface F • 5

WM PROTOCOLS

The WM PROTOCOLS property is a list of atoms. Each atom identifies a protocol
in which the client is willing to participate. Atoms can identify both standard
protocols and private protocols specific to individual window managers. At present,
there are three standard protocols:

WM SAVE YOURSELF: - -
Clients including this atom will be notified when a session manager or a window
manager wishes the window's state to be changed, typically because the window is
about to be deleted, or the session terminated.

WM TAKE FOCUS: - -
Clients including this atom will be notified when a window manager believes that the
client should explicitly set the input focus to one of its windows.

WM DELETE WINDOW: - -
Clients are notified when the hpwm f.kill function is invoked by the user. The HP
Window Manager does not terminate the client or destroy the window when a
WM DELETE WINDOW notification is done. - -
A client message event (the event type is ClientMessage) is used for
WM PROTOCOLS client notification. The client message has the following
characteristics:

• The type is WM _PROTOCOLS.

• The format is 32 .

• The atom naming the protocol (such as WM DELETE WINDOW) is in the
data[O] field. --

• A time stamp is in the data[l] field.

WM CLASS

The fields of the WM _ CLASS property are res_class and res _ name.

res class:

The res class value is used by hpwm to configure window decorations and icons for
windows associated with a particular client class. If the WM CLASS property is not
set, no special client class customization is done. -

res name:

The res_name value is only used by hpwm when the WM _NAME property is not set.
In that case, the res_name value is used for the window title.

F - 6 HP Window Manager Programmatic Interface

The WM _ CLASS property is only interpreted by hpwm when the client window goes
from the withdrawn state to the nonnal or iconic state.

WM TRANSIENT FOR - -
Transient windows are placed on the screen without user interaction. The window
size and position information is used even if it was generated by the client program
and not the user. Transient windows generally get less decoration than normal top
level windows; this is controlled by the hpwm transientDecoration resource.
When the normal client window associated with a transient window is minimized, the
transient window is removed from the screen (unmapped). When the associated
client window is normalized, the transient window is placed on the screen (mapped).

WM COLORMAP WINDOWS - -
This property is used to indicate to the window manager which colormaps a client
would like to have installed. It is a property of the WINDOW that is a list of the IDs
of windows that may need colormaps installed. That is, these colormaps differ from
the colormap of the top-level client window.

If the WM COLORMAP WINDOWS property is present when the client window
goes from the withdrawn state to the nonnal or iconic state, hpwm compiles a list of
colormaps using the colormap attribute of the windows identified in the property
along with the colormap attribute of the top-level client window. The HP Window
Manager installs the colormaps subject to the colormap focus policy that has been
selected by the user. The HP Window Manager monitors the colormap windows for
colormap attribute ch, nges and updates its colormap list accordingly. If the
WM COLORMAP WINDOWS property is not present, hpwm installs the
coloi"map indicated by the colormap attribute of the top-level client window.

F.3 Window Manager Properties

The HP Window Manager uses properties to supply configuration and presentation state
information to clients.

HP Window Manager Programmatic Interface F -7

WM ICON SIZE - -
The HP Window Manager sets the WM ICON SIZE property on the root window.
This property contains information corresponditi"g to an XIconSize structure (refer
to section 9.1.7,"Setting and Getting Icon Size Hints"). The items in the XIconSize
structure are min_width, min_height, max_width, max_height, width)nc, height_inc.

min _width, min_height:

min_width and min_height are set based on the value of (or default for) the
iconlmageMinimum resource.

max_width, max_height:

max_width and max_height are set based on the value of (or default for) the
iconlmageMaximum resource.

width _inc, height)nc:

The HP Window Manager sets width_inc and height_inc to 1.

F.4 Client Responses to Window Manager Actions
This section describes client responses to hpwm actions.

F.4.1 Redirection of Operations

The HP Window Manager redirects the following client top-level window requests:
MapWindow, ConfigureWindow, CirculateWindow. Clients must not rely on immediate
execution of redirected requests.

F.4.2 Window Configuration

Clients can hint to hpwm desirable window positions, but they must be able to accept the
window positions that they are given.

Clients can hint to hpwm desirable window sizes, but they must be able to accept the
window sizes that they are given. If a client cannot be useful in the window size that is
given, it could display a message asking the user to resize the window.

Clients receive ConfigureNotify events in response to configuration requests as long as
there is not an X error. This is true even if the window configuration was not changed.

F - 8 HP Window Manager Programmatic Interface

Window coordinates in the ConfigureNotify event may be relative to the hpwm client
frame window. Clients must use XTranslateCoordinates to get root window relative
coordinates.

F.4.3 (De)lconify

The HP Window Manager maps the client window when the window is to be displayed in
its normal state and unmaps the client window when it is to be displayed in its iconic state.
Client -supplied icon windows are mapped when the associated client window is in the
iconic state, otherwise they remain unmapped.

F .4.4· Colormap Change

Clients that wish to be notified when their colormaps are installed or uninstalled should
select ColormapNotify on client windows that have unique colormaps.

F .4.5 InputFocus

Clients should generally avoid the use of XSetInputFocus (even if one of their top-level
windows has the input focus). The Xt Intrinsics and the HP X Widgets can be used to
handle the distribution of input within a client window.

F .4.6 ClientMessage Events

Although there is no way for clients to prevent themselves being sent ClientMessage
events, these events can be safely ignored if they are not useful. The HP Window Manager
does not require clients to handle any ClientMessage events.

HP Window Manager Programmatic Interface F -9

Example Programs G
This appendix contains the following example programs:

• simple. c, which creates a simple window and displays a static text message in it.

• input. c, which demonstrates how to get input from an extended input device.

• dep th . c, which demonstrates how to create a window with a visual type different
than its parent.

G.1 A Simple Example
Here's a simple program that creates a window and displays the static text string "Text
inside the simple window." in it. By editing the definitions at the beginning of the
program, you can change the window's name or icon name, the string that is displayed, and
the font used.

1***
*
* File: simple.c

*
* This program creates a window and displays text in it.
* It uses the Xlib facilities, and does not support the X database
* mechanism to allow the user to override hard-coded defaults.

*
**1

#include <stdio.h>
#include <Xll/Xlib.h>
#include <Xll/Xutil.h>

Iidefine NAME "A Simple Window"
Ildefine ICON_NAME "Simple"
Ildefine STRING "Text inside the simple window."
Ildefine FONT "vbee-36"

1*
* Define the window manager hints.
*1

Example Programs G-l

XWMHints xwmh = {
(InputHintIStateHint), /* flags */

};

False,
NormalState,
0,
0,
0, 0, /* icon
0,
0,

/* input -- ignored by hpwm */
/* initial_state */
/* icon pixmap */
/* icon window */
location */
/* icon mask */
/* window group -- ignored by hpwm */

main (argc, argv)
int argc;
char *argv[];
{

unsigned fontheight, pad, fg, bg, bd, bw;
Display *dpy;
Window win;
GC gc;
XFontStruct *fontstruct;
XEvent event;
XSizeHints xsh;
XWindowAttributes
XSetWindowAttributes

xwa;
xswa;

/*
* Open the display using the DISPLAY environment variable to locate
* the X server.
*/

if «dpy = XOpenDisplay(NULL» == NULL)
fprintf (stderr,

"%s: can't open %s.\n", argv[O], XDisplayName(NULL»;
exit(l) ;

/*
* Load the font to use.
*/

if «fontstruct = XLoadQueryFont(dpy, FONT» == NULL)
fprintf (stderr,

exit(l);
}
fontheight

1*

"%s: display %s doesn't know font %s.\n",
argv[O], DisplayString(dpy), FONT);

fontstruct->max_bounds.ascent + fontstruct->max_bounds.descent;

* Select colors for the border, the window background, and the
* window foreground.
*/

bd = WhitePixel(dpy, DefaultScreen(dpy»;
bg = BlackPixel(dpy, DefaultScreen(dpy»;
fg = WhitePixel(dpy, DefaultScreen(dpy»;

G -2 Example Programs

/*
* Set the border width and padding.
*/

bw = 1;
pad = 1;

/*
* Fill out the XSizeHints structure for initial window position
* and size.
*/

xsh.flags = (PPositionIPSize);
xsh.height = fontheight + 2 * pad;
xsh.width = XTextWidth(fontstruct, STRING, strlen(STRING» + 2 * pad;
xsh.x (DisplayWidth(dpy, DefaultScreen(dpy» - xsh.width) / 2;
xsh.y = (DisplayHeight(dpy, DefaultScreen(dpy» - xsh.height) / 2;

/*
* Create the unmapped window.
*/

win XCreateSimpleWindow(dpy, DefaultRootWindow(dpy),
xsh.x, xsh.y, xsh.width, xsh.height, bw, bd, bg);

/*
* Set the standard properties and window manager hints for the window.
*/

XSetStandardProperties(dpy, win, NAME, ICON_NAME, None, argv, argc,
&xsh) ;

XSetWMHints(dpy, win, &xwmh);

/*
* Ensure that the window's colormap field points to the default
* colormap. Set the window's Bit Gravity to reduce Expose events.
*/

xswa.colormap = DefaultColormap(dpy, DefaultScreen(dpy»;
xswa.bit gravity = CenterGravity;
XChangeWlndowAttributes(dpy, win, (CWColormapICWBitGravity), &xswa);

/*
* Create the GC for writing text.
*/

gc = DefaultGC(dpy, DefaultScreen(dpy»;
XSetFont(dpy, gc, fontstruct->fid);
XSetForeground(dpy, gc, fg);
XSetBackground(dpy, gc, bg);

/*
* Specify the event types we are interested in - only exposures.
*/

XSelectInput(dpy, win, ExposureMaskIStructureNotifyMask);

Example Programs G -3

/*
* Map the window.
*/

XMapWindow(dpy, win);

/*
* Loop forever, examining each event.
*/

while (1) {

/*
* Get the next event.
*/

XNextEvent(dpy, &event);

/*
* Repaint the window on the last Expose or ConfigureNotify event.
*/

if «event. type
(event. type

int x, y;

ConfigureNotlfy) II
Expose» {

/*
* Find out how big the window is now.
*/

if (XGetWindowAttributes(dpy, win, &xwa) == 0)
break;

x = (xwa.width - XTextWidth(fontstruct, STRING, strlen(STRING»)/2;
y = (xwa.height + fontstruct->max_bounds.ascent

- fontstruct->max_bounds.descent)/2;

/*
* Fill the window with the background color.
* Paint the centered string.
*/

XClearWindow(dpy, win);
XDrawString(dpy, win, gc, x, y, STRING, strlen(STRING»;

/*

}

* Remove pending Expose events from the event queue to avoid
* multiple repaints.
*/

while (XCheckTypedEvent(dpy, Expose, &event»;
}

fprintf (stderr, "Can't get window attributes.\n");
exit(1) ;

G-4 Example Programs

G.2 Getting Input From an Extended Input Device
This program demonstrates how to get input from an extended input device (that is, a
device other than the standard X keyboard or pointer).

input. c creates two windows, enables all input devices other than the X keyboard and
X pointer devices, and selects input from them when the X pointer is in the smaller of the
two windows.

When a button is pressed, or a valuator moved on one of those other devices, and the X
pointer is in the created window, the contents of the events generated by the other devices
are displayed.

/***
*
* File: input.c

*
* Sample program to enable all extension input devices and select all
* input events from them. This program creates 2 windows and selects
* input from the smaller of the two.

*
* To terminate this program, press button 1 on some extension device
* when the X pointer is in the window from which input has been selected.

*
* To compile this program, use: "cc input.c -lXhpll -lXll -0 input"
*
*/

finclude <Xll/Xlib.h>
finclude <Xll/XHPlib.h>
finclude <Xll/Xutil.h>
finclude "stdio.h"

Display *display;
Window root;
int devicekeypress;
int devicekeyrelease;
int devicebuttonpress;
int devicebuttonrelease;
int devicemotionnotify;
int devicefocusin;
int devicefocusout;
int proximityin;
int proximityout;
int devicekeymapnotify;
int devicemappingnotify;

Example Programs G -5

main ()
{
XHPDeviceList *slist;
int ndevices;
Window
Window
XEvent
unsigned
XHPDeviceList

my;
my2;
event;
int mask;
*list;

display = XOpenDisplay (....);
if (display == NULL)

{
printf ("No connection to server - aborting example.\n");
exit(l) ;
}

root = RootWindow (display,O);

create_two_windows (&my, &my2);
get_all_masks (&mask);
ndevices = enable_all_devices (mask, &slist);
select_ext_input (my2, slist, mask, ndevices);

for (;;)
{
XNextEvent (display,&event);
if (process_device_events (&event) -1)

break;

close_ali_devices (slist, ndevices);
XHPFreeDeviceList (slist);
}

/***

*
* This function gets the event masks and event types for all extension events.

*
*/

get_all_masks (mask)
unsigned int *mask;
{
unsigned int tmask;
unsigned int event;

XHPGetExtEventMask (display, HPDeviceKeyPressreq, &devicekeypress, &tmask);
*mask I = tmask;

XHBGetExtEventMask (display, HPDeviceKeyReleasereq, &devicekeyrelease,
&tmask) ;

*mask 1= tmask;

XHBGetExtEventMask (display, HPDeviceButtonPressreq, &devicebuttonpress,
&tmask) ;

*mask I = tmask;

G-6 Example Programs

XHPGetExtEventMask (display, HPDeviceButtonReleasereq,
&devicebuttonrelease, &tmask);

*mask 1= tmask;

XHPGetExtEventMask (display, HPDeviceMotionNotifyreq, &devicemotionnotlfy,
&tmask) ;

*mask 1= tmask;

XHPGetExtEventMask (display, HPDeviceFocuslnreq, &devicefocusin, &tmask);
*mask 1= tmask;

XHPGetExtEventMask (display, HPDeviceFocusOutreq, &devicefocusout, &tmask);
*mask 1= tmask;

XHPGetExtEventMask (display, HPProximitylnreq, &proximityin, &tmask);
*mask 1= tmask;

XHPGetExtEventMask (display, HPProximityOutreq, &proximityout, &tmask);
*mask 1= tmask:

XHPGetExtEventMask (display, HPDeviceKeymapNotifyreq, &devicekeymapnotify,
&tmask) ;

*mask 1= tmask;

XHPGetExtEventMask (display, HPDeviceMappingNotifyreq,
&devicemappingnotify, &tmask);

*mask 1= tmask;
}

1***

*
* This function lists and enables all extension devices.

*
*1

enable_all devices (mask, slist)
unsigned int mask;
XHPDeviceList
{
int
int
XHPDeviceList

**slist;

ndevices;
ret, i;
*list;

*slist = XHPListlnputDevices (display, &ndevices);
printf ("The number of available input devices is %d\n",ndevices);
for (i=O,list=(*slist); i<ndevices; i++,list++)

{
if (list->x_id != XPOINTER && list->x_id != XKEYBOARD)

{
ret = XHPSetlnputDevice (display, list->x_id, (ON 1 DEVICE_EVENTS»;
if (ret == 0)

printf ("Enabled %s\n",list->name);

printf("\n") ;
return (ndevices);

Example Programs G-7

1***

*
* This function selects for all extension events from all extension
* devices.

*
*1

select_ext_input (win, slist, mask, ndevices)
Window win;
XHPDeviceList *slist;
unsigned int mask;
int ndevices;
{
int i;
XHPDeviceList *list;

for (i=O, list=slist; i<ndevices; i++, list++)

}

{
if (list->x_id != XPOINTER && list->x_id != XKEYBOARD)

XHPSelectExtensionEvent (display, win, list->x_id, mask);

1***
*
* This function closes (turns off) all extension devices.

*
*1

close_all_devices (slist, ndevices)
XHPDeviceList *slist;
int ndevices;
{
int
XHPDeviceList

ret, i;
*list;

for (i=O,list=slist; i<ndevices; i++,list++)
{
if (list->x_id != XPOINTER && list->x_id != XKEYBOARD)

{

}

ret = XHPSetlnputDevice (display, list->x_id, (OFF»;
if (ret == 0)

printf ("Disabled %s\n",list->name);

printf("\n");
return (ndevices);

1***

*
* This function creates two windows. The smaller will be used to
* select input from all extension devices.

*
*1

G -8 Example Programs

create_twa_windows (my, my2)
Window *my, *my2;
{
XSetWindowAttributes attributes;
unsigned long attribute_mask;
int status;
XSizeHints
Screen

hints;
*screen

attribute_mask CWBackPixmap;
attribute_mask CWBackPixel;

XDefaultScreenOfDisplay (display);

attribute_mask 1= CWEventMask;
attributes.background-pixmap = None;
attributes.background-pixel = WhitePixel(display, 0);
attributes.event_mask = ExposureMask;

*my = XCreateWindow (display, root, 100,100, 400,200,1,
DefaultDepthOfScreen (screen),
InputOutput, CopyFromParent, attribute_mask, &attributes);

if (*my == 0) {
fprintf (stderr, "can't create window!\n");
exit (1);

status = XGetNormalHints (display, *my, &hints);
hints.flags 1= (USPosition 1 USSize 1 PPosition 1 PSize);
XSetNormalHints (display, *my, &hints);
XMapWindow (display, *my);
XFlush(display) ;

attribute_mask CWBackPixmap;
attribute_mask CWBackPixel;
attribute_mask 1= CWEventMask;
attributes.background-pixmap = None;
attributes.background-pixel = BlackPixel(display, 0);
attributes.event_mask = ExposureMask;

*my2 = XCreateWindow (display, *my, 50,50, 300,100,1,
DefaultDepthOfScreen (screen),
InputOutput, CopyFromParent, attribute_mask, &attributes);

if (my2 == 0) {
fprintf (stderr, "can't create window!\n");
exit (1);

status = XGetNormalHints (display, *my2, &hints);
hints.flags 1= (USPosition 1 USSize 1 PPosition 1 PSize);
XSetNormalHints (display, *my2, &hints);
XMapWindow (display, *my2);
XFlush(display);

/***

*
* This function figures out what kind of device event we received.

*
*/

Example Programs G -9

process_device_events (event)
XEvent *event:
{
int
XHPDeviceMotionEvent *m:
XHPDeviceKeyEvent
XHPDeviceButtonEvent *b:
XHPProximityNotifyEvent
XHPDeviceFocusChangeEvent
XHPDeviceKeymapEvent
XHPDeviceMappingEvent

XExposeEvent
XAnyEvent

*e:

i:

*k:

*p:
*f:

*n:
*q:

*x;

if (event->type devicekeypress)
{
k = (XHPDeviceKeyEvent *) event;
printf (ltDevice key press event device=%d\nlt, k->deviceid) :
printf (It type = %d\nlt, k->ev. type) :
printf (It serial = %ld\nlt , k->ev. serial):
printf (It send_event %ld\nlt , k->ev.send_event);
printf (It display = %x\nlt, k->ev. display) ;
printf (It window = %x\nlt, k->ev .window);
printf (It root = %x\nlt, k->ev.root):
printf (It subwindow %x\nlt, k->ev. subwindow) ;
printf (It time %x\nlt, k->ev. time) ;
printf (It x %d\nlt, k->ev.x):
printf (It y %d\nlt, k->ev.y);
printf (It x_root %d\nlt, k->ev.x_root):
printf (It y_root %d\nlt, k->ev.y_root);
printf (It state = %d\nlt, k->ev. state) ;
printf (It keycode = %x\n", k->ev.keycode);
printf (It same - screen %d\nlt, k->ev.same _screen) ;
}

else if (event->type == devicekeyrelease)
{
k = (XHPDeviceKeyEvent *) event;
printf (ltDevice key release event received from device %d\n",

k->deviceid) :

G -10 Example Programs

else if (event->type == devicebuttonpress)
{
b = (XHPDeviceButtonEvent *) event;
printf ("Device button press event device=%d\n", b->deviceid);
printf (" type = %d\n", b->ev. type) ;
printf (" serial = %ld\n", b->ev.serial);
printf (" send_event %ld\n", b->ev.send_event);
printf (" display = %x\n", b->ev.display);
printf (" window = %x\n", b->ev . window) :
printf (" root = %x\n", b->ev.root);
printf (" subwindow %x\n", b->ev. subwindow);
printf (" time %x\n", b->ev.time);
printf (" x %d\n", b->ev.x):
printf (" y %d\n", b->ev.y);
printf (" x_root %d\n", b->ev . x_root) ;
printf (" y_root %d\n", b->ev.y_root):
printf (" state = %d\n", b->ev. state) ;

~printf (" button = %x\n", b->ev.button);
printf (" same screen %d\n", b->ev. same_screen);
if (b->ev.button == 1) /* this causes us to quit *1

return (-1);

else if (event->type == devicebuttonrelease)
{
b = (XHPDeviceButtonEvent *) event;
printf ("Device button release event received from device %d\n",

b->deviceid) ;

else if (event->type == devicemotionnotify)
{
m = (XHPDeviceMotionEvent *) event;
printf ("DeviceMotionNotify event received from device=%d\n",

m->deviceid) ;
printf (" type = %d\n", m->ev.type);
printf (" serial = %ld\n", m->ev. serial);
printf (" send_event %ld\n", m->ev.send_event);
printf (" display = %x\n", m->ev.display);
printf (" window = %x\n", m->ev.window);
printf (" root = %x\n", m->ev.root);
printf (" subwindow %x\n", m->ev.subwindow);
printf (" time %x\n", m->ev.time);
printf (" x %d\n", m->ev.x);
printf (" y %d\n", m->ev.y);
printf (" x_root %d\n", m->ev.x_root);
printf (" y_root %d\n", m->ev.y_root);
printf (" state = %d\n", m->ev. state) ;
printf (" is_hint = %x\n", m->ev.is_hint);
printf (" same_screen %d\n", m->ev. same_screen);
for (i=O; i<m->axes_count; i++)

printf (" motion data for axis %d is %d\n",
m->data[i].ax_num, m->data[i].ax_val);

Example Programs G -11

else if (event->type == proximityin)
{
p = (XHPProximityNotifyEvent *) event;
printf ("Proximityln event received from device %d\n", p->deviceid);
}

else if (event->type == proximityout)
{
p = (XHPProximityNotifyEvent *) event;
printf ("ProximityOut event received from device=%d\n",

p->deviceid);

else if (event->type == devicefocusin)
{
f = (XHPDeviceFocusChangeEvent *) event;
printf ("DeviceFocusln event received from device %d\n",f->deviceid);
}

else if (event->type == devicefocusout)
{
f = (XHPDeviceFocusChangeEvent *) event;
printf ("DeviceFocusOut event received from device %d\n",

f->deviceid) ;

else if (event->type == devicekeymapnotify)
{
n = (XHPDeviceKeymapEvent *) event;
printf ("Device Keymap notify event received from device %d\n",

n->deviceid) ;

else if (event->type == devicemappingnotify)
{

else

q = (XHPDeviceMappingEvent *) event;
printf ("Device Mapping notify event received from device %d.\n",

q->deviceid) ;

switch (event->type)
{

case Expose:
e = (XExposeEvent *) event;
printf ("Exposure notify event received. \n");
break;

default:
x = (XAnyEvent *) event;
printf ("Got an event of type %d\n", x->type);

G -12 Example Programs

G.3 Using Image and Overlay Planes
This program demonstrates the minimum necessary steps to create an X window whose
visual type is different than that of its parent. This program is specifically tailored to look
for a visual whose depth is 8 and whose class is PseudoColor. (The steps are the same
for other values of depth and class.)

As long as the parent window's class and depth are different than the window being
created, certain additional operations must be performed before the window can be
created. In particular, there are two mandatory steps:

• A colormap must be created or obtained otherwise and given to the window at
create time .

• A border pixel or pixmap must be created or otherwise obtained and given to the
window at create time.

Other than these two requirements, everything else is the same as for creating any other
window.

1***
*
* File: depth.c

*
* This program creates a window and displays text in it. This program
* looks specifically for a visual whose depth is 8 and whose class is
* PseudoColor.
*
***1

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <stdio.h>

#define DEPTH 8
4;define WHITE 1
4;define BLACK 0

1* Desired Depth *1

#define BIG_STRING "ABCEFGHIJKLMNOPRSTUVWXYZ1234567890abcdefghijklmnopqrstuvwx
yz12345678901.,<>?;:]"
4;define WIDTH 80
#define HEIGHT 24
#define X_ORG 100
#define Y_ORG 100

char FontName [128]

1* Width in characters of the window *1
1* Height in characters of the window *1
1* X Origin of the window on screen *1
1* y Origin of the window on screen *1

"hp8. 8x16b";

Example Programs G -13

char *colors[] =
{

} ;

maine)
{

"black" ,
"white",
o

Display *dpy;
XVisuallnfo *pVislnfo,vislnfo;
int retVal;
Colormap cmapID;
XColor exactC,defC;
Window w;
XSetWindowAttributes wAttr;
char **ppColor;

char *display NULL;
int fg, bg;
int i;
int yPos;
Font myFont;
XFontStruct *myFontStruct;
XEvent myEvent;

Window win;
int charHeight, charWidth;
int winX, winY, winW, winH;
unsigned int mask;
XSetWindowAttributes xswa;

GC gc;
XGCValues xgcv;

/*
* The first step, of course, is to open the display
*/

dpy = XOpenDisplay(O);
if (!dpy)
{

fprintf(stderr,"Could't open display: %s\n",getenv("DISPLAY"»;
exit(1) ;

/*
* Next we'll get the font that we will be using and get
* some information from it which will be used to determine
* window size.
*/

G-14 Example Programs

if(myFontStruct = XLoadQueryFont(dpy, &FontName[O]»
{

myFont = myFontStruct->fid;
charHeight = myFontStruct->max_bounds.ascent +

myFontStruct->max_bounds.descent;
charWidth = myFontStruct->max_bounds.width;

else
{

printf("Couldn't load font %s ... Bye!\n", &FontName[O]);
exit(l) ;

1*
* Now we will ask the server for the visual type and depth
* that we are interested in.
*1

visInfo.screen = 0;
visInfo.depth = DEPTH;
visInfo.class = PseudoColor;
mask = VisualScreenMask I VisualDepthMask I VisualClassMask;

pVisInfo = XGetVisualInfo(dpy, mask, &visInfo, &retVal);

if (!retVal)
{

}

fprintf(stderr, "Could not get visual info\n");
exit (1) ;

if (retVal != 1)
{

1*

fprintf(stderr,"Too many visuals match display+depth+class\n");
exit(l) ;

* At this point, we have the visual information that we need.
* In order to create a window, we have to create a colormap
* for this visual class (assuming that it is different than
* the default visual class.
*1

cmapID XCreateColormap(dpy,
RootWindowOfScreen(ScreenOfDisplay(dpy,O»,
pVisInfo->visual, AllocNone);

if (! cmapID)
{

fprintf(stderr,"Could not create color map\n");
exit(l) ;

Exar.:lple Programs G -15

/*
* Since this is a brand new colormap, we need to allocate
* some colors in it. The initial colormap may not be exactly
* what we need.
*/

ppColor = colors;
while (*ppColor)
{

retVal = XAllocNamedColor(dpy,cmapID,*ppColor,&defC,&exactC);
if (!retVal)
{

fprintf(stderr, "Could not allocate a color (\"%s\")\n",*ppColor);
exit(1) ;

ppColor++;

wAttr.event_mask = ExposureMask;
wAttr.border-pixel = WHITE;
wAttr.background-pixel = BLACK;
wAttr.colormap = cmapID;
XFlush(dpy) ;
w = XCreateWindow(dpy,

RootWindowOfScreen(ScreenOfDisplay(dpy,O»,
0, 0,

if (!w)
{

charWidth * WIDTH, charHeight * HEIGHT,
0, DEPTH, CopyFromParent,
pVisInfo->visual,
CWBackPixel I CWColormap I CWBorderPixel I CWEventMask,
&wAttr) ;

fprintf(stderr,"Could not create a window\n");
exit(1) ;
}

/*
* Now that the window is created, we need to map it. Notice
* that we did not install the colormap that we created. That
* is not our job. That should be left to the window manager
* to do under whatever policy it chooses.
*/

XMapRaised(dpy,w);
XFlush(dpy) ;

/*
* To render, we will need a graphics context of the proper
* depth.
*/

gc = XCreateGC(dpy, w, 0, NULL);

G -16 Example Programs

/*
* We will not set the appropriate values that do not match
* the defaults.
*/

XSetFont(dpy, gc, myFontStruct->fid);
XSetForeground(dpy, gc, WHITE);
XSetBackground(dpy, gc, BLACK);

/*
* Now we'll go into a loop waiting for the next event. The
* only event that we've expressed interest in is expose, so
* when we get one, we'll just refresh the window.
*/

while (1)
{

XNextEvent(dpy, &myEvent);

/* Put up HEIGHT rows of WIDTH characters on the window */

fore i
{

0; i < HEIGHT; i++

yPos = i * charHeight + myFontStruct->max_bounds.ascent;

X DrawImageString(dpy, w, gc, 0, yPos, BIG_STRING, WIDTH);
XFlush(dpy) ;

Example Programs G -17

HP OSF /Motif Window
Manager Programmatic
Interface
This chapter discusses the following topics:

• MWM Programmatic Interface Standards .

• Inter-Client Communication Conventions.

H.1 MWM Programmatic Interface Standards

H

The aSF /Motif Window Manager programmatic interface is based on the Inter-Client
Communications Conventions Manual (ICCCM ed. December, 1988). The ICCCM
establishes the standards for "good citizenship" among clients in a multi-client
environment. To avoid costly compatibility problems, you should design and code your
client application to operate as a "good citizen."

Since the interaction of your client with MWM occurs primarily as a result of Xlib, Xt
Intrinsics, and Xm Widget calls, and some versions of Xlib do not completely support the
December 1988 ICCCM, if your client application uses Xlib calls, make sure those calls
are supported by the December 1988 ICCCM.

The HP aSF /Motif Window Manager fully supports the December 1988 edition of the
ICCCM. Earlier editions of the ICCCM are supported only to the extent that it is
necessary to handle clients that use R2 and R3 versions of the X11 Xlib and Xt Intrinsics
libraries.

H.2 Inter-Client Communication Conventions
The ICCCM section "Client to Window Manager Communication" specifically discusses
how clients communicate with a window manager. Reading the section is recommended.
It will give you generally applicable information about how your client application should

HP aSF /Motif Window Manager Programmatic Interface H -1

communicate with a window manager. The remainder of this chapter provides you with
additional client information and MWM specific information.

H.2.1 Programming Client Actions

As mentioned above you should design your client application to be a good citizen whether
or not a window manager is present to police the environment. The following information
will help you program your client application to be a good citizen in a multi-client
environment.

Creating a Top-Level Window
The typical way to create a top-level window for your client is as a child of the root window
using a call to the Xlib function XCreateSimpleWindow() .
However, when you create a window using XCreateSimpleWindow() , you must set
up your client using properties such as XStoreName and calls to the appropriate XSet*
functions.

The recommended alternative to creating a top-level window with
XCreateSimpleWindow() is to use the Xt Intrinsics function
XtCreateWindow().

At any time, the top-level windows of your client application have one of three states:

Normal A normal application window is displayed.

Iconic An icon window is displayed instead of a normal window.

Withdrawn No normal or iconic window is displayed.

Working with Client Properties
Each top-level window you create for your client should have a list of properties associated
with it. These properties are what the window manager inspects to determine how it
should manage the client's behavior.

This is especially important in the case where the proper operation of your client
application depends on particular property values: Any properties you don't specify are
specified by the window manager using whatever values are most convenient.

Client applications have the following properties:

WM NAME.

The WM NAME property contains a string to be displayed in the title area of the client
window f;ame. MWM can dynamically change the window title if your client application
changes the value of the string in the WM_NAME property.

H -2 HP aSF /Motif Window Manager Programmatic Interface

If you don't set the WM _NAME property, MWM looks for a title in the res_name part
of the WM _CLASS property. If MWM finds no title, it uses the string "*****,, as the
window title.

The window manager assumes that the string passed in the WM NAME property is
compatible with the font used for the window title. -

WM ICON NAME - -
The WM _ICON _NAME property contains a string to be displayed in the label part of the
icon that is associated with the client window. MWM can dynamically change the icon
label if the WM _ICON _NAME property value is changed by the client.

If you don't set the WM ICON NAME property, MWM uses the window title as the icon
label. --

The window manager assumes that the string passed in the WM _ICON _NAME property
is compatible with the font used for the icon label.

WM NORMAL HINTS - -
The WM NORMAL HINTS property contains a list of fields. MWM tracks changes to
the WM NORMAL IUNTS property. Changes affect subsequently created clients. That
is, existi;g clients re~ain unaffected by changes to WM _NORMAL_HINTS.

The WM _NORMAL _ HI~S property contains the following fields:

flags

MWM places windows on the screen using configuration information on size and position
(location). The order of precedence MWM uses to look for this information is as follows:

User specified. The client has been supplied configuration information by the user,
using USSize and US Position in the /Xu til. h header file.

Interactive placement. Interactive placement is established with the
interactivePlacement resource (see Chapter 4).

Default configuration.

min _width, min_height

The values set for minimum width and minimum height are used to configure a minimum
client size window. If the values set for these fields are are not greater than 0, or not set at
all, then a value of Ixi or larger is used by MWM. The actual minimum size used by
MWM is based on the window size that fits in the minimum frame size for the frame type
that is being used.

max_width, max_height

HP OSF /Motif Window Manager Programmatic Interface H -3

The values set for maximum width and maximum height are used only if the
maximumClientSize resource is not configured. The values set with these fields are
used to set a maximum client size window. If max width and max height are not
configured, then MWM will size the window and its frame to exactly fill the screen. The
maximum size of a window can be limited by the maximumMaximum resource. (See
Chapter 4 for resource descriptions.)

width }nc, height_inc

The values set for width increase and height increase determine the unit of measure used
to report window size. When windows are being resized, a feedback window reports the
current size in the units specified. If values are not set for these fields, then 1 pixel is used
as the sizing increment.

min _ aspect.x, min _ aspect.y

The values set for minimum aspect.x (width) and minimum aspect.y (length) determine
constraints for the minimum ratio of width/length of a window. MWM will apply a
minimum aspect ratio sizing constraint when the x and y values are set greater than or
equal to zero. The values must also be less than or equal to the max_aspect values.

max _ aspect.x, max _aspect.y

The values set for maximum aspect.x (width) and maximum aspect.y (length) determine
constraints for the maximum ratio of width/length of a window. MWM will apply a
maximum aspect ratio sizing constraint when the x and y values are set greater than or
equal to zero. The values must also be greater than or equal to the min _ aspect values.

base _width, base _height

The values set for these fields determine the amount of "padding" (margin) between the
window and the window frame. The base width value sets the amount of left and right
padding. The base height value sets the amount of top and bottom padding. If these fields
have a value of less than 0, or if there is no value set, then MWM uses a value of O.

WM HINTS

The WM _ HINTS property contains a list of fields. Except for changes to the icon _pixmap,
MWM tracks changes to the WM HINTS property only when the client window changes
state from the withdrawn state to the normal or iconic state.

The WM _ HINTS property contains the following fields:

iconyixmap

icon window

icon x

Image for icon window.

A working window for the icon window.

X coordinate for icon window position.

H - 4 HP Motif Window Manager Programmatic Interface

icon _y Y coordinate for icon window position.

icon mask MWM does not use this.

input MWM does not use this.

window_group MWM does not use this.

WM CLASS

The WM CLASS property contains two fields. MWM tracks changes to the WM CLASS
property only when the client window changes state from the withdrawn state to the
normal or iconic state.

The res class and res name values are used by MWM to do client specific configuration of
window-decorations a"D.d icons. If the WM CLASS property is not set, then no special
client customization will be done. -

The WM _ CLASS property contains the following fields:

res class

res name

When a client enters MWM's management, the window manager looks at
the res class value to determine the client's class. All resources previously
configUred for that class will be used for the new client.

When a client enters MWM's management, the window manager looks at
the res name value to determine the name to use in the client's window
title. This field's value is used when the WM NAME property is not set.

WM TRANSIENT FOR - -
MWM regards a transient window as equivalent to a secondary window. A transient
window is always on top (in terms of stacking order) of its primary window. This primary
window is identified by the WM _TRANSIENT _FOR property.

The window manager places transient windows on the screen without user interaction.
MWM determines window size and placement based on previously specified resource
values. The amount of decoration for a transient window is controlled by the
transientWindow resource. (See Chapter 4)

A transient window is normally associated with a primary window. You can design your
client windows such that transient windows are arranged in a tree structure where a
transient window has another transient window as its associated "primary" window.
However, the root of the tree must be a non-transient window.

WM PROTOCOLS

HP Motif Window Manager Programmatic Interface H - 5

The WM _PROTOCOLS property contains a list of atoms (32-bit values that represent
unique names). Each atom identifies a protocol in which the client is willing to participate.
Atoms can identify standard protocols and private protocols specific to individual window
managers. MWM tracks changes to the WM PROTOCOLS property and supports the
following standard protocols: -

WM DELETE WINDOW - -
Clients are notified when the MWM f. kill function is invoked by the user. MWM
does not terminate the client or destroy the window when a WM DELETE WINDOW
notification is done. - -

WM SAVE YOURSELF - -
Clients with this atom will be notified when a session manager or a window manager
wishes the window's state to be changed. The typical change is when the window is about
to be deleted or the session terminated.

quitTimeout.

The qui tTimeout resource specifies the amount of time (in milliseconds) that MWM
will wait for a client to update the WM COMMAND property after it has sent the
WM SAVE YOURSELF message. This protocol will only be used for those clients that
have -a WM -SAVE YOURSELF atom in the WM PROTOCOLS client window property.
The defaulttime is 1000 (ms). -

WM TAKE FOCUS - -
Clients with this atom will be notified when a window manager believes that the client
should explicitly set the input focus to one of its windows.

MOTIF WM MESSAGES

Clients with this atom will indicate to the window manager which messages (sent by the
window manager when the f . send _ ms g function is invoked) are currently being
handled by the client.

WM COLORMAP WINDOWS - -
The WM COLORMAP WINDOWS property indicates to MWM which colormaps your
client apPiication would like to have installed.

Working with Window Manager Properties

MWM uses properties to supply configuration and state information to clients (usually
session managers).

WM STATE

H - 6 HP Motif Window Manager Programmatic Interface

The WM _ STATE property contains the following fields:

state NormalState, IconicState, and WithdrawnState are the values defined for MWM.

icon The icon window value is set to the window ID of the top-level icon window; this
window is NOT the icon window supplied by the client. (The icon window, if it is
set in WM _HINTS, is a child of the top-level window.)

The information in the WM STATE property is generally used only by session
management clients. -

WM ICON SIZE - -
MWM sets the WM ICON SIZE property of the root window. WM ICON SIZE
contains the followiti'"g fields: - -

min _width, min_height

Minimum width and minimum height of an icon window are set based on the value of (or
default value for) the iconlmageMinimum resource.

max_width, max_height

Maximum width and maximum height of an icon window are set based on the value of (or
default value for) the iconlmage Maximum resource.

width _inc, height Jnc

HP Motif Window Manager Programmatic Interface H -7

The increment for changing the width and height of an icon window is set to 1 pixel by
MWM.

Changing Window State
Windows are normal (full sized), iconic (small symbol), or withdrawn (not visible). You
can control many attributes of normal and icon windows. See Chapter 4 for information
on the appearance and behavior of windows in the NormalState. See Chapter 6 for
information on the appearance and behavior of windows in the IconicState.

Configuring the Window
Clients can request to be notified, with ConfigureNotify events, when windows
change size or position. The X, Y coordinates in these events may be relative to either the
root window or the frame provided by MWM. Use XTranslateCoordinates to
determine absolute coordinates.

Changing Window Attributes
If the client requests save-under with the saveUnder resource, MWM will set this
attribute for the MWM frame instead of the client window.

Controlling Input Focus
" Use the keyboardFocusPolicy resource to control the input focus. Clients can
request to be notified when given the input focus. See "WM_PROTOCOLS."

Windows that supply a WM _PROTOCOLS property containing the WM _TAKE_FOCUS
atom will receive a ClientMessage from the window manager.

Establishing Colormaps
If more than one colormap is needed for client subwindows, then set the
WM _ COLORMAP _ WINDOWS property to the list of windows with colormaps.

H.2.2 Client Responses to MWM Actions

MWM redirects the following top-level window requests: MapWindow,
ConfigureWindow, CirculateWindow.
MWM may not immediately execute (or execute at all) redirected requests.

Window Size and Position
Clients can request sizes and positions with MWM HINTS, but MWM may not satisfy
these requests. -

Window and Icon Mapping
Client windows in the normalized state are mapped. Client windows in the iconified state
are not mapped.

H - 8 HP Motif Window Manager Programmatic Interface

Colormap Changes
Clients can request to be notified when their colormap is in use (or no longer in use), by
using ColorrnapNotify.

Input Focus
Distribution of input within a client window can be handled using Xt Intrinsics and the Xm
Widgets. Clients should generally avoid using XSetInputFocusO.

ClientMessage Events
Clients can't prevent being sent ClientMessage events, but clients can ignore these if
they aren't useful.

H.3 MWM Specific Information
The following information details window manager conventions not covered by the
ICCCM, but which are required for supporting HP aSF /Motif behavior.

H.3.1 MOTIF WM HINTS

A client may communicate certain preferences directly to MWM via the
MOTIF WM HINTS property. The contents of this property is shown in the following

table: - -

Field 1YPe
flags CARD32

decorations CARD32

functions CARD32

input_mode CARD32

flags
The flags field indicates which fields in the _ MOTIF _ WM _HINTS property contain data.
The following values are supported:

HP aSF /Motif Window Manager Programmatic Interface H - 9

Name Value Field
MWM HINTS FUNCTIONS 1 MWM functions applicable to client

MWM HINTS DECORATIONS 2 Client window frame decorations - -
MWM HINTS INPUT MODE 4 Client input mode

functions
The functions field indicates which MWM functions should apply to the client window (for
example, whether the window should be resized). The information in this field is
combined with the value of the clientFunctions resource. Function selection using
MWM HINTS takes precedence over function selection with the clientFunctions
resource. Also, decorations that support a particular function (for example, the minimize
button) will not be shown if the associated function is not applicable.

Name Value Comments
MWM FUNC ALL 1 If set, remove functions from full set - -
MWM FUNC RESIZE 2 f.resize
MWM FUNC MOVE 4 f.move - -
MWM FUNC MINIMIZE 8 f.minimize
MWM FUNC MAXIMIZE 16 f.maximize - -
MWM FUNC CLOSE 32 f.kill

decorations
The decorations field indicates how the client window frame should be decorated (for
example, whether the window should have a title bar or window menu button). The
information in this field is combined with the value of the clientDecoration
resource (see Chapter 4,"Using Frameless or Reduced-Element Window Frames").
Decoration selection using MOTIF WM HINTS takes precedence over decoration
selection with the clientDecorat-ion resource.

The following values are supported:

H -10 HP Motif Window Manager Programmatic Interface

Name Value Comments

MWM DECOR ALL 1 If set, remove decorations from full set
MWM DECOR BORDER 2 Client window border - -
MWM DECOR RESIZEH 4 Resize border handles
MWM DECOR TITLE 8 Title bar - -
MWM DECOR SYSTEM 16 Window menu button
MWM DECOR MINIMIZE 32 Minimize window button
MWM DECOR MAXIMUM 64 Maximize window button

input_mode
The input mode field indicates the keyboard input focus constraints that are imposed by
the client Window.

Name Value Comments
INPUT APPIPCATION MODAL 1 Input does not go to the primary window
INPUT SYSTEM MODAL 2 Input goes only to this window

MOTIF WM MENU
The client uses the MOTIF WM MENU property to add menu items to the end of the
window menu for the client ~ndo;. The contents of the property are a list of lines
separated by the new line characters \n, with the following format:

label [mnemonic] [accelerator] function \n label [mnemonic] [accelerator] function

The interpretation of the strings is the same as for menu items (see Chapter 5, "Making
New Menus - Menu Items").

MOTIF WM MESSAGES
The clietrt usesthe MOTIF WM MESSAGES property to indicate to the window
manager which mes;ages (se~i by the window manager when the f. send _ ms g function
is invoked) are currently being handled by the client. Menu items that have
f. send_msg specified as the function have grayed-out labels when the associated
message is not being handled by the client.

This client property is tracked by the window manager if the MOTIF WM MESSAGES
atom is included in the client's WM PROTOCOLS property~ The - -
MOTIF WM MESSAGES prope~ty contains a list of integers (in the XChangeProperty:

type atoni" is INTEGER, format is 32). A client places the property on a client window and
it is processed by MWM when the client window goes from withdrawn state to normalized

HP Motif Window Manager Programmatic Interface H -11

or iconified state. Changes to the property are processed while the client window is not in
the withdrawn state.

MOTIF WM INFO
The client recclves MWM-specific information via the MOTIF WM INFO property.
This property is placed by MWM on the root window a~d is used by clients. The

MOTIF WM INFO property is set up as part of MWM initialization. The contents of
the _MOTIF _ WM _INFO property are shown in the following table.

Field 'JYpe

flags CARD32
wmWindow CARD32

flags. The following values can be used alone, or together (using the Boolean "OR").

Name Value Field
MWM INFO STARTUP STANDARD 1 Set for startup with - - -

standard behavior.
MWM INFO STARTUP CUSTOM 2 Set for startup with - - -

customized behavior.

wmWindow. The wm Window field is always set to the window "ID" of a window that is
used by MWM. When MWM is running, the MOTIF WM INFO property is present on
the root window and wm Window is an ID for a window-that exists.

H.3.2 Window Management Calls

Clients communicate with the window manager through properties associated with top­
level windows, synthetic events (generated using XSendEvent) and standard X events.
Programmatically this communication involves Xlib calls (directly or through libraries such
as Xt Intrinsics). Clients may programmatically interact with MWM (or any Xll window
manager) in one of the following ways:

• No explicit programmatic access.

In this case, clients do not set up any window properties or do any call that directly
communicates to the window manager. Communication occurs (indirectly) when the
state of the client window is changed (that is, the window is mapped, unmapped,
configured, has a colormap change, etc.). To work with MWM, clients are not required
to do anything more than what is required when a window manager is not being used.

H -12 HP Motif Window Manager Programmatic Interface

• High-level programmatic access.

Clients can make high-level Xlib call (XSetStandardProperties) or calls to certain
libraries built on Xlib (Xt Intrinsics - XtInitialize, XtMainLoop) to establish and
maintain standard communications with MWM. Client developers are encouraged to
use the X Toolkit for client/window manager communication unless the client has
some specialized window management requirements.

• Low-level programmatic access.

Clients with special window management requirements can use low-level Xlib calls
(XStoreName, XSetWMHints, etc.) to communicate with the window manager.

Xlib Calls
The calls in the following table are used with MWM:

HP Motif Window Manager Programmatic Interface H -13

This X1ib call ••• Does this •••

XSetStandardPropertiesO Sets WM _NAME,
WM_ICON_NAME,
WM_HINTS,
WM _COMMAND, and
WM NORMAL HINTS. It - -
does not set WM ClASS
(which should be set to allow
MWM to be optimally
configured for a particular
class of client windows).

XStoreNameO Sets the WM NAME
property (used for window
titles).

XSetIconNameO Sets the WM ICON NAME
property (used for the icon
label).

XSetCommandO Sets the WM COMMAND
property.

XSetWMHINTSO Sets the WM HINTS
property.

XSetNormalHintsO Sets the
WM NORMAL HINTS - -
property.

XGetIconSizesO Is used to get a list of MWM-
supported icon sizes.

XSetClassHintO Is used to set the
WM _ ClASS property.

XSetTransientFor HintO Sets the
WM TRANSIENT FOR - -
property.

XGetStandardColorMapO Is used to get standard
colormap information.

XSetproperty

H -14 HP Motif Window Manager Programmatic Interface

Xt Intrinsics Calls
The calls in the following table are used with MWM:

This Xt Intrinsics call ••• Does this •••

XtInitializeO Makes a top-level window and
sets up the following
properties on that window:
WM_NAME,
WM_NORMAL_HINTS,
WM_HINTS, and
WM CLASS.

XtMainLoopO Handles the messages
described in the ICCCM that
deal with window
reconfiguration.

HP Motif Window Manager Programmatic Interface H -15

Fortran Bindings

Since XII is are implemented in the programming language "C", a number of
programming techniques have been used that do not have direct analogs in standard
Fortran, or even in the HP extensions to Fortran.

I

For example, standard Fortran passes all parameters by reference. That is, a pointer to the
parameter is passed rather than the parameter itself. This is true even for literal constants.
Because the state of a window in X is a complicated grouping of dissimilar types, C
structures are used to represent them.

As a solution to the problem, ten routines have been developed to create, manage and
destroy the data types necessary to call routines in XII. The objects created by these
routines can be passed directly to XII.

To allow for maximum flexibility and extensibility, two more routines are provided to add
or replace types in the type tables.

All routines not explicitly returning a value are logical functions. A "FALSE" return value
implies failure - the failure type is inxfErmo. (See the discussion ofxJErmo inXfPack,
below).

In order to access Xflib, a program must contain the following statement at the beginning
of the file: include '/usr/include/Xfll/Xfalias.h', and the following statement at the
beginning of each subprogram wanting to use libXf: include '/usr/include/Xfll/Xflib.h'.

1.1 Translating C types to Fortran

The simple types in C have the following correspondence to types in Fortran:

Fortran Bindings I -1

c JYpes FORTRAN'IYPes

char CHARACTER

short INTEGER *2

int INTEGER *4

long INTEGER *4

float REAL*4

double REAL*8

In C, variables are declared by specifying the type followed by the variable name. If the
variable is to be a pointer, an asterisk is placed between the type name and the variable
name. 1\vo asterisks would imply a pointer to a pointer and each succeeding asterisk
implies another level of indirection.

Examples:

char fname;
lnt *wldth, *helght;
short **data;

A structure in C, called "struct", is a grouping of items of dissimilar types. Structs are
distinct from arrays in that arrays must contain one or more items of a single type. The
typical use of Fortran bindings is to fill in a C structure that will be passed in a call to Xll,
or to read a C structure returned from a call to XlI.

The various items that are contained in a struct are called fields. To access a field of a
struct in C, one specifies the struct name, followed by a period, followed by the field name.
When using the Fortran bindings, accessing the fields of a struct is done via calls to the
XfI ns e r t () and XfEx t r ac t () routines (routines referenced in this section are
discussed in detail in the following sections) for assignment to the field and assignment
from the field respectively.

Any struct used by Xll maybe filled in or read by XfInsert() or XfExtract() .
Whenever the C documentation contains a line like:

this _ struct.this _field = this_value;

the Fortran equivalent would be:

XfInsert(XFT _this _ struct,XFF _this _ field, this _ value)

1-2 Fortran Bindings

Note that any struct name in the C documentation is preceded by"XFf " (X/Fortran
Type) and any field name is preceded by "XFF " (X/Fortran Field). The Xll struct and
field names are given constant numeric values in the include files "xftypes.h" and
"xffields.h" respectively.

Often C structs will contain embedded structures or arrays. Inserting or extracting values
from these embedded aggregates is the purpose of the routine XfA t tach () .
By attaching to a field of a structure created by XfCreate () , one can insert or extract

values from the fields or elements of the embedded aggregate. The common use for this
feature is to insert strings into an array of strings or a pointer to an array of strings.

Another use for the XfAttach() routine is to allow direct access to pointers. The
Fortran bindings will assume that if a field is a pointer, the caller is passing a pointer
generated by a previous call to an Xll function. The only exception to this rule is if the
pointer being passed is a pointer to a char, i.e., the pointer is a string.

At times one may wish to pass a string generated by an X11 call,or one may wish to
generate a pointer to a Fortran variable. This can be done by attaching to the pointer and
indexing it in the XfI ns e r t () call. When a pointer is indexed by 0, the bindings will
assume the caller is speaking of the pointer itself and will pass a pointer value; when a
pointer is indexed by one, the bindings will assume the caller wishes the pointer to point to
the value being passed. If a pointer is indexed by more than 1, the bindings will assume the
caller wishes to point to a list of items and will allocate space for the list and place the
value passed at the specified index in the list.

For example:

INTEGER*4 string,ptr

C Place a string in a Fortran bindings variable (XfPack defaults to a
C field of 1)

string = XfPack(XFT_STRING8,'Some string')
C Get a pointer to the string to pass to a function (by indexing by 0)

ptr = XfValue(string,O)

1.2 Creating an X11 Object

Three routines are available for creating an object to be used by Xll: XfCreate () ,
XfPack() , and XfUnpack() .

1.2.1 XfCreate

The function XfCreate (object type) creates an object of the type specified by the
parameter object type. Object type is a unique identifying integer assigned to each data
type required by Xl1. These identifying integers are defined in an include file named

Fortran Bindings I -3

"xftypes.h" (which is included by Xflib.h) which must be included into any Fortran program
using these bindings.

All fields of any objects created via XfCreate () will be initialized to zeros. The value
returned from the function may be passed to Xli in lieu of a pointer.

Pointers to existing objects are indicated in C by a leading ampersand ("&"). Pointers are
declared with a leading asterisk ("*").

For example:
struct sttype st;

ThisRoutine(&st)
or
struct sttype *stp;

ThisRoutine(stp)
would both pass a pointer to a structure of type "sttype".

1.2.2 XfPack

The function XfPack (object type,vall,vaI2, ... ,valn) creates an object in a fashion similar
to XfCreate (). XfPack(), however, will fill in the fields of the created object from
the list of values provided. The list of values must be presented in the same order as found
in the structure and all values must be supplied.

1.2.3 XfUnpack

The function XfUnpack (object type,varl,var2, ... ,vam) will extract all the variables from
the object indicated by object type into the series of variables given. The list of variables
must be presented in the sam~ order as found in the structure and all variables must be
supplied.

If anyone of XfCreate (), XfPack(), or XfUnpack fail, a zero value is returned
and an error code is placed in an external variable named xfErrno. The error codes are the
following:

1. XFE _ TOO BIG: too many types have been declared.

2. XFE_NOMEM: out of memory.

3. XFE _ BADTYPE: a blatantly illegal type was passed to a routine.

I - 4 Fortran Bindings

4. XFE _NOTFOUND: either a type (XFT J or field name (XFF J was passed to a
routine and the type could not be found in the type tables, or the type was found and
did not contain the field.

S. XFE INTERNAL: an internal error was discovered. This usually means that the
type tables have been corrupted by a bad call to XfAddType () or
XfReplaceType().

1.2.4 Examples

INTEGER*4 MYSTRUCT
MYSTRUCT = XfCreate(XFT_RECTANGLE)

INTEGER*4 MYSTRUCT
INTEGER*4 x,y,width,height
MYSTRUCT = XfPack(XFT_RECTANGLE,50,50,50,50)
IF (.NOT. XfUnpack(XFT_RECTANGLE,x,y,width,height» CALL error

1.3 Managing Objects

Six routines have been provided to manage the contents of XII objects. These are
Xflnsert(), XfExtract(), XfValue(), XfAttach(), XfDetach(), and
XfSync().

1.3.1 Xflnsert

After creating an XII object via either XfCreate () or XfPack() , values may be
placed into fields of the object by the routine XfI ns e rt (Object _ID,Field _ID, value).
Object_ID is the return value from a previous call to XfCreate () or XfPack() ,
Field ID is a unique identifying integer for a field of the object as defined in the header
file "rlfields.h" (which is included by Xflib.h) and value is the value to be placed in that
field.

If a field is described as being a pointer (e.g., "char *"), it may be considered as pointing to
an array of items. In the simplest case, the array pointed to has a single element, a pointer.
All arrays are indexed starting at one. If a pointer is indexed by zero, the insert and extract
functions will assume the user is talking about the pointer itself, rather than the item
pointed to. The insert and extract functions will default to an index of zero for all pointers
except pointers to characters. Since, in C, pointers to characters are used to pass strings,
pointers to characters are assumed to be indexed by one (see the example on pointers in
the second section of this appendix). The routine XfAttach () , to be described later,
allows the user to override these defaults.

Fortran Bindings I -5

Strings and simple types will default to an index of 1. Complex types (e.g., structures) will
default to an index of o. Indexing a simple type by zero will return the X/Fortran version
of the variable and is therefore a simple way to generate a pointer to a simple (scalar) type.

1.3.2 XfExtract

XfExtract (Object_ID,Field_ID,value) is the inverse of Xflnsert() .
XfEx t r ac t () is used to move a value from a field of an X11 object to a Fortran
variable.

1.3.3 XfValue

The function XfValue (objld,fieldld) extracts a value from the object "objId" in field
"fieldId". If the value is a simple (scalar) type (e.g., int or char), enumerated type, or
pointer, the value returned will be the actual value extended to be an INTEGER *4. If the
value is a complex type (e.g. struct or array), the value returned will be a pointer to the
object.

If fieldId is zero, the behavior is similar to the behavior of XfEx t r ac t .

ObjId must be an object identifier created via XfGreate (), XfPack() or
XfAttach() .

1.3.4 XfAttach

XfAttach (Object ID,Field ID,Old Attach ID) is a function returning another object
identifier. This new-identifie; is an object whose value is the field specified by Field ID.
The object returned is suitable for passing to calls to Xflnsert(), XfExtract () or
a subsequent call to XfAttach() .
If Old Attach ID is zero, a new object will be created - if Old Attach ID is non-zero,
and is an object identifier created via a previous call to XfAttich() ,-it will be re-used.
It is an error to provide an Old Attach ID that is non-zero but was not created by a call to
XfAttach(). XfAttach()-is particularly useful for filling in structures with
embedded structures or arrays. By attaching to the inner structure, one can avoid the
creation of an intermediate structure for filling in the values.

Another use of XfA t tach () is to allow indexing of pointers. By attaching to the
pointer, the user can specify the index when inserting or extracting. This allows the user to
insert a character pointer returned from an X11 call directly into a structure (by specifying
an index of zero), or a pointer to an item to be generated (by specifying an index of one.)

1.3.5 XfDetach

XfDe tach (Object _ID) releases the temporary object identifier created by a previous call
to XfAttach() . It is an error if Object_ID was not created by a call to XfAttach() .

I - 6 Fortran Bindings

1.3.6 XfSync

XfSync () guarantees that the X/Fortran version of certain global Xl1 variables are up
to date. It should be used before accessing the following variables after X calls:

Variable name 1YPe
_xfCurrentDisplay XFf _Display
xtZeroPt XFf POINT
xtZeroRect XFf RECTANGLE
xfBaseFontInfo XFf XFontStruct
xfCursor Image XFf - INT16Pointer
xfCursorMask XFf - INT16Pointer
xf_bitmaps XFf)NT16x16Pointer (pointer

to array of 16 16 bit integers)
xf _ PolyList XFf XPointPointer

1.4 Releasing an Object
To avoid consuming memory without bound, a routine has been provided to release the
memory claimed by a call to XfCreate () or XfPack() . This routine, XfDes troy
(Object ID), returns any memory used to hold the values of the object referred to by
Object ID to the available memory pool. It is an error if Object ID was not created by a
previous call to XfCreate () or XfPack() . -

1.4.1 Example

INTEGER*4 NEWSIZE

NEWSIZE = XfCreate(XFT_RECTANGLE)

CALL XfDestroy(NEWSIZE)

Fortran Bindings I -7

1.5 Extending the Fortran Bindings

In some instances a programmer will need to extend the bindings to describe a type that
may only occasionally be used. Two functions, XfAddType (rype _ID,Descriptor) and
XfReplaceType (Type _ID,Descriptor) allow new types to be added to the Fortran
binding software. rype ID is a unique identifying integer by which the type will be known
(or zero to allow the biiidings to create an appropriate identifier), and is the value that
would be passed to XfCrea te () or XfP ack () . The Descriptor is the means by which
the size and contents of the type are specified. The return value of the call is the newly
created type or zero if the call fails.

The fields are passed in as a two dimensional array of integers in Fortran and can be
thought of as an array of pairs. The first pair of each descriptor must contain one of the
following values:

(XFT yointer,O)
(XFT enum,O)
(XFT - array,O)
(XFT = union,O)
(XFT _ struct,O)

For pointers, the pairs describe the type pointed to. For example, a pointer to an integer
would be described by the pairs:

«XFT-pointer,O),(XFT_int,O».

For pointers, the values supplied to XfP ac k () must be variables, not constants - except
that you can use string constants.

To create and use the above described pointer to an integer, the following descriptor would
be passed:

DATA «integerPointerFields(j,k),j=1,2),k=1,2)
C/XFT-pointer,O,XFT_int,0/

This is illustrated in the following example:

I - 8 Fortran Bindings

INTEGER*4 newType,newValue,integerPointerFields(2,2)
INTEGER j,k, 1
DATA «integerPointerFields(j,k),j=1,2),k=1,2)

C/XFT-pointer,O,XFT_int,0/

newType = XfAddType(O,integerPointerFields)

1 = 10
newValue = XfPack(newType,l)

C specifying a field of 1 to XfValue retrieves the value pointed to
IF (XfValue(newValue,l) .EQ. 10) CALL ...

The first pair of an enumerated type descriptor consists of the values (XFf enum,O). In
succeeding pairs, the first element of each holds the external value of the field. The
second element holds the symbolic identifier by which the value will be known. The end of
the list of enumerated types is indicated by a field identifier of zero. An enumerated type
consisting of the possible values: Namel, Name2 and Name3 would be described by the
pairs: «XFf enum,O),(O,Namel),(l,Name2),(2,Name3),(O,O)).

An example of the creation and use of such an enumerated type is:

INTEGER*4 newType,newValue,myEnumeratedFields(2,5)
INTEGER j,k
DATA «myEnumeratedFields(j,k),j=1,2),k=1,5)

C/XFT_enum,0,0,Name1,1,Name2,2,Name3,0,0/

newType = XfAddType(O,myEnumeratedFields)

newValue = XfPack(newType,Name2)

C specifying a field value of 1 retrieves the symbolic value
IF (XfValue(newValue,l) .EQ. Name2) CALL ...

Arrays are described starting with a pair consisting of (XFf array,O). The following pairs
first describe the base type of the array followed by a pair c~nsisting of the number of
elements in the array and a zero. To create and use a type describing a 2 element array of
items of type integer, one would enter:

Fortran Bindings I -9

INTEGER*4 newType,newValue,myArray2IntegerFields(2,3)
INTEGER j,k
DATA «myArray2IntegerFields(j,k),j=1,2),k=1,3)

C/XFT_array,O,XFT_int,O,2,O/

newType = XfAddType(O,myArray2IntegerFields)

newValue = XfPack(newType,3,4)

C the field value is the index into the array
IF (XfValue(newType,2) .EQ. 4) CALL ...

Unions allow a variable to be accessed as one of several types. A union descriptor begins
with the pair (XFf _ union,O) followed by pairs consisting of previously defined types and a
field identifier which must be non-zero and unique within the union. To create and use a
union of two types, character or integer, one would need the pairs «XFf union,O),
(XFf char,nl),XFf integer,n2),(O,O», where nl and n2 are distinct and non zero. - -
For example, in Fortran:

PARAMETER (C = 1, I = 2)
INTEGER C,I
INTEGER*4 newType,newValue,myUnionFields(2,4)
INTEGER j,k
DATA «myUnionFields(j,k),j=1,2),k=1,4)

newType = XfAddType(O,myUnionFields)

newValue = XfCreate(newType)
C insert a character 'x' into the union

IF (.NOT. Xflnsert(newValue,C,'x'» CALL error

Finally, structures begin with the pair (XFf struct,O) followed by a list of fields terminated
with a pair having a first element of zero. The first pair of the descriptor of a field type
value will have the symbolic name by which the field will be known as its second element.
To create a structure consisting of an integer and an array of two characters one would
need the pairs: «XFf _struct,O),(XFf _int,nl),(XFf _ array,n2),(XFf _ char,O),(2,O» where
nl and n2 are distinct and non-zero.

Here is an example of declaration and use of such a structure:

I -10 Fortran Bindings

PARAMETER (I = 1, CA = 2)
INTEGER C,I
INTEGER*4 newType,newValue,attach,myStructFields(2,5)
INTEGER j,k
DATA «myStructFields(j,k),j=1,2),k=1,5)

C/XFT_struct,O,XFT_int,I,XFT_array,CA,XFT_char,O,2,OI

newType = XfAddType(O,myStructFields)

newValue = XfCreate(newType)
C attach the the array of two characters

attach = XfAttach(newType,CA,O)
C insert an 'x' in the second element of the array

IF (.NOT. Xflnsert(attach,2,'x'» CALL error

Fortran Bindings I -11

1.6 FORTRAN/X Program Examples
Following is a program rewritten in FORTRAN.

C Translation of Sample Program 1 taken from chapter 1 of
C "Progranming with the Xrlib User Interface Toolbox"
C

C
C

C

C

INCLUDE '/usr/include/Xf11/xfalias.h'

PROGRAM sample1
INCLUDE '/usr/include/Xfl1/Xflib.h'

INTEGER*4 display,screen,gc
INTEGER*4 border,background
INTEGER*4 windowId
INTEGER*4 wAttribs
INTEGER*4 i,j

C Open the display
C

display=XOpenDisplay(O)
if (display .ne. 0) goto 10
print *,'cannot create a window'
go to 9999

10 screen=DefaultScreen(display)

C

border=BlackPixel(displaY,screen)
background=WhitePixel(display,screen)

C Create a window and put it on the display
C

windowId = XCreateSimpleWindow(display,
C RootWindow(displaY,screen) ,
C 50,50,400,200,3,border,background)

wAttribs=XfCreate(XFT XSetWindowAttributes)
if (XfInsert(wAttribs:XFF_backing_store,XFD_WhenMapped» goto 20
print *,'XfInsert ('1) error ->',xfErrno
goto 9999

20 call XChangeWindowAttributes(displaY,windowId,
C XFD_CWBackingStore,wAttribs)

call XMapWindow(display,windowld)

I -12 Fortran Bindings

gc=XCreateGC(display,windowld,O,O)
C
C Send "Hello world" to the window
C

i=XfPack(XFT_STRING8,'Hello World')
if (i .ne. 0) go to 40
print *,'XfPack #2) error ->',xfErrno
goto 9999

40 if (XfExtract(i,O,j» goto 50
print *,'XfExtract (#3) error ->',xfErrno
goto 9999

50 call XDrawString(display,windowld,gc,100,80,j,11)
call XFlush(display)
call sleep(5)
call XCloseDisplay(display)

9999 END

Fortran Bindings 1-13

Series 300 and 800 Only

NAME
Intro - Introduction to the reference section of the Programming With Xlib manual.

DESCRIPTION
This section contains reference information about the C Language functions and macros
contained in the Xlib and XHP libraries. Functions are listed in related groups on each manual
page.

To locate a particular function use the index that follows. Each routine is listed in alphabetical
order followed by the name of the manual page where it is documented.

Function Location
AlIPlanesO AlIPlanes(3X)
BlackPixelofScreenO BlackPixelofScreen(3X)
ImageByteOrderO ImageByteOrder(3X)
IsCursorKey() IsCursorKey(3X)
XActivateScreenSaverO XSetScreenSaver(3X)
XAddHostO XAddHost(3X)
XAddHostsO XAddHost(3X)
XAddPixelO XCreatelmage(3X)
XAddToSaveSetO XChangeSaveSet(3X)
XAllocColorO XAllocColor(3X)
XAllocColorCellsO XAllocColor(3X)
XAllocColorPlanesO XAllocColor(3X)
XAllocNamedColorO XAllocColor(3X)
XAllowEventsO XAllowEvents(3X)
XAutoRepeatOffO XChangeKeyboardControl(3X)
XAutoRepeatOnO XChangeKeyboardControl(3X)
XBellO XChangeKeyboardControl(3X)
XChangeActivePointerGrabO XGrabPointer(3X)
XChangeGCO XCreateGC(3X)
XChangeKeyboardControlO XChangeKeyboardControl(3X)
XChangeKeyboardMappingO XChangeKeyboardMapping(3X)
XChangePointerControlO XChangePointerControl(3X)
XChangeProperty() XGetWindowProperty(3X)
XChangeSaveSetO XChangeSaveSet(3X)
XChangeWindowAttributesO XChangeWindowAttributes(3X)
XChecklfEventO XIfEvent(3X)
XCirculateSubwindowsO XRaiseWindow(3X)
XCirculateSubwindowsDownO XRaiseWindow(3X)
XCirculateSubwindowsUpO XRaiseWindow(3X)
XClearAreaO XOearArea(3X)
XClearWindowO XClearArea(3X)
XClipBoxO XPolygonRegion(3X)
XCloseDisplay() XOpenDisplay(3X)
XConfigureWindowO XConfigureWindow(3X)
XConvertSelectionO XSetSelectionOwner(3X)
XCopyAreaO XCopyArea(3X)
XCopyColormapAndFreeO XCreateColormap(3X)
XCopyGCO XCreateGC(3X)
XCopyPlaneO XCopyArea(3X)
XCreateBitmapFromDataO XReadBitmapFile(3X)
XCreateColormapO XCreateColormap(3X)

Hewlett-Packard Company -1- Jul13,1989

Series 300 and 800 Only

Function
XCreateFontCursorO
XCreateGCO
XCreateGlyphCursorO
XCreatelmageO
XCreatePixmapO
XCreatePixmapCursorO
XCreatePixmapFromBitmapDataO
XCreateRegionO
XCreateSimpleWindowO
XCreateWindowO
XDefineCursorO
XDeleteContextO
XDeleteModifiermapEntry()
XDeleteProperty()
XDestroylmageO
XDestroyRegionO
XDestroySubwindowsO
XDestroyWindow()
XDisableAccessControlO
XDisplayNameO
XDrawArcO
XDrawArcsO
XDrawlmageStringO
XDrawlmageString160
XDrawLineO
XDrawLinesO
XDrawPointO
XDrawPointsO
XDrawRectangleO
XDrawRectanglesO
XDrawSegmentsO
XDrawStringO
XDrawString160
XDrawTextO
XDrawText160
XEmptyRegionO
XEnableAccessControlO
XEqualRegionO
XEventsQueuedO
XFetchBufferO
XFetchBytesO
XFetchNameO
XFillArcO
XFillArcsO
XFillPolygonO
XFillRectangleO
XFillRectanglesO
XFindContextO
XFlushO

I XForce&reenSaverO

Hewlett-Packard Company -2-

.Loeation
XCreateFontCursor(3X)
XCreateGC(3X)
XCreateFontCursor(3X)
XCreatelmage(3X)
XCreatePixmap(3X)
XCreateFontCursor(3X)
XReadBitmapFile(3X)
XCreateRegion(3X)
XCreateWindow(3X)
XCreateWindow(3X)
XDefineCursor(3X)
XSaveContext(3X)
XChangeKeyboardMapping(3X)
XGetWindowProperty(3X)
XCreatelmage(3X)
XCreateRegion(3X)
XDestroyWindow(3X)
XDestroyWindow(3X)
XAddHost(3X)
XSetErrorHandler(3X)
XDrawArc(3X)
XDrawArc(3X)
XDrawlmageString(3X)
XDrawlmageString(3X)
XDrawLine(3X)
XDrawLine(3X)
XDrawPoint(3X)
XDrawPoint(3X)
XDrawRectangle(3X)
XDrawRectangle(3X)
XDrawLine(3X)
XDrawString(3X)
XDrawString(3X)
XDrawText(3X)
XDrawText(3X)
XEmptyRegion(3X)
XAddHost(3X)
XEmptyRegion(3X)
XFlush(3X)
XStoreBytes(3X)
XStoreBytes(3X)
XStoreName(3X)
XFillRectangle(3X)
XFillRectangle(3X)
XFillRectangle(3X)
XFillRectangJe(3X)
XFillRectangle(3X)
XSaveContext(3X)
XFlush(3X)
XSetScreenSaver(3X)

Jul 13, 1989

Series 300 and 800 Only

Function Location
XFreeO XFree(3X)
XFreeColormapO XCreateColormap(3X)
XFreeColorsO XAllocColor(3X)
XFreeCursorO XRecolorCursor(3X)
XFreeFontO XLoadFont(3X)
XFreeFontlnfoO XLoadFont(3X)
XFreeFontNamesO XListFonts(3X)
XFreeFontPathO XSetFontPath(3X)
XFreeGCO XCreateGC(3X)
XFreeModifierMapO XChangeKeyboardMapping(3X)
XFreePixmapO XCreatePixmap(3X)
XGContextFromGCO XLoadFont(3X)
XGeometry() XParseGeometry(3X)
XGetAtomNameO XInternAtom(3X)
XGetClassHintO XSetQassHint(3X)
XGetDefaultO XGetDefault(3X)
XGetErrorDatabaseTextO XSetErrorHandler(3X)
XGetErrotfextO XSetErrorHandler(3X)
XGetFontPathO XSetFontPath(3X)
XGetFontProperty() XLoadFont(3X)
XGetGeometry() XGetWindowAttributes(3X)
XGetlconNameO XSetIconName(3X)
XGetlconSizesO XSetlconSizeHints(3X)
XGetlmageO XPutlmage(3X)
XGetlnputFocusO XSetlnputFocus(3X)
XGetKeyboardControlO XChangeKeyboardControl(3X)
XGetKeyboardMappingO XChangeKeyboardMapping(3X)
XGetModifierMappingO XChangeKeyboardMapping(3X)
XGetNormalHintsO XSetNormalHints(3X)
XGetPixelO XCreatelmage(3X)
XGetPointerControlO XChangePointerControl(3X)
XGetPointerMappingO XSetPointerMapping(3X)
XGetResourceO XGetResource(3x)
XGetScreenSaverO XSetScreenSaver(3X)
XGetSelectionOwnerO XSetSelectionOwner(3X)
XGetSizeHintsO XSetSizeHints(3X)
XGetStandardColormapO XSetStandardColormap(3X)
XGetSubImageO XPutImage(3X)
XGetTransientForHintO XSetTransientForHint(3X)
XGetVisuallnfoO XGetVisuallnfo(3X)
XGetWindowAttributesO XGetWindowAttributes(3X)
XGetWindowProperty() XGetWindowProperty(3X)
XGetWMHintsO XSetWMHints(3X)
XGetZoomHintsO XSetZoomHints(3X)
XGrabButtonO XGrabButton(3X)
XGrabKey() XGrabKey(3X)
XGrabKeyboardO XGrabKeyboard(3X)
XGrabPointerO XGrabPointer(3X)
XGrabSetverO XGrabSetver(3X)

Hewlett-Packard Company -3- Jul13,1989

Series 300 and 800 Only

Function
XHPAcknowledgeO
XHPChangeDeviceControlO
XHPChangeDeviceKeyMappingO
XHPConvertLookupO
XHPDeviceAutoRepeatOnO
XHPDeviceAutoRepeatOtIO
XHPDisableResetO
XHPEnableResetO
XHPFileToPixmapO
XHPFileToWindowO
XHPFreeDeviceListO
XHPGetCurrentDeviceMaskO
XHPGetDeviceFocusO
XHPGetDeviceMotionEventsO
XHPGetDeviceControlO
XHPGetDeviceKeyMappingO
XHPGetDeviceModifierMappingO
XHPGetEurasCvtO
XHPGetExtEventMaskO
XHPGetServerModeO
XHPGrabDeviceO
XHPGrabDeviceButtonO
XHPGrabDeviceKey()
XHPInputChinese sO
XHPInputChinese -to
XHPInputlS07sub()
XHPInputJapaneseO
XHPInputKoreanO
XHPInputRoman80
XHPKeysymToRoman80
XHPListinputDevicesO
XHPNlioctlO
XHPPixmapToFileO
XHPPromptO
XHPQueryImageFileO
XHPSelectExtensionEventO
XHPSetDeviceFocusO
XHPSetDeviceModifierMappingO
XHPSetErrorHandlerO
XHPSetInputDeviceO
XHPRefreshKeyboardMappingO
XHPSetKeyboardMappingO
XHPUngrabDeviceO
XHPUngrabDeviceButtonO
XHPUngrabDeviceKey()
XHPWindowToFileO
XIfEventO
XInitializeO
XInsertModifiermapEntry()

I XlnstaHCoiormapO

Hewlett-Packard Company -4-

Location
XHPAcknowledge(3X)
XHPChangeDeviceControl(3X)
XHPChangeDeviceControl(3X)
XHPConvertLookup(3X)
XHPDeviceAutoRepeatOn(3X)
XHPDeviceAutoRepeatOn(3X)
XHPDisableReset(3X)
XHPEnableReset(3X)
XHPFileToPixmap(3X)
XHPFileToWindow(3X)
XHPFreeDeviceList(3X)
XHPGetCurrentDeviceMask(3X)
XHPGetDeviceFocus(3X)
XHPGetDeviceFocus(3X)
XHPGetDeviceFocus(3X)
XHPGetDeviceFocus(3X)
XHPGetDeviceFocus(3X)
XHPGetEurasCvt(3X)
XHPGetExtEventMask(3X)
XHPGetServerMode(3X)
XHPGrabDevice(3X)
XHPGrabDevice(3X)
XHPGrabDevice(3X)
XHPInputChinese _s(3X)
XHPInputChinese t(3X)
XHPInputlS07sub(3X)
XHPInputJapanese(3X)
XHPInputKorean(3X)
XHPInputRoman8(3X)
XHPKeysymToRoman8(3X)
XHPListinputDevices(3X)
XHPNlioctlO
XHPPixmapToFile(3X)
XHPPrompt(3X)
XHPQueryImageFile(3X)
XHPSelectExtensionEvent(3X)
XHPSetDeviceFocus(3X)
XHPSetDeviceFocus(3X)
XHPSetErrorHandler(3X)
XHPSetinputDevice(3X)
XHPSetKeyboardMapping(3X)
XHPSetKeyboardMapping(3X)
XHPUngrabDevice(3X)
XHPUngrabDevice(3X)
XHPUngrabDevice(3X)
XHPWindowToFile(3X)
XIfEvent(3X)
XInitialize(3X)
XChangeKeyboardMapping(3X)
XInstaHCoiormap(3X)

Jul 13, 1989

Series 300 and 800 Only

Function Location
XlntemAtomO XlntemAtom(3X)
XlntersectRegionO XlntersectRegion(3X)
XKeycodeToKeysymO XStringToKeysym(3X)
XKeysymToKeycodeO XStringToKeysym(3X)
XKeysymToStringO XStringToKeysym(3X)
XKillClientO XSetCloseDownMode(3X)
XListFontsO XListFonts(3X)
XListFontsWithlnfoO XLoadFont(3X)
XListHostsO XAddHost(3X)
XListInstalledColormapsO XlnstallColormap(3X)
XListPropertiesO XGetWindowProperty(3X)
XLoadFontO XLoadFont(3X)
XLoadQueryFontO XLoadFont(3X)
XLookupColorO XQueryColor(3X)
XLookupKeysymO XLookupKeysym(3X)
XLookupStringO XLookupKeysym(3X)
XLowerWindowO XRaiseWindow(3X)
XMapRaisedO XMapWindow(3X)
XMapSubwindowsO XMapWindow(3X)
XMapWindowO XMapWindow(3X)
XMatchVisualInfoO XGetVisualInfo(3X)
XMergeDataBasesO XMergeDataBases(3X)
XMoveResizeWindowO XConfigureWindow(3X)
XMoveWindowO XConfigureWindow(3X)
XNewModifierMapO XChangeKeyboardMapping(3X)
XNextEventO XFlush(3X)
XNoOpO XFree(3X)
XNoOpO XOpenDisplay(3X)
XOffsetRegionO XlntersectRegion(3X)
XOpenDisplay() XOpenDisplay(3X)
XParseColorO XParseGeometry(3X)
XParseGeometry() XParseGeometry(3X)
XPeekEventO XFlush(3X)
XPeeklfEventO XlfEvent(3X)
XPendingO XFlush(3X)
XPointInRegionO XlntersectRegion(3X)
XPolygonRegionO XPolygonRegion(3X)
XPutBackEventO XPutBackEvent(3X)
XPutImageO XPutlmage(3X)
XPutPixelO XCreatelmage(3X)
XQueryBestCursorO XRecolorCursor(3X)
XQueryBestSizeO XQueryBestSize(3X)
XQueryBestStippleO XQueryBestSize(3X)
XQueryBestTileO XQueryBestSize(3X)
XQueryColorO XQueryColor(3X)
XQueryColorsO XQueryColor(3X)
XQueryFontO XLoadPont(3X)
XQueryKeymapO XChangeKeyboard Control (3X)
XQueryPointerO XQueryPointer(3X)
XQueryTextExtentsO XTextExtents(3X)
XQueryTextExtents160 XTextExtents(3X)

Hewlett-Packard Company -5- Jul13,1989

Intro _to_XlI (3X)
Series 300 and 800 Only

Function Location
XQueryTreeO XQueryTree(3X)
XRaiseWindow() XRaiseWindow(3X)
XReadBitmapFileO XReadBitmapFile(3X)
XRebindKeySymO XLookupKeysym(3X)
XRecolorCursor() XRecolorCursor(3X)
XRectlnRegion() XIntersectRegion(3X)
XRefreshKeyboardMapping() XLookupKeysym(3X)
XRemoveFromSaveSetO XChangeSaveSet(3X)
XRemoveHostO XAddHost(3X)
XRemoveHostsO XAddHost(3X)
XReparentWindowO XReparentWindow(3X)
XResetScreenSaverO XSetScreenSaver(3X)
XResizeWindowO XConfigureWindow(3X)
XRestackWindowsO XRaiseWindow(3X)
XnnPutResourceO XnnPutResource(3X)
Xnn UniqueQuarkO XnnUniqueQuark(3X)
XRotateBuffers() XStoreBytes(3X)
XRotate WindowProperties() XGetWindowProperty(3X)
XSaveContextO XSaveContext(3X)
XSelectlnput() XSelectlnput(3X)
XSetAccessControlO XAddHost(3X)
XSetAfterFunctionO XSynchronize(3X)
XSetArcModeO XSetArcMode(3X)
XSetBackgroundO XSetState(3X)
XSetClassHintO XSetClassHint(3X)
XSetClipMaskO XSetClipOrigin(3X)
XSetClipOriginO XSetClipOrigin(3X)
XSetClipRectanglesO XSetClipOrigin(3X)
XSetCloseDownModeO XSetCloseDownMode(3X)
XSetCommandO XSetCommand(3X)
XSetDashesO XSetLineAttribute(3X)
XSetErrorHandlerO XSetErrorHandler(3X)
XSetFillRuleO XSetFillStyle(3X)
XSetFillStyleO XSetFillStyle(3X)
XSetFontO XSetFont(3X)
XSetFontPathO XSetFontPath(3X)
XSetForegroundO XSetState(3X)
XSetFunction() XSetState(3X)
XSetGraphicsExposureO XSetArcMode(3X)
XSetIconNameO XSetIconName(3X)
XSetlconSizesO XSetlconSizeHints(3X)
XSetlconSizeHintsO XSetIconSizeHints(3X)
XSetlnputFocus() XSetlnputFocus(3X)
XSetlOErrorHandler() XSetErrorHandler(3X)
XSetLineAttributeO XSetLineAttribute(3X)
XSetModifierMappingO XChangeKeyboardMapping(3X)
XSetNormalHintsO XSetNormaIHints(3X)
XSetPlanemaskO XSetState(3X)
XSetPointerMappingO XSetPointerMapping(3X)
XSetRegionO XCreateRegion(3X)
XSetScreenSaverO XSetScreenSaver(3X)

Hewlett-Packard Company -6- Jul13,1989

Series 300 and 800 Only

Function Location
XSetSelectionOwnerO XSetSelectionOwner(3X)
XSetSizeHintsO XSetSizeHints(3X)
XSetStandardColormapO XSetStandardColormap(3X)
XSetStandardPropertiesO XSetStandardProperties(3X)
XSetStateO XSetState(3X)
xSetStippleO XSetTile(3X)
XSetSubwindowModeO XSetArcMode(3X)
XSetTileO XSetTile(3X)
XSetTransientForHintO XSetTransientForHint(3X)
XSetTSOriginO XSetTile(3X)
XSetWindowBackgroundO XChangeWindowAttributes(3X)
XSetWindowBackgroundPixmapO XChangeWindowAttributes(3X)
XSetWindowBorderO XChangeWindowAttributes(3X)
XSetWindowBorderPixmapO XChangeWindowAttributes(3X)
XSetWindowBorderWidthO XConfigureWindow(3X)
XSetWindowColormapO XCreateColormap(3X)
XSetWMHintsO XSetWMHints(3X)
XSetZoomHintsO XSetZoomHints(3X)
XShrinkRegionO XIntersectRegion(3X)
XStoreBufferO XStoreBytes(3X)
XStoreBytesO XStoreBytes(3X)
XStoreColorO XStoreColors(3X)
XStoreColorsO XStoreColors(3X)
XStoreNameO XStoreName(3X)
XStoreNamedColorO XStoreColors(3X)
XStringToKeysymO XStringToKeysym(3X)
XSublmageO XCreatelmage(3X)
XSubtractRegionO XIntersectRegion(3X)
XSyncO XFIush(3X)
XSynchronizeO XSynchronize(3X)
XTextExtentsO XTextExtents(3X)
XTextExtents160 XTextExtents(3X)
XTextWidthO XTextWidth(3X)
XTextWidth160 XTextWidth(3X)
. XTranslateCoordinatesO XTranslateCoordinates(3X)
XUndefineCursorO XDefineCursor(3X)
XUngrabButtonO XGrabButton(3X)
XUngrabKey() XGrabKey(3X)
XUngrabKeyboardO XGrabKeyboard(3X)
XUngrabPointerO XGrabPointer(3X)
XUngrabServerO XGrabServer(3X)
XU ninstallColormapO XInstaIlColormap(3X)
XUnionRectWithRegionO XIntersectRegion(3X)
XUnionRegionO XIntersectRegion(3X)
XUniqueContextO XSaveContext(3X)
XUnloadFontO XLoadFont(3X)
XUnmapSubwindowsO XUnmapWindow(3X)
XUnmapWindowO XUnmapWindow(3X)
XWarpPointerO XWarpPointer(3X)
XWriteBitmapFileO XReadBitmapFile(3X)
XXorRegionO XIntersectRegion(3X)

Hewlett-Packard Company -7- Jul 13, 1989

AJIPlanes(3X11) ADPlanes (3X11)

NAME

Series 300 and 800 Only

AllPlanes, BlackPixel, WhitePixel, ConnectionNumber, DefaultColormap, DefaultDepth,
DefaultGC, DefaultRootWindow, DefaultScreenOfDisplay, DefaultScreen, DefaultVisual,
DisplayCells, DisplayPlanes, DisplayString, LastKnownRequestProcessed, NextRequest,
ProtocolVersion, Protocol Revision, QLength, RootWindow, ScreenCount, ScreenOfDisplay,
ServerVendor, VendorRelease - Display macros

SYNOPSIS
AllPlanesO

BlackPixel (display, screen_number)

WhitePixel (display , screen_number)

ConnectionNumber(display)

DefaultColormap (display, screen_number)

DefaultDepth(display , screen_number)

DefaultGC (display, screen_number)

DefaultRootWindow (display)

DefaultScreenOfDisplay(display)

DefaultScreen(display)

DefaultVisual (display, screen_number)

DisplayCeUs (display, screen_ number)

DisplayPlanes (display , screen_number)

DisplayString(display)

LastKnownRequestProcessed (display)

NextRequest (display)

ProtocolVersion (display)

ProtocolRevision(display)

QLength(display)

RootWindow (display, screen_number)

ScreenCount (display)

ScreenOfDisplay(display, screen_number)

ServerVendor(display)

VendorRelease (display)

ARGUMENTS
display

screen number

DESCRIPTION

Specifies the connection to the X server.

Specifies the appropriate screen number on the host server.

TheAllPlanes macro returns a value with all bits set to 1 suitable for use in a plane argument to a
procedure.

The BlackPixeI macro returns the black pixel value for the specified screen.

The TiVhitePixel macro returns the white pixel value for the specified screen.

The ConnectionNumber macro returns a connection number for the specified display.

The DefaultColonnap macro returns the default colormap ID for allocation on the specified
screen.

The DefaultDepth macro returns the depth (number of planes) of the default root window for the
specified screen.

Hewlett-Packard Company -1- Jul 12, 1989

AllPJanes (3X1!) AllPJanes (3X1!)
Series 300 and 800 00J)'

The DefaultGC macro returns the default GC for the root window of the specified screen.

The DefaultRootWindow macro returns the root window for the default screen.

The DefaultScreenOfDisplay macro returns the default screen of the specified display.

The DefaultScreen macro returns the default screen number referenced in the XOpenDisplay
routine.

The DefaultVisual macro returns the default visual type for the specified screen.

The DisplayCells macro returns the number of entries in the default colormap.

The DisplayPlanes macro returns the depth of the root window of the specified screen.

The DisplayString macro returns the string that was passed to XOpenDisplay when the current
display was opened.

The LastKnownRequestProeessed macro extracts the full serial number of the last request known
by Xlib to have been processed by the X server.

The NextRequest macro extracts the full serial number that is to be used for the next request.

The ProtoeolVersion macro returns the major version number (11) of the X protocol associated
with the connected display.

The ProtoeolRevision macro returns the minor protocol revision number of the X server.

The QLength macro returns the length of the event queue for the connected display.

The RootWindow macro returns the root window.

The ScreenCount macro returns the number of available screens.

The ScreenOfDisplay macro returns a pointer to the screen of the specified display.

The ServerVendor macro returns a pointer to a null-terminated string that provides some
identification of the owner of the X server implementation.

The VendorRelease macro returns a number related to a vendor's release of the X server.

SEE ALSO
BlackPixeIOfScreen(3X11), ImageByteOrder(3X11), IsCursorKey(3X11)

Hewlett-Packard Company -2- Ju112,1989

BlackPixelOfScreen(3X11) BlackPixelOfScreen(3X11)

NAME

Series 300 and 800 Only

BlackPixelOfScreen, WhitePixelOfScreen, CellsOfScreen, DefaultColormapOfScreen,
DefaultDepthOfScreen, DefaultGCOfScreen, DefaultVisualOfScreen, DoesBackingStore,
DoesSaveUnders, DisplayOfScreen, EventMaskOfScreen, HeightOfScreen, HeightMMOfScreen,
MaxCmapsOfScreen, MinCmapsOfScreen, PlanesOfScreen, RootWindowOfScreen,
WidthOfScreen, WidthMMOfScreen - screen information macros

SYNOPSIS
BlackPixelOfScreen(screen)

WhitePixelOfScreen(screen)

CellsOfScreen(screen)

DefaultColormapOfScreen(screen)

DefaultDepthOfScreen(screen)

DefaultGCOfScreen(screen)

DefaultVisualOfScreen(screen)

DoesBackingStore(screen)

DoesSaveUnders (screen)

DisplayOfScreen(screen)

EventMaskOfScreen(screen)

HeightOfScreen(screen)

HeightMMOfScreen(screen)

MaxCmapsOfScreen(screen)

MinCmapsOfScreen(screen)

PlanesOfScreen(screen)

RootWindowOfScreen(screen)

WidthOfScreen(screen)

WidthMMOfScreen(screen)

ARGUMENTS
screen

DESCRIPTION

Specifies a pointer to the appropriate Screen structure.

The BlackPixeIOfScreen macro returns the black pixel value of the specified screen.

The WhitePixelOfScreen macro returns the white pixel value of the specified screen.

The CellsOfScreen macro returns the number of colormap cells in the default colormap of the
specified screen.

The DefaultColormapOfScreen macro returns the default colormap of the specified screen.

The DefaultDepthOfScreen macro returns the default depth of the root window of the specified
screen.

The DefaultGCOfScreen macro returns the default GC of the specified screen, which has the same
depth as the root window of the screen.

The DefaultVisualOfScreen macro returns the default visual of the specified screen.

The DoesBackingStore macro returns WhenMapped, NotUseful, or Always, which indicate whether
the screen supports backing stores.

The DoesSaveUnders macro returns a Boolean value indicating whether the screen supports save
unders.

The DisplayOfScreen macro returns the display of the specified screen.

Hewlett-Packard Company -1- Ju112,1989

B1ackPixelOfScreen (3X11) BlackPixelOfScreen (3X11)
Series 300 and 800 Only

The EventMaskOfScreen macro returns the root event mask of the root window for the specified
screen at connecti setup time.

The HeightOfScreen macro returns the height of the specified screen.

The HeightMMOfScreen macro returns the height of the specified screen in millimeters.

The MaxCmapsOfScreen macro returns the maximum number of installed colormaps supported by
the specified screen.

The MinCmapsOfScreen macro returns the minimum number of installed colormaps supported by
the specified screen.

The PlanesOfScreen macro returns the number of planes in the root window of the specified
screen.

The RootWindowOfScreen macro returns the root window of the specified screen.

The WidthOfScreen macro returns the width of the specified screen.

The WidthMMOfScreen macro returns the width of the specified screen in millimeters.

SEE ALSO
AllPlanes(3X11), ImageByteOrder(3X11), IsCursorKey(3X11)

Hewlett-Packard Company -2- Jul 12, 1989

Image8yteOrder (3X11) Image8yteOrder (3X11)

NAME

Series 300 and 800 Only

ImageByteOrder, BitmapBitOrder, BitmapPad, BitmapUnit, DisplayHeight, DisplayHeightMM,
DisplayWidth, DisplayWidthMM - image format macros

SYNOPSIS
ImageByteOrder(display)

BitmapBitOrder(display)

BitmapPad (display)

Bitmap Unit (display)

DisplayHeigbt (display , screen_number)

DisplayHeigbtMM(display, screen_number)

DisplayWidtb(display, screen_number)

DisplayWidtbMM (display , screen_number)

ARGUMENTS
display

screen number

DESCRIPTION

Specifies the connection to the X server.

Specifies the appropriate screen number on the host server.

The ImageByteOrder macro specifies the required byte order for images for each scanline unit in
XY format (bitmap) or for each pixel value in Z format.

The BitmapBitOrder macro returns LSBFirst or MSBFirst to indicate whether the leftmost bit in
the bitmap as displayed on the screen is the least or most significant bit in the unit.

The BitmapPad macro returns the number of bits that each scanline must be padded.

The Bitmap Unit macro returns the size of a bitmap's scanline unit in bits.

The DisplayHeight macro returns the height of the specified screen in pixels.

The DisplayHeightMM macro returns the height of the specified screen in millimeters.

The DisplayWidth macro returns the width of the screen in pixels.

The DisplayWidthMM macro returns the width of the specified screen in millimeters.

SEE ALSO
AlIPlanes(3X11), BlackPixel OfScreen(3X11), IsCursorKey(3X11)
Xlib - C Language X Interface

Hewlett-Packard Company -1 - Jul 13, 1989

IsCursorKey(3X11) IsCursorKey(3XU)
Series 300 and 800 Only

NAME
IsCursorKey, IsFunctionKey, IsKeypadKey, IsMiscFunctionKey, IsModiferKey, IsPFKey - keysym
classification macros

SYNOPSIS
IsCursorKey(keysym)

IsFunctionKey(keysym)

IsKeypadKey(keysym)

IsMiscFunctionKey(keysym)

IsModifierKey(keysym)

IsPFKey(keysym)

ARGUMENTS
keysym

DESCRIPTION

Specifies the KeySym that is to be tested.

The IsCursorKey macro returns 1iue if the specified KeySym is a cursor key.

The IsFunctionKey macro returns True if the KeySym is a function key.

The IsKeypadKey macro returns True if the specified KeySym is a keypad key.

The IsMiscFunctionKey macro returns 11ue if the specified KeySym is a miscellaneous function
key.

The IsModiferKey macro returns True if the specified KeySym is a modifier key.

The IsPFKey macro returns 11ue if the specified KeySym is a PF key.

SEE ALSO
AlIPlanes(3Xll), BlackPixeIOfScreen(3Xll), ImageByteOrder(3Xll)

Hewlett-Packard Company -1- Jul 13, 1989

XAddHost(3X11) XAddHost(3X11)

NAME

Series 300 and 800 Only

XAddHost, XAddHosts, XListHosts, XRemoveHost, XRemoveHosts, XSetAccessControl,
XEnableAccessControl, XDisableAccessContro - control host access

SYNOPSIS
XAddHost (display, host)

Display *display;
XHostAddress *host;

XAddHosts(display, hosts, num hosts)
Display *display; -
XHostAddress *hosts;
int num _hosts;

XHostAddress *XListHosts(display, nhosts return, state return)
Display *display; --
int *nhosts return;
Bool *stat(return;

XRemoveHost (display, host)
Display *display;
XHostAddress *host;

XRemoveHosts(display, hosts, num hosts)
Display *display; -
XHostAddress *hosts;
int num _ hosts;

XSetAccessControl (display, mode)
Display *display;
int mode;

XEnableAccessControl (display)
Display *display;

XDisableAccessControl (display)
Display *display;

ARGUMENTS
display

host

hosts

mode

nhosts return

num hosts

state return

DESCRIPTION

Specifies the connection to the X server.

Specifies the host that is to be added or removed.

Specifies each host that is to be added or removed.

Specifies the mode. You can pass EnableAccess or DisableAccess

Returns the number of hosts currently in the access control list.

Specifies the number of hosts.

Returns the state of the access control.

The XAddHost function adds the specified host to the access control list for that display. The
server must be on the same host as the client issuing the command, or a BadAccess error results.

XAddHost can generate BadAccess and BadValue errors.

The XAddHosts function adds each specified host to the access control list for that display. The
server must be on the same host as the client issuing the command, or a BadAccess error results.

XAddHosts can generate BadAccess and BadValue errors.

The XListHosts function returns the current access control list as well as whether the use of the
list at connection setup was enabled or disabled. XListHosts allows a program to find out what
machines can make connections. It also returns a pointer to a list of host structures that were
allocated by the function. When no longer needed, this memory should be freed by calling XFree.

Hewlett-Packard Company -1- Jul12,1989

XAddHost(3X11) XAddHost(3X11)
Series 300 and 800 Only

The XRemoveHost function removes the specified host from the access control list for that display.
The server must be on the same host as the client process, or a BadAccess error results. If you
remove your machine from the access list, you can no longer connect to that server, and this
operation cannot be reversed unless you reset the server.

XRemoveHost can generate BadAccess and BadValue errors.

The XRemoveHosts function removes each specified host from the access control list for that
display. The X server must be on the same host as the client process, or a BadAccess error results.
If you remove your machine from the access list, you can no longer connect to that server, and this
operation cannot be reversed unless you reset the server.

XRemoveHosts can generate BadAccess and BadValue errors.

The XSetAccessControl function either enables or disables the use of the access control list at each
connection setup.

XSetAccessControl can generate BadAccess and BadValue errors.

The XEnableAccessControl function enables the use of the access control list at each connection
setup.

XEnableAccessControl can generate a BadAccess error.

The XDisableAccessControl function disables the use of the access control list at each connection
setup.

XDisableAccessControl can generate a BadAccess error.

DIAGNOSTICS
BadAccess

BadValue

Hewlett-Packard Company

A client attempted to modify the access control list from other than the local
(or otherwise authorized) host.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

-2- Jul 12, 1989

XAI1ocColor(3X11) XAIlocColor(3X11)

NAME

Series 300 and 800 Only

XAllocColor, XAllocNamedColor, XAllocColorCells, XAllocColorPlanes, XFreeColors - allocate
and free colors

SYNOPSIS
Status XAUocColor(display, colormap, screen in out)

Display .display; - -
Colormap colormap;
XColor .screen _in_out;

Status XAUocNamedColor(display, colormap, color name, screen del return,
exact del return) - - -

-Display .display;
Colormap colormap;
char .color name;
XColor ·screen _ det return, -exact _ det return;

Status XAUocColorCells(display, colormap, contig, plane masks return, nplanes,
pixels Jeturn, npixels) --

Display -display;
Colormap colormap;
Bool contig;
unsigned long plane masks return[];
unsigned int nplanes; -
unsigned long pixels return[];
unsigned int npixels;

Status XAllocColorPlanes (display, colormap, contig, pixels return, ncolors, nreds, ngreens,
nblues, rmask Jeturn, gmask Jetiirn, bmask Jeturn)

Display -display;
Colormap colormap;
Bool contig;
unsigned long pixels return[];
int ncolors; -
int nreds, ngreens, nblues;
unsigned long -rmask Jeturn, -gmas~return, -bmask Jeturn;

XFreeColors(display, colormap, pixels, npixels, planes)
Display -display;
Colormap colormap;
unsigned long pixels [];
int npixels;
unsigned long planes;

ARGUMENTS
color name Specifies the color name string (for example, red) whose color definition

structure you want returned.

colormap

contig

display

ncolors

npixels

nplanes

Hewlett-Packard Company

Specifies the colormap.

Specifies a Boolean value that indicates whether the planes must be
contiguous.

Specifies the connection to the X setver.

Returns the exact RGB values.

Specifies the number of pixel values that are to be returned in the
pixels Jeturn array.

Specifies the number of pixels.

Specifies the number of plane masks that are to be returned in the plane
masks array.

-1- Ju112,1989

XAllocColor (3X11)

nreds
ngreens
nblues

pixels

pixels_return

plane mask return

planes

rmask return
gmask __ return
bmask return

screen _de! ..!eturn

screen in out

DESCRIPTION

XAIlocColor(3X11)
Series 300 and 800 Only

Specify the number of red, green, and blue planes. The value you pass must
be nonnegative.

Specifies an array of pixel values.

Returns an array of pixel values.

Returns an array of plane masks.

Specifies the planes you want to free.

Return bit masks for the red, green, and blue planes.

Returns the closest RGB values provided by the hardware.

Specifies and returns the values actually used in the colormap.

The XAllocColor function allocates a read-only colormap entry corresponding to the closest RGB
values supported by the hardware. XAllocColor returns the pixel value of the color closest to the
specified RGB elements supported by the hardware and returns the RGB values actually used.
The corresponding colormap cell is read-only. In addition, XAllocColor returns nonzero if it
succeeded or zero if it failed. Read-only colormap cells are shared among clients. When the last
client deallocates a shared cell, it is deallocated. XAllocColor does not use or affect the flags in
the XColor structure.

XAllocColor can generate a BadColor error.

The XAllocNamedColor function looks up the named color with respect to the screen that is
associated with the specified colormap. It returns both the exact database definition and the
closest color supported by the screen. The allocated color cell is read-only. You should use the
ISO Latin-1 encoding; uppercase and lowercase do not matter.

XAllocNamedColor can generate a BadColor error.

The XAllocCololCel1s function allocates read/write color cells. The number of colors must be
positive and the number of planes nonnegative, or a BadValue error results. If ncolors and
nplanes are requested, then ncolors pixels and nplane plane masks are returned. No mask will
have any bits set to 1 in common with any other mask or with any of the pixels. By 0 Ring together
each pixel with zero or more masks, ncolors * 2IPa.JII!I distinct pixels can be produced. All of these
are allocated writable by the request. For GrayScale or PseudoColor, each mask has exactly one
bit set to 1. For DirectColor, each has exactly three bits set to 1. If contig is 1'rne and if all masks
are ORed together, a single contiguous set of bits set to 1 will be formed for GrayScale or
PseudoColor and three contiguous sets of bits set to 1 (one within each pixel sub field) for
DirectColor. The RGB values of the allocated entries are undefined. XAllocCololCel1s returns
nonzero if it succeeded or zero if it failed.

XAllocCololCel1s can generate BadColor and BadValue errors.

The specified ncolors must be positive; and nreds, ngreens, and nblues must be nonnegative, or a
BadValue error results. If ncolors colors, nreds reds, ngreens greens, and nblues blues are
requested, ncolors pixels are returned; and the masks have nreds, ngreens, and nblues bits set to
1, respectively. If contig is 1Tue, each mask will have a contiguous set of bits set to 1. No mask will
have any bits set to 1 in common with any other mask or with any of the pixels. For DirectColor,
each mask will lie within the corr~nding pixel subfield. By ORing together subsets of masks
with each pixel value, ncolors * 2(+qp:eeDI +Itiues) distinct pixel values can be produced. All of
these are allocated by the request. However, in the colormap, there are only ncolors * 2m!ds
independent red entries, ncolors * 2qp:eeD1 independent green entries, and ncolors * 2nNues

independent blue entries. This is true even for PseudoColor. When the colormap entry of a pixel
value is changed (usingXStoreColor.s-, XStoreColor, or XStoreNamedColor} the pixel is
decomposed according to the masks, and the corresponding independent entries are updated.

Hewlett-Packard Company - 2- Ju112,1989

XAIIocColor(3Xll) XAllocColor(3X11)
Series 300 and 800 Only

XAllocColorPlanes returns nonzero if it succeeded or zero if it failed.

XAllocColorPlanes can generate BOOCoior and BOOValue errors.

The XFreeColors function frees the cells represented by pixels whose values are in the pixels array.
The planes argument should not have any bits set to 1 in common with any of the pixels. The set
of all pixels is produced by DRing together subsets of the planes argument with the pixels. The
request frees all of the following pixels that were allocated by the client (usingXAllocColor,
XAllocNamedColor, XAllocColO1Cells, and XAllocColorPlanes). Note that freeing an individual
pixel obtained from XAllocColorPlanes may not actually allow it to be reused until all of its related
pixels are also freed.

All specified pixels that are allocated by the client in the colormap are freed, even if one or more
pixels produce an error. If a specified pixel is not a valid index into the colormap, a BOOValue
error results. If a specified pixel is not allocated by the client (that is, is unallocated or is only
allocated by another client), a BadAccess error results. If more than one pixel is in error, the one
that gets reported is arbitrary.

XFreeColors can generate BadAccess, BOOColor, and BOOValue errors.

DIAGNOSTICS
BadAccess A client attempted to free a color map entry that it did not already allocate.

BadAccess

BOOCoior

BOOValue

SEE ALSO

A client attempted to store into a read-only color map entry.

A value for a Colormap argument does not name a defined Colormap.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XCreateColormap(3X11), XQueryColor(3X11), XStoreColors(3X11)

Hewlett-Packard Company -3- Ju112,1989

XAllowEvents (3Xll) XAllowEvents (3Xll)
Series 300 and 800 Only

NAME
XAllowEvents - release queued events

SYNOPSIS
XAllowEvents (display, event mode, time)

Display *display; -
int event mode;
Time tinle;

ARGUMENTS
display

event mode

time
DESCRIPTION

Specifies the connection to the X server.

Specifies the event mode. You can pass AsyncPointer, SyncPointer,
AsyncKeyboard, SyncKeyboard, ReplayPointer, ReplayKeyboard, AsyncBoth,
or SyncBoth.

Specifies the time. You can pass either a timestamp or CUlTentTime

The XAllowEvents function releases some queued events if the client has caused a device to freeze.
It has no effect if the specified time is earlier than the last-grab time of the most recent active grab
for the client or if the specified time is later than the current X server time.

XAllowEvents can generate a BadValue error.

DIAGNOSTICS
BadValue Some numeric value falls outside the range of values accepted by the request.

Hewlett-Packard Company

Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

-1- Jul 13, 1989

XCbangeKeyboardControl(3X11) XCbangeKeyboardControl(3X11)

NAME

Series 300 and 800 Only

XChangeKeyboardControl, XGetKeyboardControl, XAutoRepeatOn, XAutoRepeatOff, XBell,
XQueryKeymap - manipulate keyboard settings

SYNOPSIS
XChangeKeyboardControl (display, value mask, values)

Display ·display; -
unsigned long value mask;
XKeyboardControl *values;

XGetKeyboardControl(display, values return)
Display ·display; -
XKeyboardState ~alues _return;

XAutoRepeatOn(display)
Display ·display;

XAutoRepeatOff(display)
Display ·display;

XBell (display, percent)
Display ·display;
int percent;

XQueryKeymap(display, keys return)
Display .display; -
char keys Jetum[321;

ARGUMENTS
display Specifies the connection to the X server.

keysJeturn Returns an array of bytes that identifies which keys are pressed down. Each
bit represents one key of the keyboard.

percent

value mask

values

values return

DESCRIPTION

Specifies the volume for the bell, which can range from -100 to 100 inclusive.

Specifies one value for each bit set to 1 in the mask.

Specifies which controls to change. This mask is the bitwise inclusive OR of
the valid control mask bits.

Returns the current keyboard controls in the specified XKeyboardState
structure.

The XChangeKeyboardControl function controls the keyboard characteristics defined by the
XKeyboardControl structure. The value_mask argument specifies which values are to be changed.

XChangeKeyboardControl can generate BadMatch and BadValue errors.

The XGetKeyboardControl function returns the current control values for the keyboard to the
XKeyboardState structure.

The XAutoRepeatOn function turns on auto-repeat for the keyboard on the specified display.

The XAutoRepeatOjf function turns off auto-repeat for the keyboard on the specified display.

The XBell function rings the bell on the keyboard on the specified display, if possible. The
specified volume is relative to the base volume for the keyboard. If the value for the percent
argument is not in the range -100 to 100 inclusive, a BadValue error results. The volume at which
the bel! rings when the percent argument is nonnegative is:

base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]

To change the base volume of the bell, use XChangeKeyboardControl

Hewlett-Packard Company -1- Ju112, 1989

XChangeKeyboardControl(3X11) XChangeKeyboardControl(3X11)
Series 300 and 800 Only

XBell can generate a BadValue error.

The XQueryKeymap function returns a bit vector for the logical state of the keyboard, where each
bit set to 1 indicates that the corresponding key is currently pressed down. The vector is
represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to 8N + 7 with the least­
significant bit in the byte representing key 8N.

Note that the logical state of a device (as seen by client applications) may lag the physical state if
device event processing is frozen.

DIAGNOSTICS
BadMatch Some argument or pair of arguments has the correct type and range but fails

to match in some other way required by the request

BadValue

SEE ALSO

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XChangeKeyboardMapping(3X11), XSetPointerMapping(3X11)

Hewlett-Packard Company -2- Jul 12, 1989

XCbangeKeyboardMapping(3X11) XCbangeKeyboardMapping(3X11)

NAME

Series 300 and 800 Only

XChangeKeyboardMapping, XGetKeyboardMapping, XDisplayKeycodes, XSetModifierMapping,
XGetModifierMapping, XNewModifiermap, XInsertModifiermapEntry,
XDeleteModifiermapEntry, XFreeModifierMap - manipulate keyboard encoding

SYNOPSIS
XChangeKeyboardMapping(display, first _ keycode, keysyms yer _ keycode, keysyms, num _codes)

Display -display;
int rJrst keycode;
int keysy...s yer _ keycode;
KeySym .keysyms;
int num _codes;

KeySym -XGetKeyboardMapping(display, rJrst keycode, keycode count,
keysyms yer _ keycode Jetum) -

Display .display;
KeyCode first keycode;
int keycode count;
int ·keysynls yer _ keycode Jetum;

XDisplayKeycodes(display, min keycodes retum, max keycodes retum)
Display .display; - - - -
int ·min _ keycodes Jetum, max _keycodes Jetum;

int XSetModifierMapping(display, mod map)
Display ·display;
XModirIerKeymap *modmap;

XModifierKeymap .XGetModifierMapping(display)
Display ·display;

XModirIerKeymap .XNewModifiermap(max _keys yer _mod)
int max_keys yer _mod;

XModifierKeymap -XInsertModifiermapEntry(modmap, keycode entry, modifier)
XModifierKeymap *modmap; -
KeyCode keycode entry;
int modifier; -

XModirIerKeymap ·XDeleteModifiermapEntry(modmap, keycode entry, modifier)
XModifierKeymap *modmap; -
KeyCode keycode entry;
int modifier; -

XFreeModifiermap(modmap)
XModifierKeymap *modmap;

ARGUMENTS
display

first _ keycode

Specifies the connection to the X server.

Specifies the first KeyCode that is to be changed or returned.

keycode count Specifies the number of KeyCodes that are to be returned.

keycode _entry Specifies the KeyCode.

keysyms Specifies a pointer to an array of KeySyms.

keysyms yer _ keycode
Specifies the number of KeySyms per KeyCode.

keysyms yer _ keycode _return
Returns the number of KeySyms per KeyCode.

max_keys yer _mod Specifies the number of KeyCode entries preallocated to the modifiers in the
map.

Hewlett-Packard Company -1- Jul 12, 1989

XCbangeKeyboardMapping(3X11) XCbangeKeyboardMapping(3X11)
Series 300 and 800 Only

max -'reycodes _return
Returns the maximum number of KeyCodes.

min _ keycodes Jeturn Returns the minimum number of KeyCodes.

modifier Specifies the modifier.

modmap

num codes

DESCRIPTION

Specifies a pointer to the XModifierKeymap structure.

Specifies the number of KeyCodes that are to be changed.

The XChangeKeyboardMapping function defines the symbols for the specified number of
KeyCodes starting with first_ keycode. The symbols for KeyCodes outside this range remain
unchanged. The number of elements in keysyms must be:

num _codes * keysyms yer _ keycode
The specified first keycode must be greater than or equal to min keycode returned by XDisplayKeycodes,
or a BadValue error results. In addition, the following expression must be less than or equal to
max _ keycode as returned by XDisplayKeycodes, or a BadValue error results:

first_ keycode + num _codes - 1
KeySym number N, counting from zero, for KeyCode K has the following index in keysyms, counting from
zero:

(K - first_ keycode) * keysyms yer _ keycode + N
The specified keysyms yer _ keycode can be chosen arbitrarily by the client to be large enough to hold all
desired symbols. A special KeySym value of NoSymbol should be used to fill in unused elements for
individual KeyCodes. It is legal for NoSymbol to appear in nontrailing positions of the effective list for a
KeyCode. XChangeKeyboardMapping generates a MappingNotify event.

There is no requirement that the X server interpret this mapping. It is merely stored for reading
and writing by clients.

XChangeKeyboardMapping can generate BadAlloc and BadValue errors.

The XGetKeyboardMapping function returns the symbols for the specified number of KeyCodes
starting with first keycode. The value specified in first keycode must be greater than or equal to
min _keycode as returned by XDisplayKeycodes, or a BGdValue error results. In addition, the
following expression must be less than or equal to max _ keycode as returned by XDisplayKeycodes:

first keycode + keycode count-1
If this is not the case, a BadValue-error results. The number of elements in the KeySyms list is:

keycode _count * keysyms yer _ keycode Jeturn
KeySym number N, counting from zero, for KeyCode K has the following index in the list, counting from
zero:
(K - first_code) * keysyms yer _code Jeturn + N
The X server arbitrarily chooses the keysyms yer _ keycode Jeturn value to be large enough to report all
requested symbols. A special KeySym value of NoSymbol is used to fill in unused elements for individual
KeyCodes. To free the storage returned byXGetKeyboardMapping, useXFree.

XGetKeyboardMapping can generate a BadValue error.

The XDisplayKeycodes function returns the min-keycodes and max-keycodes supported by the
specified display. The minimum number of KeyCodes returned is never less than 8, and the
maximum number of KeyCodes returned is never greater than 255. Not all KeyCodes in this
range are required to have corresponding keys.

The XSetModifierMapping function specifies the KeyCodes of the keys (if any) that are to be used
as modifiers. If it succeeds, the X server generates a MappingNotify event, and
XSetModifierMapping returns MappingSuccess X permits at most eight modifier keys. If more
than eight are specified in the XModifierKeymap structure, a Bad Length error results.

The modifiermap member of the XModifierKeymap structure contains eight sets of
max _ keypermod KeyCodes, one for each modifier in the order Shift, Lock, Contro~ Modi, Mod2,
Mod3, Mod4, and ModS. Only nonzero KeyCodes have meaning in each set, and zero KeyCodes
are ignored. In addition, all of the nonzero KeyCodes must be in the range specified by

Hewlett-Packard Company -2- Jul 12, 1989

XChangeKeyboardMapping (3Xll) XChangeKeyboardMapping(3Xll)
Series 300 and 800 Only

min _ keycode and max _ keycode in the Display structure, or a BadValue error results. No KeyCode
may appear twice in the entire map, or a BadValue error results.

An X server can impose restrictions on how modifiers can be changed, for example, if certain keys
do not generate up transitions in hardware, if auto-repeat cannot be disabled on certain keys, or if
multiple modifier keys are not supported. If some such restriction is violated, the status reply is
MappingFailed, and none of the modifiers are changed. If the new KeyCodes specified for a
modifier differ from those currently defined and any (current or new) keys for that modifier are in
the logically down state, XSetModifierMapping returns MappingBusy, and none of the modifiers is
changed.

XSetModifierMapping can generate BadAlloc and BadValue errors.

The XGetModifierMapping function returns a pointer to a newly created XModifierKeymap
structure that contains the keys being used as modifiers. The structure should be freed after use
by calling XFreeModifiennap. If only zero values appear in the set for any modifier, that modifier
is disabled.

The XNewModifiennap function returns a pointer to XModifierKeymap structure for later use.

The X/nsenModifiennapEntry function adds the specified KeyCode to the set that controls the
specified modifier and returns the resultingXModifierKeymap structure (expanded as needed).

The XDeleteModifiermapEntry function deletes the specified KeyCode from the set that controls
the specified modifier and returns a pointer to the resulting XModifierKeymap structure.

The XFreeModifiennap function frees the specified XModifierKeymap structure.

DIAGNOSTICS
BadAlloc

BadValue
The server failed to allocate the requested resource or server memory.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

SEE ALSO
XSetPointerMapping(3X11)

Hewlett-Packard Company -3- JuI12,1989

XChangePointerControl(3X11) XChangePointerControl(3X11)
Series 300 and 800 Only

NAME
XChangePointerControl, XGetPointerControl - control pointer

SYNOPSIS
XChangePointerControl(display, do aeeel, do threshold, aeeel numerator,

aeeel denominator, threshold) -
Display .display; -
Bool do aeeel, do threshold;
int aeeel numerator, aeeel denominator;
int threshold; -

XGetPointerControl(display, aeeel numerator return, aeeel denominator return,
threshold return) - - -

Display ·display; -
int ·aeeel numerator return, ·aeeel denominator return;
int ·threshold _return; - -

ARGUMENTS
accel denominator Specifies the denominator for the acceleration multiplier.

accel denominator return
- - Returns the denominator for the acceleration multiplier.

accel numerator Specifies the numerator for the acceleration multiplier.

accel numerator return
- - Returns the numerator for the acceleration multiplier.

display

do accel

do threshold

threshold

Specifies the connection to the X setver.

Specifies a Boolean value that controls whether the values for the
accel_ numerator or accel_ denominator are used.

Specifies a Boolean value that controls whether the value for the threshold is
used. .

Specifies the acceleration threshold.

threshold return Returns the acceleration threshold.

DESCRIPTION
The XChangePointerControl function defines how the pointing device moves. The acceleration,
expressed as a fraction, is a multiplier for movement. For example, specifying 3/1 means the
pointer moves three times as fast as normal. The fraction may be rounded arbitrarily by the X
setver. Acceleration only takes effect if the pointer moves more than threshold pixels at once and
only applies to the amount beyond the value in the threshold argument. Setting a value to -1
restores the default. The values of the do accel and do threshold arguments must be 7rue for the
pointer values to be set, or the parameterS' are unchanged. Negative values (other than -1)
generate a BadValue error, as does a zero value for the accel_ denominator argument.

XChangePointerControl can generate a BadValue error.

The XGetPointerControl function returns the pointer's current acceleration multiplier and
acceleration threshold.

DIAGNOSTICS
BadValue

Hewlett-Packard Company

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

-1- Jul 12, 1989

XChangeSaveSet (3X11) XChangeSaveSet (3X11)
Series 300 and 800 Only

NAME
XChangeSaveSet, XAddToSaveSet, XRemoveFromSaveSet - change a client's save set

SYNOPSIS
XChangeSaveSet(display, w, change mode)

Display -display; -
Wmdoww;
rot change_mode;

XAddToSaveSet (display, w)
Display -display;
Window W;

XRemoveFromSaveSet (display, w)
Display -display;
Window w;

ARGUMENTS
change_mode

display

Specifies the mode. You can pass SetMode/nsert or SetModeDelete

Specifies the connection to the X server.

w

DESCRIPTION

Specifies the window that you want to add or delete from the client's save­
set.

Depending on the specified mode, XChangeSaveSet either inserts or deletes the specified window
from the client's save-set. The specified window must have been created by some other client, or a
Bad Match error results.

XChangeSaveSet can generate BadMatch, BadVaJue, and BadWindow errors.

The XAddToSaveSet function adds the specified window to the client's save-set. The specified
window must have been created by some other client, or a BadMatch error results.

XAddToSaveSet can generate BadMatch and BadWindow errors.

The XRemoveFromSaveSet function removes the specified window from the client's save-set. The
specified window must have been created by some other client, or a BadMatch error results.

XRemoveFromSaveSet can generate Bad Match and BadWindow errors.

DIAGNOSTICS
BadMatch Some argument or pair of arguments has the correct type and range but fails

to match in some other way required by the request.

BadVaJue

BadWindow

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

A value for a Window argument does not name a defined Window.

SEE ALSO
XReparentWindow(3X11)

Hewlett-Packard Company -1- Jul 12, 1989

XCbangeWindowAttributes(3X11) XCbangeWindowAttributes (3X11)

NAME

Series 300 and 800 Only

XChangeWindowAttributes, XSetWindowBackground, XSetWindowBackgroundPixmap,
XSetWindowBorder, XSetWindowBorderPixmap - change window attributes

SYNOPSIS
XChangeWindowAttributes(display, w, valuemask, attributes)

Display .display;
W"mdow w;
unsigned long valuemask;
XSetWindowAttributes .attributes;

XSetW"mdowBackground (display, w, background yixel)
Display ·display;
W"mdow w;
unsigned long background yixel;

XSetW"mdowBackgroundPixmap (display, w, background yixmap)
Display .display;
W"mdow w;
Pixmap background yixmap;

XSetW"mdowBorder(display, w, border yixel)
Display .display;
Window w;
unsigned long border_pixel;

XSetWindowBorderPixmap (display, w, border yixmap)
Display ·display;
Window w;
Pixmap borderyixmap;

ARGUMENTS
attributes Specifies the structure from which the values (as specified by the value

mask) are to be taken. The value mask should have the appropriate bits set
to indicate which attributes have been set in the structure.

background "pixel Specifies the pixel that is to be used for the background.

background "pixmap Specifies the background pixmap, ParentRelative, or None.

border "pixel Specifies the entry in the colormap.

border "pixmap Specifies the border pixmap or lCopyFromParent.

display Specifies the connection to the X setver.

valuemask Specifies which window attributes are defined in the attributes argument.
This mask is the bitwise inclusive OR of the valid attribute mask bits. If
valuemask is zero, the attributes are ignored and are not referenced.

w Specifies the window.

DESCRIPTION
Depending on the valuemask, theXChangeWindowAttributes function uses the window attributes
in the XSetWindowAttributes structure to change the specified window attributes. Changing the
background does not cause the window contents to be changed. To repaint the window and its
background, use XClearWindow. Setting the border or changing the background such that the
border tile origin changes causes the border to be repainted. Changing the background of a root
window to None or Parent Relative restores the default background pixmap. Changing the border
of a root window to CopyFromParent restores the default border pixmap. Changing the win­
gravity does not affect the current position of the window. Changing the backing-store of an
obscured window to WhenMapped or Always, or changing the backing-planes, backing-pixel, or
save-under of a mapped window may have no immediate effect. Changing the colormap of a
window (that is, defining a new map, not changing the contents of the existing map) generates a
ColormapNotify event. Changing the colormap of a visible window may have no immediate effect

Hewlett-Packard Company -1- Ju112, 1989

XCbangeWindowAttributes (3X11) XChangeWindowAttributes (3X11)
Series 300 and 800 OnJ,y

on the screen because the map may not be installed (see X/nstallColormap). Changing the cursor
of a root window to None restores the default cursor. Whenever possible, you are encouraged to
share colormaps.

Multiple clients can select input on the same window. Their event masks are maintained
separately. When an event is generated, it is reported to all interested clients. However, only one
client at a time can select for Substructure Redirect Mask, ResizeRedirectMask, and ButtonPressMask.
If a client attempts to select any of these event masks and some other client has already selected
one, a BadAccess error results. There is only one do-not-propagate-mask for a window, not one
per client.

XChangeWindowAttributes can generate BadAccess, BadColor, BadCursor,

The XSetWindowBackground function sets the background of the window to the specified pixel
value. Changing the background does not cause the window contents to be changed.
XSetWindowBackground uses a pixmap of undefined size filled with the pixel value you passed. If
you try to change the background of an InputOnly window, a BadMatch error results.

XSetWindowBackground can generate Bad Match and BadWindow errors.

The XSetWindowBackgroundPixmap function sets the background pixmap of the window to the
specified pixmap. The background pixmap can immediately be freed if no further explicit
references to it are to be made. If ParentRelative is specified, the background pixmap of the
window's parent is used, or on the root window, the default background is restored. If you tty to
change the background of an InputOnly window, a Bad Match error results. If the background is
set to None, the window has no defined background.

XSetWindowBackgroundPixmap can generate BadMatch, BadPixmap, and BadWindow errors.

The XSetWindowBorder function sets the border of the window to the pixel value you specify. If
you attempt to perform this on an InputOnly window, a Bad Match error results.

XSetWindowBorder can generate BadMatch and BadWindow errors.

The XSetWindowBorderPixmap function sets the border pixmap of the window to the pixmap you
specify. The border pixmap can be freed immediately if no further explicit references to it are to
be made. If you specify CopyFromParent, a copy of the parent window's border pixmap is used. If
you attempt to perform this on an InputOnly window, a Bad Match error results.

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and BadWindow errors.

DIAGNOSTICS
BadAccess

BadAccess

BadColor

BadCursor

BadMatch

Bad Match

BadPixmap

BadValue

BadWindow

SEE ALSO

A client attempted to free a color map entty that it did not already allocate.

A client attempted to store into a read-only color map entry.

A value for a Colormap argument does not name a defined Colormap.

A value for a Cursor argument does not name a defined Cursor.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

An InputOnly window locks this attribute.

A value for a Pixmap argument does not name a defined Pixmap.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

A value for a Window argument does not name a defined Window.

XConfigureWindow(3X11), XCreateWindow(3X11), XDestroyWindow(3Xll),
XMapWindow(3X11), XRaiseWindow(3X11), XUnmapWindow(3X11)

Hewlett-Packard Company -2- Jul 12, 1989

XClearArea(3X11) XClearArea(3X11)
Series 300 and 800 Only

NAME
XClearArea, XClearWindow - clear area or window

SYNOPSIS
XClearArea(display, w, x, y, width, height, exposures)

Display .display;
Wmdoww;
int x, y;
unsigned int width, height;
Bool exposures;

XClearWmdow(display, w)
Display .display;
Window w;

ARGUMENTS
display

exposures

w

width
height

x
y

DESCRIPTION

Specifies the connection to the X server.

Specifies a Boolean value that indicates if Expose events are to be generated.

Specifies the window.

Specify the width and height, which are the dimensions of the rectangle.

Specify the x and y coordinates, which are relative to the origin of the
window and specify the upper-left comer of the rectangle.

The XClearArea function paints a rectangular area in the specified window according to the
specified dimensions with the window's background pixel or pixmap. The subwindow-mode
effectively is ClipByChildren. If width is zero, it is replaced with the current width of the indow
minus x. If height is zero, it is replaced with the current height of the window minus y. If the
window has a defined background tile, the rectangle clipped by any children is filled with this tile.
If the window has background None, the contents of the window are not changed. In either case, if
exposures is 1iue, one or more Expose events are generated for regions of the rectangle that are
either visible or are being retained in a backing store. If you specify a window whose class is
InputOnly, a BadMatch error results.

XClearArea can generate BadMatch, BadValue, and BadWindow errors.

The XClearWindow function clears the entire area in the specified window and is equivalent to
XClearArea (display, w, 0, 0, 0, 0, False). If the window has a defined background tile, the rectangle
is tiled with a plane-mask of all ones and GXcopy function. If the window has background None,
the contents of the window are not changed. If you specify a window whose class is InputOnly, a
BadMatch error results.

XClearWindow can generate BadMatch and BadWindow errors.

DIAGNOSTICS
BadMatch An InputOnly window is used as a Drawable.

BadValue

BadWindow

SEE ALSO
XCopyArea(3X11)

Hewlett-Packard Company

'Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

A value for a Window argument does not name a defined Window.

- 1- Jul 12, 1989

XConfigureWindow(3X11) XConfigureWindow(3X11)

NAME

Series 300 and 800 Only

XConfigureWindow, XMoveWindow, XResizeWindow, XMoveResizeWindow,
XSetWindowBorderWidth - configure windows

SYNOPSIS
XConfigureWindow(display, w, value mask, values)

Display ·display; -
Window w;
unsigned int value mask;
XWindowChanges *values;

XMoveWindow(display, w, x, y)
Display ·display;
Window w;
int x, y;

XResizeWindow(display, w, width, height)
Display .display;
Window w;
unsigned int width, height;

XMoveResizeWindow(display, w, x, y, width, height)
Display .display;
Window w;
int x, y;
unsigned int width, height;

XSetWindowBorderWidth(display, w, width)
Display ·display;
Window w;
unsigned int width;

ARGUMENTS
display SpeCifies the connection to the X server.

value mask Specifies which values are to be set using information in the values structure.
This mask is the bitwise inclusive OR of the valid configure window values
bits.

values

w
width

width
height

x
y

DESCRIPTION

Specifies a pointer to the XWindowChanges structure.

Specifies the window to be reconfigured, moved, or resized ..

Specifies the width of the window border.

Specify the width and height, which are the interior dimensions of the
window.

Specify the x and y coordinates, which define the new location of the top-left
pixel of the window's border or the window itself if it has no border or define
the new position of the window relative to its parent.

The XConfigureWindow function uses the values specified in the XWindowChanges structure to
reconfigure a window's size, position, border, and stacking order. Values not specified are taken
from the existing geometry of the window.

If a sibling is specified without a stack mode or if the window is not actually a sibling, a BadMatch
error results. Note that the computations for Bottom!f, Top!f, and Opposite are performed with
respect to the window's final geometry (as controlled by the other arguments passed to
XConfigureWindow1 not its initial geometry. Any backing store contents of the window, its
inferiors, and other newly visible windows are either discarded or changed to reflect the current
screen contents (depending on the implementation).

Hewlett-Packard Company -1- Jul 12, 1989

XConfigureWindow(3Xll) XConrJgUreWindow(3Xll)
Series 300 and 800 Only

XConfigureWindow can generate Bad Match, BadValue, and BadWindow errol'S.

The XMove Window function moves the specified window to the specified x and y coordinates, but
it does not change the window's size, raise the window, or change the mapping state of the
window. Moving a mapped window mayor may not lose the window's contents depending on if
the window is obscured by nonchildren and if no backing store exists. If the contents of the
window are lost, the X server generates Expose events. Moving a mapped window generates
Expose events on any formerly obscured windows.

If the override-redirect flag of the window is False and some other client has selected
Substructure Redirect Mask on the parent, the X server generates a ConfigureRequest event, and no
further processing is performed. Otherwise, the window is moved.

XMoveWindow can generate a BadWindow error.

The XResizeWindow function changes the inside dimensions of the specified window, not
including its borders. This function does not change the window's upper-left coordinate or the
origin and does not restack the window. Changing the size of a mapped window may lose its
contents and generate Expose events. If a mapped window is made smaller, changing its size
generates Expose events on windows that the mapped window formerly obscured.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest event, and no
further processing is performed. If either width or height is zero, a BadValue error results.

XResizeWindow can generate BadValue and BadWindow errors.

The XMoveResizeWindow function changes the size and location of the specified window without
raising it. Moving and resizing a mapped window may generate an Expose event on the window.
Depending on the new size and location parameters, moving and resizing a window may generate
Expose events on windows that the window formerly obscured.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest event, and no
further processing is performed. Otherwise, the window size and location are changed.

XMoveResizeWindow can generate BadValue and BadWindow errors.

The XSetWindowBorderWidth function sets the specified window's border width to the specified
width.

XSetWindowBorderWidth can generate a BadWindow error.

DIAGNOSTICS
Bad Match An InputOnly window is used as a Drawable.

BadMatch

BadValue

BadWindow

SEE ALSO

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

A value for a Window argument does not name a defined Window.

XChangeWindowAttributes(3Xll), XCreateWindow(3Xll), XDestroyWindow(3Xll),
XMapWindow(3Xll), XRaiseWindow(3Xll), XUnmapWindow(3Xll)

Hewlett-Packard Company -2- Jul 12, 1989

XCopyArea(3X11) XCopyArea(3X11)
Series 300 and 800 Only

NAME
XCopyArea, XCopyPlane - copy areas

SYNOPSIS
XCopyArea(display, src, dest, gc, src x, src y, width, height, dest_x, dest])

Display .display; --
Drawable src, dest;
GC gc;
int src x, src y;
uns~ int width, height;
int dest _x, dest _y;

XCopyPlane(display, src, dest, gc, src x, src y, width, height, dest x, dest y, plane)
Display ·display; - - --
Drawable src, dest;
GC gc;
int src _ x, src];
unsigned int width, height;
int dest x, dest y;
unsigned long plane;

ARGUMENTS
dest x
desty

display

gc
plane
src
dest

src x
srcy

width
height

DESCRIPTION

Specify the x and y coordinates, which are relative to the origin of the
destination rectangle and specify its upper-left comer.

Specifies the connection to the X server.

Specifies the Gc.

Specifies the bit plane. You must set exactly one bit to 1.

Specify the source and destination rectangles to be combined.

Specify the x and y coordinates, which are relative to the origin of the source
rectangle and specify its upper-left comer.

Specify the width and height, which are the dimensions of both the source
and destination rectangles.

The XCopyArea function combines the specified rectangle of src with the specified rectangle of
dest. The drawables must have the same root and depth, or a Bad Match error results.

If regions of the source rectangle are obscured and have not been retained in backing store or if
regions outside the boundaries of the source drawable are specified, those regions are not copied.
Instead, the following occurs on all corresponding destination regions that are either visible or are
retained in backing store. If the destination is a window with a background other than None,
corresponding regions of the destination are tiled with that background (with plane-mask of all
ones and GXcopy function). Regardless of tiling or whether the destination is a window or a
pixmap, if graphics-exposures is 'flue, then GraphicsExpose events for all corresponding
destination regions are generated. If graphics-exposures is 'flue but no GraphicsExpose events are
generated, a NoExpose event is generated. Note that by default graphics-exposures is 'flue in new
GCs.

This function uses these GC components: function, plane-mask, subwindow-mode, graphics­
exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyArea can generate BadDrawable, BadGe, and Bad Match errors.

The XCopyPlane function uses a single bit plane of the specified source rectangle combined with
the specified GC to modify the specified rectangle of dest. The drawables must have the same

Hewlett-Packard Company -1- Ju112,1989

XCopyArea(3X11) XCopyArea(3X11)
Series 300 and 800 Only

root but need not have the same depth. If the drawables do not have the same root, a BadMatch
error results. If plane does not have exactly one bit set to 1 and the values of planes must be less
than %2 sup n%, where n is the depth of ser, a BadValue error results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of dest and with a size
specified by the source region. It uses the foreground/background pixels in the GC (foreground
everywhere the bit plane in src contains a bit set to 1, background everywhere the bit plane in src
contains a bit set to 0) and the equivalent of a CopyArea protocol request is performed with all the
same exposure semantics. This can also be thought of as using the specified region of the source
bit plane as a stipple with a fill-style of FillOpaqueStippled for filling a rectangular area of the
destination.

This function uses these GC components: function, plane-mask, foreground, background,
subwindow-mode, graphics-exposures, clip-x-origin, c1ip-y-origin, and clip-mask.

XCopyPlane can generate BadDrawable, BadGe, BadMatch, and BadValue errors.

DIAGNOSTICS
BadDrawable

BadGC

Bad Match

BadMatch

BadValue

SEE ALSO
XClearArea(3X11)

Hewlett-Packard Company

A value for a Drawable argument does not name a defined Window or
Pixmap.

A value for a GContext argument does not name a defined GContext.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

-2- Jul 12, 1989

XCreateColormap (3X11) XCreateColormap (3X11)

NAME

Series 300 and 800 Only

XCreateColormap, XCopyColormapAndFree, XFreeColormap, XSetWindowColormap - create,
copy, or destroy colormaps

SYNOPSIS
Colormap XCreateColormap(display, w, visual, alloe)

Display .display;
Wmdoww;
Visual ~sual;
int alloe;

Colormap XCopyColormapAndFree(display, colormap)
Display .display;
Colormap colormap;

XFreeColormap (display, colormap)
Display .display;
Colormap colormap;

XSetWindowColormap (display, w, colormap)
Display .display;
Wmdoww;
Colormap colormap;

ARGUMENTS
alloc Specifies the colormap entries to be allocated. You can pass AllocNone or

AllocAll.

colormap

display
visual

w
DESCRIPTION

Specifies the colormap that you want to create, copy, set, or destroy.

Specifies the connection to the X setver.

Specifies a pointer to a visual type supported on the screen. If the visual type
is not one supported by the screen, a BadMatch error results.

Specifies the window for which you want to create or set a colormap .

The XCreateColormap function creates a colormap of the specified visual type for the screen on
which the specified window resides and returns the colormap ID associated with it. Note that the
specified window is only used to determine the screen.

The initial values of the colormap entries are undefined for the visual classes GrayScale,
PseudoColor,lfP and DirectColor.lfP For StaticGray, StaticColor, and 'flueColor, the entries have
defined values, but those values are specific to the visual and are not defined by X For StaticGray,
StaticColor, and 'flueColor, alloc must be AllocNone, or a BadMatch error results. For the other
visual classes, if alloc is AllocNone, the colormap initially has no allocated entries, and clients can
allocate them. For information about the visual types, see section 3.1.

If alloc isAllocAl~ the entire colormap is allocated writable. The initial values of all allocated
entries are undefined. For GrayScale and PseudoColor, the effect is as if an XAllocColOlCells call
returned all pixel values from zero to N - 1, where N is the colormap entries value in the specified
visual. For DirectColor, the effect is as if an XAllocColorPlanes call returned a pixel value of zero
and red mask, green mask, and blue mask values containing the same bits as the corresponding
masks in the specified visual. However, in all cases, none of these entries can be freed by using
XFreeColors

XCreateColormap can generate BadAlloc, BadMatch, BadValue, and Bad"Window errors.

The XCopyColormapAndFree function creates a colormap of the same visual type and for the same
screen as the specified colormap and returns the new colormap ID. It also moves all of the
client's existing allocation from the specified colormap to the new colormap with their color values
intact and their read-only or writable characteristics intact and frees those entries in the specified
colormap. Color values in other entries in the new colormap are undefined. If the specified
colormap was created by the client with alloc set to AllocAl~ the new colormap is also created with

Hewlett-Packard Company -1- Jul 12, 1989

XCreateColormap (3X11) XCreateColormap (3X11)
Series 300 and 800 Only

AllocAl~ all color values for all entries are copied from the specified colormap, and then all
entries in the specified colormap are freed. If the specified colormap was not created by the client
with AllocAl~ the allocations to be moved are all those pixels and planes that have been allocated
by the client using XAllocColor, XAllocNamedColor, XAllocColorCells, or XAllocColorPlanes and
that have not been freed since they were allocated.

XCopyColonnapAndFree can generate BadAlloc and BadColor errors.

The XFreeColonnap function deletes the association between the colormap resource ID and the
colormap and frees the colormap storage. However, this function has no effect on the default
colormap for a screen. If the specified colormap is an installed map for a screen, it is un installed
(see XUninstalIColonnap). If the specified colormap is defined as the colormap for a window (by
XCreateWindow, XSetWindowColonnap, or XChangeWindowAttributes), XFreeColonnap changes
the colormap associated with the window to None and generates a ColonnapNotify event. X does
not define the colors displayed for a window with a colormap of None.

XFreeColonnap can generate a BadColor error.

The XSetWindowColonnap function sets the specified colormap of the specified window. The
colormap must have the same visual type as the window, or a BadMatch error results.

XSetWindowColonnap can generate BadColor, BadMatch, and BadWindow errors.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server memory.

BadColor

Bad Match

Bad Match

BadValue

BadWindow

SEE ALSO

A value for a Colormap argument does not name a defined Colormap.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

A value for a Window argument does not name a defined Window.

XAllocColor(3Xll), XQueryColor(3X11), XStoreColors(3X11)

Hewlett-Packard Company -2- Jul 12, 1989

XCreateFontCursor (3Xll) XCreateFontCursor (3X11)
Series 300 and 800 Only

NAME
XCreateFontCursor, XCreatePixmapCursor, XCreateGlyphCursor - create cursors

SYNOPSIS
#include <Xll/cursorfont.h>

Cursor XCreateFontCursor(display, shape)
Display .display;
unsigned int shape;

Cursor XCreatePixmapCursor(display, source, mask, foreground color, background color, x,
~ - -

Display .display;
Pixmap source;
Pixmap mask;
XColor ·foreground color;
XColor ·background color;
unsigned int x, y; -

Cursor XCreateGlyphCursor(display, source font, mask font, source char, mask char,
foreground_color, background ~color) - -

Display .display;
Font source font, mask font;
unsigned int source char, mask cbar;
XColor ·foreground- color; -
XColor ·backgrounc't color;

ARGUMENTS
background_color

display

foreground_color

mask

mask char

maskJont
shape

source

source char

sourceJont

x

Specifies the RGB values for the background of the source.

Specifies the connection to the X server.

Specifies the RGB values for the foreground of the source.

Specifies the cursor's source bits to be displayed or None.

Specifies the glyph character for the mask.

Specifies the font for the mask glyph or None.

Specifies the shape of the cursor.

Specifies the shape of the source cursor.

Specifies the character glyph for the source.

Specifies the font for the source glyph.

y Specify the x and y coordinates, which indicate the hotspot relative to the
source's origin.

DESCRIPTION
X provides a set of standard cursor shapes in a special font named cursor. Applications are
encouraged to use this interface for their cursors because the font can be customized for the
individual display type. The shape argument specifies which glyph of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colors of a cursor
are a black foreground and a white background (see XRecolorCursor).

XCreateFontCursor can generate BadAlloc and BadValue errors.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID associated with it.
The foreground and background RGB values must be specified using foreground color and
background _color, even if the X server only has a StaticGray or GrayScale screen.-The foreground
color is used for the pixels set to 1 in the source, and the background color is used for the pixels
set to O. Both source and mask, if specified, must have depth one (or a BadMatch error results)
but can have any root. The mask argument defines the shape of the cursor. The pixels set to 1 in

Hewlett-Packard Company -1- Ju113,1989

XCreateFontCursor (3Xll) XCreateFontCursor (3X11)
Series 300 and 800 Only

the mask define which source pixels are displayed, and the pixels set to 0 define which pixels are
ignored. If no mask is given, all pixels of the source are displayed. The mask, if present, must be
the same size as the pixmap defined by the source argument, or a BadMatch error results. The
hotspot must be a point within the source, or a Bad Match error results.

The components of the cursor can be transformed arbitrarily to meet display limitations. The
pixmaps can be freed immediately if no further explicit references to them are to be made.
Subsequent drawing in the source or mask pixmap has an undefined effect on the cursor. The X
setver might or might not make a copy of the pixmap.

XCreatePixmapCursor can generate BadAlloc and BadPixmap errors.

The XCreateGlyphCursor function is similar to XCreatePixmapCursor except that the source and
mask bitmaps are obtained from the specified font glyphs. The source_char must be a defined
glyph in source font, or a BadValue error results. If mask font is given, mask char must be a
defined glyph in mask font, or a BadValue error results. The mask font and character are
optional. The origins 'Of the source char and mask char (if defined) glyphs are positioned
coincidently and define the hotspoCThe source char and mask char need not have the same
bounding box metrics, and there is no restriction on the placement of the hotspot relative to the
bounding boxes. If no mask_char is given, all pixels of the source are displayed. You can free the
fonts immediately by calling XFreeFont if no further explicit references to them are to be made.

For 2-byte matrix fonts, the 16-bit value should be formed with the byte1 member in the most­
significant byte and the byte2 member in the least-significant byte.

XCreateGlyphCursor can generate BadAlloc, BadFont, and BadValue errors.

DIAGNOSTICS
BadAlloc

BadFont

Bad Match

BadPixmap

BadValue

SEE ALSO

The setver failed to allocate the requested resource or server memory.

A value for a Font or GContext argument does not name a defined Font.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

A value for a Pixmap argument does not name a defined Pixmap.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XDefineCursor(3X11), XRecolorCursor(3X11)

Hewlett-Packard Company -2- Jul 13, 1989

XCreateGC(3Xll) XCreateGC(3X11)

NAME

Series 300 and 800 Only

XCreateGC, XCopyGC, XChangeGC, XFreeGC, XGContextFromGC - create or free graphics
contexts

SYNOPSIS
GC XCreateGC(display, d, valuemask, values)

Display -display;
Drawable d;
unsigned long valuemask;
XGCValues -values;

XCopyGC(display, src, valuemask, dest)
Display -display;
GC src, dest;
unsigned long valuemask;

XChangeGC(display, gc, valuemask, values)
Display -display;
GC gc;
unsigned long valuemask;
XGCValues -values;

XFreeGC (display, gc)
Display -display;
GC gc;

GContext XGContextFromGC (gc)
GC gc;

ARGUMENTS
d

dest

display

gc

Specifies the drawable.

Specifies the destination Gc.

Specifies the connection to the X setver.

Specifies the Gc.

Specifies the components of the source Gc. src

valuemask Specifies which components in the GC are to be set, copied, or changed.
This argument is the bitwise inclusive OR of one or more of the valid GC
component mask bits.

values Specifies any values as specified by the valuemask.

DESCRIPTION
The XOeateGC function creates a graphics context and returns a Gc. The GC can be used with
any destination drawable having the same root and depth as the specified drawable. Use with
other drawables results in a BadMatch error.

XCreateGC can generate BadAl/oc, BadDrawable, BadFont, Bad Match, BadPixmap, and BadValue
errors.

The XCopyGC function copies the specified components from the source GC to the destination
GC. The source and destination GCs must have the same root and depth, or a B:ulMatch error
results. The valuemask specifies which component to copy, as for XCreateGc.

XCopyGC can generate BadAl/oc, BadGe, and BadMatch errors.

The XChangeGC function changes the components specified by valuemask for the specified Gc.
The values argument contains the values to be set. The values and restrictions are the same as for
XOeateGC Changing the clip-mask overrides any previous XSetClipRectangles request on the
context. Changing the dash-ofIset or dash-list overrides any previous XSetDashes request on the
context. The order in which components are verified and altered is setver-dependent. If an error
is generated, a subset of the components may have been altered.

Hewlett-Packard Company -1- Jul13,1989

XCreateGC(3X11) XCreateGC(3X11)
Series 300 and 800 Only

XChangeGC can generate BadAlloc, BadFont, BadGe, BadMatch, BadPixmap, and BadValue
errors.

The XFreeGC function destroys the specified GC as well as all the associated storage.

XFreeGC can generate a BadGC error.

DIAGNOSTICS
BadAlloc

BadDrawable

BadFont

BadGC

BadMatch

Bad Match

BadPixmap

BadValue

SEE ALSO

The setver failed to allocate the requested resource or server memory.

A value for a Drawable argument does not name a defined Window or
Pixmap.

A value for a Font or GContext argument does not name a defined Font.

A value for a GContext argument does not name a defined GContext.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

A value for a Pixmap argument does not name a defined Pixmap.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XQueryBestSize(3X11), XSetArcMode(3X11), XSetClipOrigin(3Xll), XSetFiIlStyle(3Xll),
XSetFont(3Xll), XSetLineAttributes(3Xll), XSetState(3Xll), XSetTile(3Xll)

Hewlett-Packard Company - 2- Ju113,1989

XCreateImage (3X11) XCreateImage (3X11)
Series 300 and 800 Only

NAME
XCreatelmage, XGetPixel, XPutPixel, XSublmage, XAddPixel, XDestroylmage - image utilities

SYNOPSIS
XImage ·XCreateImage(display, visual, depth, format, oft'set, data, width, height, bitmap yad,

bytes yer }ine)
Display ·display;
Visual ~ual;
unsigned int depth;
int format;
int oft'set;
char .data;
unsigned int width;
unsigned int height;
int bitmap yad;
int bytes yer }ine;

unsigned long XGetPixel(ximage, X, y)
XImage ~mage;
int X;
int y;

int XPutPixel(ximage, x, y, pixel)
XImage .ximage;
int X;
int y;
unsigned long pixel;

XImage ·XSubImage(ximage, X, y, subimage width, subimage height)
XImage ~mage; - -
int X;
int y;
unsigned int sub image width;
unsigned int subimage:height;

XAddPixel (ximage, value)
XImage ~mage;
long value;

int XDestroyImage(ximage)
XImage .ximage;

ARGUMENTS
bitmapyad Specifies the quantum of a scanline (8, 16, or 32). In other words, the start

of one scanline is separated in client memory from the start of the next
scanline by an integer multiple of this many bits.

bytes yer Jine

data

depth

display

Jonnat

height

offset

pixel

Hewlett-Packard Company

Specifies the number of bytes in the client image between the start of one
scanline and the start of the next.

Specifies a pointer to the image data.

Specifies the depth of the image.

Specifies the connection to the X server.

Specifies the format for the image. You can passXYBitmap; XYPixmap, or
ZPixmap

Specifies the height of the image, in pixels.

Specifies the number of pixels to ignore at the beginning of the scanline.

Specifies the new pixel value.

-1- Jul13,1989

XCreatelmage(3X11)

subimage _height

subimage _width
value

visual

width

ximage

x
y

DESCRIPTION

Series 300 and 800 Only

Specifies the height of the new subimage, in pixels.

Specifies the width of the new subimage, in pixels.

Specifies the constant value that is to be added.

Specifies a pointer to the visual.

Specifies the width of the image, in pixels.

Specifies a pointer to the image.

Specify the x and y coordinates.

XCreatelmage(3X11)

The XOeatelmage function allocates the memory needed for an XImage structure for the specified
display but does not allocate space for the image itself. Rather, it initializes the structure byte­
order, bit-order, and bitmap-unit values from the display and returns a pointer to the XImage
structure. The red, green, and blue mask values are defined for Z format images only and are
derived from the VISUal structure passed in. Other values also are passed in. The offset permits
the rapid displaying of the image without requiring each scanline to be shifted into position. If
you pass a zero value in bytes J>Cr _line, Xlib assumes that the scanlines are contiguous in memory
and calculates the value of bytes J>Cr _line itself.

Note that when the image is created usingXOeatelmage, XGetlmage, or XSublmage, the destroy
procedure that the XDestroylmage function calls frees both the image structure and the data
pointed to by the image structure.

The basic functions used to get a pixel, set a pixel, create a subimage, and add a constant offset to
a Z format image are defined in the image object. The functions in this section are really macro
invocations of the functions in the image object and are defined in <Xll/XutiLh>.

The XGetPixel function returns the specified pixel from the named image. The pixel value is
returned in normalized format (that is, the least-significant byte of the long is the least-significant
byte of the pixel). The image must contain the x and y coordinates.

The XPutPixel function overwrites the pixel in the named image with the specified pixel value.
The input pixel value must be in normalized format (that is, the least-significant byte of the long is
the least-significant byte of the pixel). The image must contain the x and y coordinates.

The XSublmage function creates a new image that is a subsection of an existing one. It allocates
the memory necessary for the new XImage structure and returns a pointer to the new image. The
data is copied from the source image, and the image must contain the rectangle defined by X, y,
subimage _width, and subimage _height.

The XAddPixel function adds a constant value to every pixel in an image. It is useful when you
have a base pixel value from allocating color resources and need to manipulate the image to that
form.

The XDestroylmage function deallocates the memory associated with the XImage structure.

SEE ALSO
XPutImage(3Xll)

Hewlett-Packard Company -2- Jul 13, 1989

XCreatePixmap(3Xll) XCreatePixmap (3Xll)
Series 300 and 800 Only

NAME
XCreatePixmap, XFreePixmap - create or destroy pixmaps

SYNOPSIS
Pixmap XCreatePixmap(display, d, width, height, depth)

Display *display;
Drawable d;
unsigned int width, height;
unsigned int depth;

XFreePixmap (display, pixmap)
Display *display;
Pixmap pixmap;

ARGUMENTS
d

depth

display

pixmap

width

Specifies which screen the pixmap is created on.

Specifies the depth of the pixmap.

Specifies the connection to the X setver.

Specifies the pixmap.

height Specify the width and height, which define the dimensions of the pixmap.

DESCRIPTION
The XCreatePixmap function creates a pixmap of the width, height, and depth you specified and
returns a pixmap ID that identifies it. It is valid to pass an InputOnly window to the drawable
argument. The width and height arguments must be nonzero, or a BadVaJue error results. The
depth argument must be one of the depths supported by the screen of the specified drawable, or a
BadVaJue error results.

The setver uses the specified drawable to determine on which screen to create the pixmap. The
pixmap can be used only on this screen and only with other drawables of the same depth (see
XCopyPlane for an exception to this rule). The initial contents of the pixmap are undefined.

XCreatePixmap can generate BadAl/oc, BadDrawable, and BadValue errors.

The XFreePixmap function first deletes the association between the pixmap ID and the pixmap.
Then, the X setver frees the pixmap storage when there are no references to it. The pixmap
should never be referenced again.

XFreePixmap can generate a BadPixmap error.

DIAGNOSTICS
BadAl/oc The setver failed to allocate the requested resource or server memory.

Bad Drawable

BadPixmap

BadVaJue

Hewlett-Packard Company

A value for a Drawable argument does not name a defined Window or
Pixmap.

A value for a Pixmap argument does not name a defined Pixmap.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the fun range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

-1- Jul 13, 1989

XCreateRegion (3X11)
Series 300 and 800 Only

NAME
XCreateRegion, XSetRegion, XDestroyRegion - create or destroy regions

SYNOPSIS
Region XCreateRegionO

XSetRegion(display, gc, r)
Display ·display;
GC gc;
Region r;

XDestroyRegion(r)
Region r;

ARGUMENTS
display

gc

r

DESCRIPTION

Specifies the connection to the X server.

Specifies the Gc.

Specifies the region.

The XCreateRegion function creates a new empty region.

XCreateRegion (3X11)

The XSetRegion function sets the clip-mask in the GC to the specified region. Once it is set in the
GC, the region can be destroyed.

The XDestroyRegion function deallocates the storage associated with a specified region.

SEE ALSO
XEmptyRegion(3X11), XlntersectRegion(3Xll)

Hewlett-Packard Company -1- Ju112,1989

XCreateWindow(3X11) XCreateWindow(3X11)
Series 300 and 800 Only

NAME
XCreateWindow, XCreateSimpleWindow - create windows

SYNOPSIS
Wmdow XCreateWmdow(display, parent, x, y, width, height, border width, depth,

class, visual, valuernask, attributes) -
Display ·display;
Window parent;
int x, y;
unsigned int width, height;
unsigned int border width;
int depth; -
unsigned int class;
Visual 4Ivisual
unsigned long valuemask;
XSetWindowAttributes ·attributes;

Wmdow XCreateSimpleWmdow(display, parent, x, y, width, height, border width,
border, background) -

Display ·display;
Wmdow parent;
int x, y;
unsigned int width, height;
unsigned int border width;
unsigned long border;
unsigned long background;

ARGUMENTS
attributes

background

border

border width

class

depth

display

parent

valuemask

visual

width
height

x
y

Hewlett-Packard Company

Specifies the structure from which the values (as specified by the value
mask) are to be taken. The value mask should have the appropriate bits set
to indicate which attributes have been set in the structure.

Specifies the background pixel value of the window.

Specifies the border pixel value of the window.

Specifies the width of the created window's border in pixels.

Specifies the created window's class. You can pass InputOutput, InputOnly,
or CopyFromParent. A class of CopyFromParent means the class is taken
from the parent.

Specifies the window's depth. A depth of CopyFromParent means the depth
is taken from the parent.

Specifies the connection to the X setver.

Specifies the parent window.

Specifies which window attributes are defined in the attributes argument.
This mask is the bitwise inclusive OR of the valid attribute mask bits. If
valuemask is zero, the attributes are ignored and are not referenced.

Specifies the visual type. A visual of CopyFromParent means the visual type
is taken from the parent.

Specify the width and height, which are the created window's inside
dimensions and do not include the created window's borders.

Specify the x and y coordinates, which are the top-left outside comer of the
window's borders and are relative to the inside of the parent window's
borders.

-1- Jul13,1989

XCreateWindow(3X11) XCreateWindow(3X11)
Series 300 and 800 Only

DESCRIPTION
The XCreateWindow function creates an unmapped subwindow for a specified parent window,
returns the window ID of the created window, and causes the X server to generate a CreateNotify
event. The created window is placed on top in the stacking order with respect to siblings.

The border_width for an InputOnly window must be zero, or a Bad Match error results. For class
InputOutput , the visual type and depth must be a combination supported for the screen"or a
BadMatch error results. The depth need not be the same as the parent, but the parent must not
be a window of class InputOnly, or a BadMatch error results. For an InputOnly window, the depth
must be zero, and the visual must be one supported by the screen. If either condition is not met, a
Bad Match error results. The parent window, however, may have any depth and class. If you
specify any invalid window attribute for a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user's display. To display the window,
call XMapWindow The new window initially uses the same cursor as its parent. A new cursor can
be defined for the new window by calling XDefineCursor The window will not be visible on the
screen unless it and all of its ancestors are mapped and it is not obscured by any of its ancestors.

XCreateWindow can generate BadAlloc, Badeolor, Bad Cursor, BadMatch, BadPixmap,
BadValue,and BadWindow errors.

The XCreateSimpleWindow function creates an unmapped InputOutput subwindow for a specified
parent window, returns the window ID of the created window, and causes the X server to generate
a CreateNotify event. The created window is placed on top in the stacking order with respect to
siblings. Any part of the window that extends outside its parent window is clipped. The
border_width for an InputOnly window must be zero, or a BadMatch error results.
XCreateSimpleWindow inherits its depth, class, and visual from its parent. All other window
attributes, except background and border, have their default values.

XCreateSimpleWindow can generate BadAl/oc, BadMatch, BadValue, and BadWindow errors.

DIAGNOSTICS
BadAlloc

BadColor

BadCursor

BadMatch

BadMatch

BadPixmap

BadValue

BadWindow

SEE ALSO

The server failed to allocate the requested resource or server memory.

A value for a Colormap argument does not name a defined Colormap.

A value for a Cursor argument does not name a defined Cursor.

The values do not exist for an InputOnly window.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

A value for a Pixmap argument does not name a defined Pixmap.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

A value for a Window argument does not name a defined Window.

XChangeWindowAttributes(3X11), XConfigureWindow(3X11), XDestroyWindow(3Xll),
XMapWindow(3Xl1), XRaiseWindow(3X11), XUnmapWindow(3XU)

Hewlett-Packard Company -2- JuI13,1989

x:oerineCursor (3X11)
Series 300 and 800 Only

NAME
XDefineCursor, XUndefineCursor - define cursors

SYNOPSIS
XDefineCursor(display, w, cursor)

Display *display;
Window W;
Cursor cursor;

XUndefineCursor(display, w)
Display *display;
W"mdow W;

ARGUMENTS
cursor

display

w

DESCRIPTION

Specifies the cursor that is to be displayed or None.

Specifies the connection to the X server.

Specifies the window.

x:oeC'meCursor (3X11)

If a cursor is set, it will be used when the pointer is in the window. If the cursor is None, it is
equivalent to XUndefineCursor .

XDefineCursor can generate BadCursor and BadWindow errors.

The XUndefineCursor undoes the effect of a previous XDefineCursor for this window. When the
pointer is in the window, the parent's cursor will now be used. On the root window, the default
cursor is restored.

XUndefineCursor can generate a BadWindow error.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server memory.

BadCursor

BadWindow

SEE ALSO

A value for a Cursor argument does not name a defined Cursor.

A value for a Window argument does not name a defined Window.

XCreateFontCursor(3Xll), XRecolorCursor(3X11)

Hewlett-Packard Company -1- Ju112,1989

XDestroyWindow(3XU) XDestroyWindow(3X11)
Series 300 and 800 Only

NAME
XDestroyWindow, XDestroySubwindows - destroy windows

SYNOPSIS
XDestroyWindow(display, w)

Display ·display;
Wmdoww;

XDestroySubwindows (display, w)
Display ·display;
Window w;

ARGUMENTS
display

w

DESCRIPTION

Specifies the connection to the X setver.

Specifies the window.

The XDestroyWindow function destroys the specified window as well as all of its subwindows and
causes the X setver to generate a DestroyNotify event for each window. The window should never
be referenced again. If the window specified by the w argument is mapped, it is unmapped
automatically. The ordering of the DestroyNotify events is such that for any given window being
destroyed, DestroyNotify is generated on any inferiors of the window before being generated on
the window itself. The ordering among siblings and across sub hierarchies is not otherwise
constrained. If the window you specified is a root window, no windows are destroyed. Destroying
a mapped window will generate Expose events on other windows that were obscured by the
window being destroyed.

XDestroyWindow can generate a BadWindow error.

The XDestroySubwindows function destroys all inferior windows of the specified window, in
bottom-to-top stacking order. It causes the X setver to generate a DestroyNotify event for each
window. If any mapped subwindows were actually destroyed, XDestroySubwindows causes the X
setver to generate Expose events on the specified window. This is much more efficient than
deleting many windows one at a time because much of the work need be performed only once for
all of the windows, rather than for each window. The subwindows should never be referenced
again.

XDestroySubwindows can generate a BadWindow error.

DIAGNOSTICS
BadWindow A value for a Window argument does not name a defined Window.

SEE ALSO
XChangeWindowAttributes(3X11), XConfigureWindow(3X11), XCreateWindow(3X11),
XMapWindow(3X11), XRaiseWindow(3X11), XUnmapWindow(3Xll)

Hewlett-Packard Company -1- Jul 12, 1989

XDrawArc(3X11) XDrawArc(3X11)
Series 300 and 800 Only

NAME
XDrawArc, XDrawArcs - draw arcs

SYNOPSIS
XDrawArc(display, d, gc, x, y, width, height, anglel, angle2)

Display ·display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;
int anglel, angle2;

XDrawArcs(display, d, gc, arcs, narcs)
Display ·display;
Drawable d;
GC gc;
XArc .arcs;
int narcs;

ARGUMENTS
angleJ

angle2

arcs

d

display

gc
narcs

width
height

x
Y

DESCRIPTION

Specifies the start of the arc relative to the three-o'clock position from the
center, in units of degrees * 64.

Specifies the path and extent of the arc relative to the start of the arc, in units
of degrees * 64.

Specifies a pointer to an array of arcs.

Specifies the drawable.

Specifies the connection to the X server.

Specifies the Gc.

Specifies the number of arcs in the array.

Specify the width and height, which are the major and minor axes of the arc.

Specify the x and y coordinates, which are relative to the origin of the
drawable and specify the upper-left corner of the bounding rectangle.

XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws multiple circular or
elliptical arcs. Each arc is specified by a rectangle and two angles. The center of the circle or
ellipse is the center of the rectangle, and the major and minor axes are specified by the width and
height. Positive angles indicate counterclockwise motion, and negative angles indicate clockwise
motion. If the magnitude of angle2 is greater than 360 degrees, XDrawArc or XDrawArcs truncates
it to 360 degrees.

For an arc specified as [x, Y: width, height, angle I, angle 2], the origin of the major and minor

axes is at ~ + Wi~th ,Y + he~ht], and the infinitely thin path describing the entire circle or ellipse

intersects the horizontal axis at ~, Y + height] and ~ + width, y + he~ht] and intersects the

vertical axis at ~ + Wi~th ,y] and ~ + with ,y + height]. These coordinates can be fractional and

so are not truncated to discrete coordinates. The path should be defined by the ideal
mathematical path. For a wide line with line-width lw, the bounding outlines for filling are given
by the two infinitely thin paths consisting of all points whose perpendicular distance from the path
of the circle/ellipse is equal to Iw/2 (which maybe a fractional value). The cap-style and join-style
are applied the same as for a line corresponding to the tangent of the circle/ellipse at the
endpoint.

Hewlett-Packard Company -1- Ju112, 1989

XDrawArc(3X11) XDrawArc(3X11)
Series 300 and 800 Only

For an arc specified as [X, y, width, height, angle 1, angle 2], the angles must be specified in the
effectively skewed coordinate system of the ellipse (for a circle, the angles and coordinate systems
are identical). The relationship between these angles and angles expressed in the normal
coordinate system of the screen (as measured with a protractor) is as follows:

skewed-angle = atan [tan(normal-angle). Wi~th) + adjust
height)

The skewed-angle and normal-angle are expressed in radians (rather than in degrees scaled by 64) in the

range [0, 21r] and where atan returns a value in the range [;, f) and adjust is:

° for normal-angle in the range [0, f)
1r for normal-angle in the range [t ~]
21r for normal-angle in the range [T' 21r]

For any given arc, XDrawAn: and XDrawArcs do not draw a pixel more than once. If two arcs join
correctly and if the line-width is greater than zero and the arcs intersect, XDrawArc and
XDrawArcs do not draw a pixel more than once. Othetwise, the intersecting pixels of intersecting
arcs are drawn multiple times. Specifying an arc with one endpoint and a clockwise extent draws
the same pixels as specifying the other endpoint and an equivalent counterclockwise extent, except
as it affects joins.

If the last point in one arc coincides with the first point in the following arc, the two arcs will join
correctly. If the first point in the first arc coincides with the last point in the last arc, the two arcs
will join correctly. By specifying one axis to be zero, a horizontal or vertical line can be drawn.
Angles are computed based solely on the coordinate system and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
tile-stipple-y-origin, dash-offset, and dash-list.

XDrawAn: and XDrawArcs can generate BadDrawable, BadGC, and BadMatch errors.

DIAGNOSTICS
BadDrawable A value for a Drawable argument does not name a defined Window or

Pixmap.

BadGC

Bad Match

BadMatch

SEE ALSO

A value for a GContext argument does not name a defined GContext.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

XDrawLine(3Xll), XDrawPoint(3Xll), XDrawRectangle(3Xll)

Hewlett-Packard Company -2- Jul 12, 1989

XDrawImageString(3Xll) XDrawImageString(3X11)
Series 300 and 800 Only

NAME
XDrawlmageString, XDrawlmageString16 - draw image text

SYNOPSIS
XDrawlmageString(display, d, gc, x, y, string, length)

Display .display;
Drawable d;
GC gc;
int x, y;
char .string;
int length;

XDrawlmageString16(display, d, gc, x, y, string, length)
Display ·display;
Drawable d;
GC gc;
int x, y;
XChar2b .string;
int length;

ARGUMENTS
d

display

gc

length

string

x

Specifies the drawable.

Specifies the connection to the X server.

Specifies the Gc.
Specifies the number of characters in the string argument.

Specifies the character string.

y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

DESCRIPTION
The XDrawlmageString16 function is similar to XDrawlmageString except that it uses 2-byte or 16-
bit characters. Both functions also use both the foreground and background pixels of the GC in
the destination.

The effect is first to fill a destination rectangle with the background pixel defined in the GC and
then to paint the text with the foreground pixel. The upper-left comer of the filled rectangle is at:

[x, y - font-ascent]

The width is:

overall-width

The height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as would be returned by XQueryTextExtents
using gc and string. The function and fill-style defined in the GC are ignored for these functions.
The effective function is GXcopy, and the effective fill-style is FillSolid.

For fonts defined with 2-byte matrix indexing and used with XDrawlmageString, each byte is used
as a byte2 with a byte1 of zero.

Both functions use these GC components: plane-mask, foreground, background, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawlmageString and XDrawlmageString16 can generate BadDrawable, BadGe, and BadMatch
errors.

DIAGNOSTICS
Bad Drawable

Hewlett-Packard Company

A value for a Drawable argument does not name a defined Window or
Pixmap.

-1- Jul 12, 1989

XDrawlmageString(3Xll)

BadGe

BadMatch

BadMatch

SEE ALSO

XDrawlmageString(3Xll)
Series 300 and 800 Only

A value for a GContext argument does not name a defined GContext.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

XDrawString(3X11), XDrawText(3X11)

Hewlett-Packard Company -2- Jul 12, 1989

XDrawLine (3X11) XDrawLine(3X11)
Series 300 and 800 Only

NAME
XDrawLine, XDrawLines, XDrawSegments - draw lines and polygons

SYNOPSIS
XDrawLine(display, d, gc, xl, yl, x2, y2)

Display ·display;
Drawable d;
GC gc;
int xl, yl, x2, y2;

XDrawLines(display, d, gc, points, npoints, mode)
Display .display;
Drawable d;
GC gc;
XPoint .points;
int npoints;
int mode;

XDrawSegments(display, d, gc, segments, nsegments)
Display ·display;

ARGUMENTS
d

Drawable d;
GC gc;
XSegment .segments;
int nsegments;

Specifies the drawable.

Specifies the connection to the X server.

Specifies the Gc.

display

gc

mode Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

npoints
nsegments
points
segments

xl
yl
x2
y2

DESCRIPTION

Specifies the number of points in the array.

Specifies the number of segments in the array.

Specifies a pointer to an array of points.

Specifies a pointer to an array of segments.

Specify the points (xl, yl) and (x2, y2) to be connected.

The XDrawLine function uses the components of the specified GC to draw a line between the
specified set of points (xl, yl) and (x2, y2). It does not perform joining at coincident endpoints.
For any given line, XDrawLine does not draw a pixel more than once. If lines intersect, the
intersecting pixels are drawn multiple times.

TheXDrawLines function uses the components of the specified GC to draw npoints-llines
between each pair of points (point(i), point(i + 1 D in the array of XPoint structures. It draws the
lines in the order listed in the array. The lines join correctly at all intermediate points, and if the
first and last points coincide, the first and last lines also join correctly. For any given line,
XDrawLines does not draw a pixel more than once. If thin (zero line-width) lines intersect, the
intersecting pixels are drawn multiple times. If wide lines intersect, the intersecting pixels are
drawn only once, as though the entire PolyLine protocol request were a single, filled shape.
CoordModeOrigin treats all coordinates as relative to the origin, and CoordModePrevious treats all
coordinates after the first as relative to the previous point.

The XDrawSegments function draws multiple, unconnected lines. For each segment,
XDrawSegments draws a line between (xl, yl) and (x2, y2). It draws the lines in the order listed in

Hewlett-Packard Company -1- Ju112, 1989

XDrawLine (3X11) XDrawLine (3Xll)
Series 300 and 800 Only

the array of XSegment structures and does not perform joining at coincident endpoints. For any
given line, XDrawSegments does not draw a pixel more than once. If lines intersect, the
intersecting pixels are drawn multiple times.

All three functions use these GC components: function, plane-mask, line-width, line-style, cap­
style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. The XDrawLines
function also uses the join-style GC component. All three functions also use these GC mode­
dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y­
origin, dash-offset, and dash-list.

XDrawLine, XDrawLines, and XDrawSegments can generate BadDrawable, BadGe, and BadMatch
errors. XDrawLines can also generate a BadValue error.

DIAGNOSTICS
Bad Drawable A value for a Drawable argument does not name a defined Window or

Pixmap.

BadGe

BadMatch

Bad Match

BadValue

SEE ALSO

A value for a GContext argument does not name a defined GContext.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XDrawArc(3X11), XDrawPoint(3X11), XDrawRectangie(3X11)

Hewlett-Packard Company -2- Ju112, 1989

XDrawPoint(3X11) XDrawPoint(3X11)
Series 300 and 800 Only

NAME
XDrawPoint, XDrawPoints - draw points

SYNOPSIS
XDrawPoint(display, d, gf, x, y)

Display ·display;
Drawable d;
GC gf;
int x, y;

XDrawPoints(display, d, gf, points, npoints, mode)
Display .display;
Drawable d;
GC gf;
XPoint ·points;
int npoints;
int mode;

ARGUMENTS
d

display

gc
mode

npoints

points

x
y

DESCRIPTION

Specifies the drawable.

Specifies the connection to the X setver.

Specifies the GC.

Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

Specifies the number of points in the array.

Specifies a pointer to an array of points.

Specify the x and y coordinates where you want the point drawn.

The XDrawPoint function uses the foreground pixel and function components of the GC to draw a
single point into the specified drawable; XDrawPoints draws multiple points this way.
CoordModeOrigin treats all coordinates as relative to the origin, and CoordModePrevious treats all
coordinates after the first as relative to the previous point. XDrawPoints draws the points in the
order listed in the array.

Both functions use these GC components: function, plane-mask, foreground, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generate BadDrawable, BadGe, and BadMatch errors. XDrawPoint can generate
BadDrawable, BadGe, Bad Match, and BadValue errors.

DIAGNOSTICS
BadDrawable

BadGC

BadMatch

Bad Match

BadValue

SEE ALSO

A value for a Drawable argument does not name a defined Window or
Pixmap.

A value for a GContext argument does not name a defined GContext.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XDrawArc(3X11), XDrawLine(3X11), XDrawRectangle(3X11)

Hewlett-Packard Company -1- Jul 12, 1989

XDrawRectangle (3Xll) XDrawRectangle (3X11)
Series 300 and 800 Only

NAME
XDrawRectangle, XDrawRectangles - draw rectangles

SYNOPSIS
XDrawRectangle(display, d, gc, x, y, width, height)

Display *display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;

XDrawRectangles(display, d, gc, rectangles, nrectangles)
Display *display;

ARGUMENTS
d

Drawable d;
GC gc;
XRectangie rectangles [];
int nrectangIes;

Specifies the drawable.

display Specifies the connection to the X server.

Specifies the Gc.

Specifies the number of rectangles in the array.

Specifies a pointer to an array of rectangles.

gc

nrectangles

rectangles

width
height Specify the width and height, which specify the dimensions of the rectangle.

x
y

DESCRIPTION

Specify the x and y coordinates, which specify the upper-left comer of the
rectangle.

The XDrawRectangle and XDrawRectangles functions draw the outlines of the specified rectangle
or rectangles as if a five-point PolyLine protocol request were specified for each rectangle:

[x,y] [x+width,y] [x+width,y+ height] [x,y+ height] [x,y]

For the specified rectangle or rectangles, these functions do not draw a pixel more than once.
XDrawRectangles draws the rectangles in the order listed in the array. If rectangles intersect, the
intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, line-width, line-style, join-style,
fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile­
stipple-y-origin, dash-offset, and dash-list.

XDrawRectangle and XDrawRectangles can generate BadDrawable, BadGe, and Bad Match errors.

DIAGNOSTICS
BadDrawable A value for a Drawable argument does not name a defined Window or

Pixmap.

BadGe

BadMatch

Bad Match

SEE ALSO

A value for a GContext argument does not name a defined GContext.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

XDrawArc(3Xll), XDrawLine(3Xll), XDrawPoint(3Xll)

Hewlett-Packard Company -1- Ju112,1989

XDrawString(3Xll) XDrawString (3Xll)
Series 300 and 800 Only

NAME
XDrawString, XDrawString16 - draw text characters

SYNOPSIS
XDrawString(display, d, ge, x, y, string, length)

Display·display;
Drawable d;
GC gc;
int x, y;
char ·string;
int length;

XDrawString16(display, d, gc, x, y, string, length)
Display .display;
Drawable d;
GC gc;
int x, y;
XChar2b .string;

ARGUMENTS
d

int length;

display

gc
length

string

x
y

DESCRIPTION

Specifies the drawable.

Specifies the connection to the X server.

Specifies the Gc.

Specifies the number of characters in the string argument.

Specifies the character string.

Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

Each character image, as defined by the font in the GC, is treated as an additional mask for a fill
operation on the drawable. The drawable is modified only where the font character has a bit set
to 1. For fonts defined with 2-byte matrix indexing and used withXDrawStringl~ each byte is used
as a byte2 with a byte1 of zero.

Both functions use these GC components: function, plane-mask, fill-style, font, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent components:
foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawString and XDrawString16 can generate BadDrawable, BadGe, and Bad Match errors.

DIAGNOSTICS
BadDrawable A value for a Drawable argument does not name a defined Window or

Pixmap.

BadGe

Bad Match

BadMatch

SEE ALSO

A value for a GContext argument does not name a defined GContext.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

XDrawlmageString(3Xll), XDrawText(3Xll)

Hewlett-Packard Company -1- Ju112,1989

XDraWfext(3X11) XDraWfext(3X11)
Series 300 and 800 Only

NAME
XDrawText, XDrawText16 - draw polytext text

SYNOPSIS
XDraWfext(display, d, gc, x, y, items, nitems)

Display ·display;
Drawable d;
GC gc;
int x, y;
XTextltem ·items;
int nitems;

XDraWfext16(display, d, gc, x, y, items, nitems)
Display .display;
Drawable d;
GC gc;
int x, y;
XTextltem16 ·items;
int nitems;

ARGUMENTS
d

display

gc
items

nitems

x

Specifies the drawable.

Specifies the connection to the X server.

Specifies the Gc.

Specifies a pointer to an array of text items.

Specifies the number of text items in the array.

y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

DESCRIPTION
The XDrawText16 function is similar to XDrawText except that it uses 2-byte or 16-bit characters.
Both functions allow complex spacing and font shifts between counted strings.

Each text item is processed in tum. A font member other than None in an item causes the font to
be stored in the GC and used for subsequent text. A text element delta specifies an additional
change in the position along the x axis before the string is drawn. The delta is always added to the
character origin and is not dependent on any characteristics of the font. Each character image, as
defined by the font in the GC, is treated as an additional mask for a fill operation on the
drawable. The drawable is modified only where the font character has a bit set to 1. If a text item
generates a Bad Font error, the previous text items may have been drawn.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b structure
is interpreted as a 16-bit number with byte1 as the most-significant byte.

Both functions use these GC components: function, plane-mask, fill-style, font, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent components:
foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawText andXDrawText16 can generate BadDrawable, BadFont, BadGe, and BadMatch errors.

DIAGNOSTICS
BadDrawable A value for a Drawable argument does not name a defined Window or

Pixmap.

BadFont

BadGC

BadMatch

SEE ALSO

A value for a Font or GContext argument does not name a defined Font.

A value for a GContext argument does not name a defined GContext.

An InputOnly window is used as a Drawable.

XDrawImageString(3X11), XDrawString(3X11)

Hewlett-Packard Company -1- Jul 12, 1989

XEmptyRegion (3X11) XEmptyRegion (3X11)

NAME

Series 300 and 800 Only

XEmptyRegion, XEqualRegion, XPointlnRegion, XRectlnRegion - determine if regions are
empty or equal

SYNOPSIS
Bool XEmptyRegion(r)

Region r;

Bool XEquaIRegion(rl, r2)
Region rl, r2;

Bool XPointInRegion(r, x, y)
Region r;
int x, y;

int XRectInRegion(r, x, y, width, height)
Region r;

ARGUMENTS
r

r1
r2

width
height

x

int x, y;
unsigned int width, height;

Specifies the region.

Specify the two regions.

Specify the width and height, which define the rectangle.

y Specify the x and y coordinates, which define the point or the coordinates of
the upper-left comer of the rectangle.

DESCRIP110N
The XEmptyRegion function returns 1}ue if the region is empty.

The XEqualRegion function returns 1}ue if the two regions have the same offset, size, and shape.

The XPointlnRegion function returns 1}ue if the point (x, y) is contained in the region r.

The XRectlnRegion function returns Rectangleln if the rectangle is entirely in the specified region,
RectangleOut if the rectangle is entirely out of the specified region, and RectanglePart if the
rectangle is partially in the specified region.

SEE ALSO
XCreateRegion(3X11), XIntersectRegion(3X11)

Hewlett-Packard Company -1- Ju112, 1989

XFilIRectangle (3X11) XFilIRectangle (3X11)

NAME

Series 300 and 800 Only

XFillRectangle, XFillRectangles, XFillPolygon, XFi11Arc, XFi11Arcs - fill rectangles, polygons, or
arcs

SYNOPSIS
XFillRectangle(display, d, gc, x, y, width, height)

Display .display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;

XFillRectangles(display, d, gc, rectangles, nrectangles)
Display ·display;
Drawable d;
GC gc;
XRectangle ·rectangles;
int nrectangles;

XFillPolygon(display, d, gc, points, npoints, shape, mode)
Display ·display;
Drawable d;
GC gc;
XPoint ·points;
int npoints;
int shape;
int mode;

XFillArc(display, d, gc, x, y, width, height, angle1, angle2)
Display ·display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;
int angle1, angle2;

XFillArcs(display, d, gc, arcs, narcs)
Display ·display;
Drawable d;
GC gc;
XArc *arcs;
int narcs;

ARGUMENTS
angleJ Specifies the start of the arc relative to the three-o'clock position from the

center, in units of degrees * 64.

angle2

arcs

d

display

gc

mode

narcs

npoints

Hewlett-Packard Company

Specifies the path and extent of the arc relative to the start of the arc, in units
of degrees * 64.

Specifies a pointer to an array of arcs.

Specifies the drawable.

Specifies the connection to the X server.

Specifies the Gc.

Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

Specifies the number of arcs in the array.

Specifies the number of points in the array.

-1- Ju112,1989

XFiDRectangle (3X11)

nrectangles

points

rectangles

shape

width
height

x
y

DESCRIPTION

Series 300 and 800 Only

Specifies the number of rectangles in the array.

Specifies a pointer to an array of points.

Specifies a pointer to an array of rectangles.

XFillRectangle (3X11)

Specifies a shape that helps the server to improve performance. You can
pass Complex, Convex, or Nonconvex.

Specify the width and height, which are the dimensions of the rectangle to be
filled or the major and minor axes of the arc.

Specify the x and y coordinates, which are relative to the origin of the
drawable and specify the upper-left comer of the rectangle.

The XFillRectangle and XFillRectangles functions fill the specified rectangle or rectangles as if a
four-point FillPolygon protocol request were specified for each rectangle:

[x,y] [x+width,y] [x+width,y+ height] [x,y+ height]
Each function uses the x and y coordinates, width and height dimensions, and GC you specify.

XFillRectangles fills the rectangles in the order listed in the array. For any given rectangle,
XFillRectangle and XFillRectangles do not draw a pixel more than once. If rectangles intersect, the
intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, subwindow-mode, c1ip­
x-origin, c1ip-y-origin, and clip-mask. They also use these GC mode-dependent components:
foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillRectangle and XFillRectangles can generate BadDrawable, BadGe, and BadMatch errors.

XFillPolygon fills the region closed by the specified path. The path is closed automatically if the
last point in the list does not coincide with the first point. XFillPolygon does not draw a pixel of
the region more than once. CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the previous point.

Depending on the specified shape, the following occurs:

• If shape is Complex, the path may self-intersect.

• If shape is Convex, the path is wholly convex. If known by the client, specifying Convex can
improve performance. If you specify Convex for a path that is not convex, the graphics results
are undefined.

• If shape is Nonconvex, the path does not self-intersect, but the shape is not wholly convex. If
known by the client, specifying Nonconvex instead of Complex may improve performance. If
you specify Nonconvex for a self-intersecting path, the graphics results are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: function, plane-mask, fill-style, fill-rule, subwindow­
mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode-dependent
components: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillPolygon can generate BadDrawable, BadGe, Bad Match, and BadValue errors.

For each arc, XFillArc or XFillArcs fills the region closed by the infinitely thin path described by
the specified arc and, depending on the arc-mode specified in the GC, one or two line segments.
For ArcChord, the single line segment joining the endpoints of the arc is used. For ArcPieSlice, the
t-w"O line segments joining the endpoints of the arc vvith the center point are used. XFillAres fills
the arcs in the order listed in the array. For any given arc, XFillArc and XFillArcs do not draw a
pixel more than once. If regions intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, arc-mode, subwindow­
mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent
components: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

Hewlett-Packard Company -2- Jul 12, 1989

XFillRectangle (3Xll) XFillRectangle (3X11)
Series 300 and 800 Only

XFillArc and XFillArcs can generate BadDrawable, BadGe, and BadMatch errors.

DIAGNOSTICS
BadDrawable A value for a Drawable argument does not name a defined Window or

Pixmap.

BadGe

Bad Match

BadMatch

BadValue

SEE ALSO

A value for a GContext argument does not name a defined GContext.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XDrawArc(3X11), XDrawRectangle(3X11)

Hewlett-Packard Company -3- Ju112, 1989

XFlush(3X11) XFlusb(3X11)
Series 300 and 800 Only

NAME
XFlush, XSync, XEventsQueued, XPending - handle output buffer or event queue

SYNOPSIS
XFlush(display)

Display .display;

XSync(display, discard)
Display ·display;
Bool discard;

int XEventsQueued(display, mode)
Display ·display;
int mode;

int XPending(display)
Display ·display;

ARGUMENTS
discard Specifies a Boolean value that indicates whether XSync discards all events on

the event queue.

display

mode

DESCRIPTION

Specifies the connection to the X server.

Specifies the mode. You can pass QueuedAlready, QueuedAfterFlush, or
QueuedAfterReading.

The XFlush function flushes the output buffer. Most client applications need not use this function
because the output buffer is automatically flushed as needed by calls to XPending, XNextEvent, and
XWindowEvent. Events generated by the server may be enqueued into the library's event queue.

The XSync function flushes the output buffer and then waits until all requests have been received
and processed by the X server. Any errors generated must be handled by the error handler. For
each error event received by Xlib, XSync calls the client application's error handling routine (see
section 8.12.2). Any events generated by the server are enqueued into the library's event queue.

Finally, if you passed False, XSync does not discard the events in the queue. If you passed Irue,
XSync discards all events in the queue, including those events that were on the queue before
XSync was called. Client applications seldom need to call XSync.

If mode is QueuedAlready, XEventsQueued returns the number of events already in the event
queue (and never performs a system call). If mode is QueuedAfterFlush, XEventsQueued returns
the number of events already in the queue if the number is nonzero. If there are no events in the
queue, XEventsQueued flushes the output buffer, attempts to read more events out of the
application's connection, and returns the number read. If mode is QueuedAfterReading,
XEventsQueued returns the number of events already in the queue if the number is nonzero. If
there are no events in the queue, XEventsQueued attempts to read more events out of the
application's connection without flushing the output buffer and returns the number read.

XEventsQueued always returns immediately without I/O if there are events already in the queue.
XEventsQueued with mode QueuedAfterFlush is identical in behavior to XPending.
XEventsQueued with mode QueuedAlready is identical to the XQLength function.

The XPending function returns the number of events that have been received from the X server
but have not been removed from the event queue. XPending is identical to XEventsQueued with
the mode QueuedAfterFlush specified.

SEE ALSO
XltEvent(3Xll), XNextEvent(3Xll), XPutBackEvent(3Xll)

Hewlett-Packard Company -1- Jul 12, 1989

XFree(3X11)

NAME
XFree, XNoOp - free client data

SYNOPSIS
XFree(data)

cbar *data;

XNoOp (display)
Display *display;

Series 300 and 800 Only

ARGUMENTS
display

data

Specifies the connection to the X setver.

Specifies a pointer to the data that is to be freed.

DESCRIPTION

XFree(3X11)

The XFree function is a general-purpose Xlib routine that frees the specified data. You must use
it to free any objects that were allocated by Xlib.

The XNoOp function sends a NoOperation protocol request to the X setver, thereby exercising the
connection.

Hewlett-Packard Company -1- Ju112,1989

XGetDerault (3Xll)
Series 300 and 800 Only

NAME
XGetDefault, XResourceManagerString - get X program defaults

SYNOPSIS
char *XGetDefault(display, program, option)

Display *display;
char *program;
char *option;

char *XResourceManagerString(display)
Display *display;

ARGUMENTS
display Specifies the connection to the X server.

Specifies the option name.

XGetDefault(3Xll)

option

program Specifies the program name for the Xlib defaults (usually argv(O] of the main
program).

DESCRIPTION
The XGetDefault function returns the value NULL if the option name specified in this argument
does not exist for the program. The strings returned by XGetDefault are owned by Xlib and
should not be modified or freed by the client.

The XResourceManagerString returns the RESOURCE MANAGER property from the server's
root window of screen zero, which was returned when the connection was opened using
XOpenDisplay.

SEE ALSO
XrmGetSearchList(3X11)

Hewlett-Packard Company -1- Jul 12, 1989

XGetVisuaUnfo(3X11) XGetVisuaUnfo(3X11)
Series 300 and 800 Only

NAME
XGetVisualInfo, XMatchVisualInfo, XVisualIDFromVisual- obtain visual information

SYNOPSIS
XVisualInfo .XGetVisualInfo (display, vinfo mask, vinfo template, nitems return)

Display .display; - - -
long vinfo mask;
XVisualInfo 4Ivinfo template;
int ·nitems Jeturn;

Status XMatchVisualInfo(display, screen, depth, class, vinfo return)
Display ·display; -
int screen;
int depth;
int class;
XVisualInfo 4Ivinfo _return;

VisualID XVisualIDFromVisual (visual)
Visual .visual;

ARGUMENTS
class

depth

display

nitems return

screen

Specifies the class of the screen.

Specifies the depth of the screen.

Specifies the connection to the X server.

Returns the number of matching visual structures.

Specifies the screen.

Specifies the visual type.

Specifies the visual mask value.

Returns the matched visual information.

visual

vinfo_mask

vinfo _return

vinfo _template Specifies the visual attributes that are to be used in matching the visual
structures.

DESCRIPTION
TheXGetVisuallnfo function returns a list of visual structures that match the attributes specified
byvinfo _template. If no visual structures match the template using the specified vinfo _mask,
XGetVisuallnfo returns a NULL. To free the data returned by this function, use XFree.

The XMatchVisuallnfo function returns the visual information for a visual that matches the
specified depth and class for a screen. Because multiple visuals that match the specified depth
and class can exist, the exact visual chosen is undefined. If a visual is found, XMatchVisuallnfo
returns nonzero and the information on the visual to vinfo return. Otherwise, when a visual is not
found, XMatchVisuallnfo returns zero. -

The XVisuallDFromVisual function returns the visual ID for the specified visual type.

Hewlett-Packard Company -1- Jul 12, 1989

XGetWindowAttributes (3Xll) XGetWindowAttributes (3X11)
Series 300 and 800 Only

NAME
XGetWindowAttributes, XGetGeometry - get current window attribute or geometry

SYNOPSIS
Status XGetWindowAttributes(display,w, window attributes return)

Display *display; --
Wmdoww;
XWindowAttributes *window_attributes Jeturn;

Status XGetGeometry(display, d, root return, x return, y return, width return,
height return, bonter width return, depth return) -

ARGUMENTS

Display *display; - - - -
Drawable d;
Window *root return;
int *x return, -*y return;
unsigDed int *width return, *height return;
unsigned int *border width return;­
unsigned int *depth _return;

border width return Returns the border width in pixels.

d

depth Jeturn

display

root return

w

width return
heightjeturn

Specifies the drawable, which can be a window or a pixmap.

Returns the depth of the drawable (bits per pixel for the object).

Specifies the connection to the X setver.

Returns the root window.

Specifies the window whose current attributes you want to obtain.

Return the drawable's dimensions (width and height).

window attributes return
- - Returns the specified window's attributes in the XWindowAttributes

x return
y return

DESCRIPTION

structure.

Return the x and y coordinates that define the location of the drawable. For
a window, these coordinates specify the upper-left outer comer relative to its
parent's origin. For pixmaps, these coordinates are always zero.

The XGetWindowAttributes function returns the current attributes for the specified window to an
XWindowAttributes structure.

XGetWindowAttributes can generate BadDrawable and BadWindow errors.

The XGetGeometry function returns the root window and the current geometry of the drawable.
The geometry of the drawable includes the x and y coordinates, width and height, border width,
and depth. These are described in the argument list. It is legal to pass to this function a window
whose class is InputOnly.

DIAGNOSTICS
Bad Drawable A value for a Drawable argument does not name a defined Window or

Pixmap.

BadWindow A vaiue for a Window argument does not name a defined Window.

SEE ALSO
XQueryPointer(3X11), XQueryTree(3X11)

Hewlett-Packard Company -1- Ju112,1989

XGetWindowProperty(3X11) XGetWindowProperty(3X11)

NAME

Series 300 and 800 Only

XGetWindowProperty, XListProperties, XChangeProperty, XRotateWindowProperties,
XDeleteProperty - obtain and change window properties

SYNOPSIS
int XGetWindowProperty(display, w, property, long_ oft'set, long}ength, delete, rt!CJ.. type,

actuat type Jeturn, actuat format Jeturn, nitems Jeturn,

prop return)
Display ·display; -
W'mdow w;
Atom property;
long long oft'set, long length;
Bool delete; -
Atom rt!CJ.. type;
Atom .actual type return;
int ·actual format-return;
unsigned long ·nitems return;
unsigned long .bytes after return;
unsigned char ··prop Jetum;

Atom ·XListProperties(display, w, num yrop Jeturn)
Display .display;
W'mdow w;
int ·num yrop Jeturn;

XChangeProperty(display, w, property, type, format, mode, data, nelements)
Display ·display;
W'mdow w;
Atom property, type;
int format;
int mode;
unsigned char .data;
int nelements;

XRotateW'mdowProperties (display, w, properties, num yrop, npositions)
Display ·display;
Window w;
Atom properties [];
int num yrop;
int npositions;

XDeleteProperty(display, w, property)
Display ·display;
W'mdow w;
Atom property;

ARGUMENTS
actual Jormat Jetum Returns the actual format of the property.

actual_type Jetum Returns the atom identifier that defines the actual type of the property.

bytes _after Jetum Returns the number of bytes remaining to be read in the property if a partial
read was performed.

data Specifies the property data.

delete Specifies a Boolean value that determines whether the property is deleted.

display Specifies the connection to the X setver.

format Specifies whether the data should be viewed as a list of 8-bit, 16-bit, or 32-bit
quantities. Possible values are 8, 16, and 32. This information allows the X
setver to correctly perform byte-swap operations as necessary. If the format

Hewlett-Packard Company -1- Jul12,1989

XGetWindowProperty(3Xll)

long_length
long_offset

mode

nelements
nitems return

num"p'op
num "prop_return
npositions

prop_return
property
properties

req_type

type

w

DESCRIPTION

XGetWindowProperty(3Xll)
Series 300 and 800 Only

is 16-bit or 32-bit, you must explicitly cast your data pointer to a (char *) in
the call to XChangeProperty.

Specifies the length in 32-bit multiples of the data to be retrieved.

Specifies the offset in the specified property (in 32-bit quantities) where the
data is to be retrieved.

Specifies the mode of the operation. You can pass PropModeReplace,
PropModePrepend, or PropModeAppend.
Specifies the number of elements of the specified data format.

Returns the actual number of 8-bit, 16-bit, or 32-bit items stored in the
prop Jeturn data.

Specifies the length of the properties array.

Returns the length of the properties array.

Specifies the rotation amount.

Returns a pointer to the data in the specified format.

Specifies the property name.

Specifies the array of properties that are to be rotated.

Specifies the atom identifier associated with the property type or .I
AnyPropertyType.

Specifies the type of the property. The X setver does not interpret the type
but simply passes it back to an application that later calls
XGetWindowProperty.

Specifies the window whose property you want to obtain, change, rotate or
delete.

The XGetWindowProperty function returns the actual type of the property; the actual format of the
property; the number of 8-bit, 16-bit, or 32-bit items transferred; the number of bytes remaining to
be read in the property; and a pointer to the data actually returned. XGetWindowProperty sets the
return arguments as follows:

• If the specified property does not exist for the specified window, XGetWindowProperty
returns None to actual type return and the value zero to actual format return and
bytes after return. The nitems return argument is empty. In this case~the delete argument
is ignored. - -

• If the specified property exists but its type does not match the specified type,
XGetWindowProperty returns the actual property type to actual type return, the actual
property format (never zero) to actual format return, and the property length in bytes (even
if the actual format return is 16 or 32) to bytes after return. It also ignores the delete
argument. The nitems Jeturn argument is empty. -

• If the specified property exists and either you assign AnyProperty7ype to the re'L type
argument or the specified type matches the actual property type, XGetWindowProperty
returns the actual property type to actual type return and the actual property format (never
zero) to actual format return. It also retUrns a value to bytes after return and
nitems Jeturn,-by defining the following values: --

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

I = 4 * long offset
T=N-I -
L = MINIMUM(T, 4 * long length)
A = N - (I + L) -

Hewlett-Packard Company -2- Jul12,1989

XGetWindowProperty(3Xll) XGetWindowProperty(3X11)
Series 300 and 800 Only

The returned value starts at byte index I in the property (indexing from zero), and its length
in bytes is L. If the value for long_offset causes L to be negative, a BadValue error results.
The value of bytes_after Jeturn is A, giving the number of trailing unread bytes in the stored
property.

XGetWindowProperty always allocates one extra byte in prop_return (even if the property is zero
length) and sets it to ASCII null so that simple properties consisting of characters do not have to
be copied into yet another string before use. If delete is 1}ue and bytes_after _return is zero,
XGetWindowProperty deletes the property from the window and generates a PropertyNotify event
on the window.

The function returns Success if it executes successfully. To free the resulting data, use XFree.

XGetWindowProperty can generate BadAtom, BadValue, and BadWindow errors.

The ,XListProperties function returns a pointer to an array of atom properties that are defined for
the specified window or returns NULL if no properties were found. To free the memory allocated
by this function, use XFree.

XListProperties can generate a BadWindow error.

The XChangeProperty function alters the property for the specified window and causes the X
server to generate a PropertyNotify event on that window. XChangeProperty performs the
following:

• If mode is PropModeReplace, XChangeProperty discards the previous property value and
stores the new data.

• If mode is PropModePrepend or PropModeAppend, XChangeProperty inserts the specified
data before the beginning of the existing data or onto the end of the existing data,
respectively. The type and format must match the existing property value, or a BadMatch
error results. If the property is undefined, it is treated as defined with the correct type and
format with zero-length data.

The lifetime of a property is not tied to the storing client. Properties remain until explicitly
deleted, until the window is destroyed, or until the server resets. For a discussion of what happens
when the connection to the X server is closed, see section 2.5. The maximum size of a property is
server dependent and can vary dynamically depending on the amount of memory the server has
available. (If there is insufficient space, a BadAlloc error results.)

XChangeProperty can generate BadAlloc, BadAtom, BadMatch, BadValue, and BadWindow errors.

The XRotateWindowProperties function allows you to rotate properties on a window and causes
the X server to generate PropertyNotify events. If the property names in the properties array are
viewed as being numbered starting from zero and if there are num yrop property names in the
list, then the value associated with property name I becomes the value associated with property
name (I + npositions) mod N for all I from zero to N -1. The effect is to rotate the states by
npositions places around the virtual ring of property names (right for positive npositions, left for
negative npositions). If npositions mod N is nonzero, the X server generates a PropertyNotify
event for each property in the order that they are listed in the array. If an atom occurs more than
once in the list or no property with that name is defined for the window, a BadMatch error results.
If a BadAtom or Bad Match error results, no properties are changed.

XRotateWindowProperties can generate BadAtom, BadMatch, and BadWindow errors.

The XDeleteProperty function deletes the specified property only if the property was defined on the
specified window and causes the X server to generate a PropertyNotify event on the window unless
the property does not exist.

XDeleteProperty can generate BadAtom and BadWindow errors.

DIAGNOSTICS
BadAlloc

BadAtom

BadValue

Hewlett-Packard Company

The server failed to allocate the requested resource or server memory.

A value for an Atom argument does not name a defined Atom.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined

-3- JuI12,1989

XGetWindowProperty(3Xll)

BadWindow

SEE ALSO
XInternAtom(3X11)

Hewlett-Packard Company

XGetWindowProperty(3X11)
Series 300 and 800 Only

by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

A value for a Window argument does not name a defined Window.

-4- Ju112,1989

XGrabButton (3X1l) XGrabButton (3X1l)
Series 300 and 800 OnJ)'

NAME
XGrabButton, XUngrabButton - grab pointer buttons

SYNOPSIS
XGrabButton(display, button, modifiers, grab window, owner events, event mask,

pointer mode, keyboard mode,-conrme to, curSOr) -
Display -display; - -
unsigned int button;
unsigned int moditlers;
Wmdow grab window;
Bool owner events;
unsigned ini event mask;
int pointer mode, keyboard mode;
Window coDfine to; -
Cursor cursor; -

XUngrabButton(display, button, modifiers, grab window)
Display -display; -
unsigned int button;
unsigned int modifiers;
Window grab_window;

ARGUMENTS
button

confine_to

cursor

Specifies the pointer button that is to be grabbed or released or AnyButton.

Specifies the window to confine the pointer in or None.

display

event mask

grab _window

keyboard_mode

modifiers

owner events

DESCRIPTION

Specifies the cursor that is to be displayed or None.

Specifies the connection to the X setver.

Specifies which pointer events are reported to the client. The mask is the
bitwise inclusive OR of the valid pointer event mask bits.

Specifies the grab window.

Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

Specifies the set of keymasks or AnyModifier. The mask is the bitwise
inclusive OR of the valid keymask bits.

Specifies a Boolean value that indicates whether the pointer events are to be
reported as usual or reported with respect to the grab window if selected by
the event mask.

Specifies further processing of pointer events. You can pass GrabModeSync
or GrabModeAsync.fP

The XGrabButton function establishes a passive grab. In the future, the pointer is actively grabbed
(as for XGrabPointer), the last-pointer-grab time is set to the time at which the button was pressed
(as transmitted in the ButtonPress event), and the ButtonPress event is reported if all of the
following conditions are true:

• The pointer is not grabbed, and the specified button is logically pressed when the specified
modifier keys are logically down, and no other buttons or modifier keys are logically down.

• The grab_window contains the pointer.

• The confine_to window (if any) is viewable.

• A passive grab on the same button/key combination does not exist on any ancestor of
grab _window.

The interpretation of the remaining arguments is as for XGrabPointer. The active grab is
terminated automatically when the logical state of the pointer has all buttons released
(independent of the state of the logical modifier keys).

Hewlett-Packard Company - 1- Jul 12, 1989

XGrabButton (3Xll) XGrabButton(3X11)
Series 300 and 800 Only

Note that the logical state of a device (as seen by client applications) may lag the physical state if
device event processing is frozen.

This request overrides all previous grabs by the same client on the same button/key combinations
on the same window. A modifiers of AnyModifier is equivalent to issuing the grab request for all
possible modifier combinations (including the combination of no modifiers). It is not required
that all modifiers specified have currently assigned KeyCodes. A button of AnyButton is
equivalent to issuing the request for all possible buttons. Otherwise, it is not required that the
specified button currently be assigned to a physical button.

If some other client has already issued a XGrabButton with the same button/key combination on
the same window, a BadAccess error results. When using AnyModifier or AnyButton, the request
fails completely, and a BadAccess error results (no grabs are established) if there is a conflicting
grab for any combination. XGrabButton has no effect on an active grab.

XGrabButton can generate BadCursor, BadValue, and BadWindow errors.

The XUngrabButton function releases the passive button/key combination on the specified
window if it was grabbed by this client. A modifier of AnyModifier is equivalent to issuing the
ungrab request for all possible modifier combinations, including the combination of no modifiers.
A button of Any Button is equivalent to issuing the request for all possible buttons.
XUngrabButton has no effect on an active grab.

XUngrabButton can generate BadValue and BadWindow errors.

DIAGNOSTICS
BadCursor

BadValue

BadWindow

SEE ALSO

A value for a Cursor argument does not name a defined Cursor.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

A value for a Window argument does not name a defined Window.

XAllowEvents(3X11), XGrabPointer(3Xll), XGrabKey(3X11), XGrabKeyboard(3Xll)

Hewlett-Packard Company -2- Jul 12, 1989

XGrabKey(3X11) XGrabKey(3X11)
Series 300 and 800 Only

NAME
XGrabKey, XUngrabKey- grab keyboard keys

SYNOPSIS
XGrabKey(display, keycode, modifiers, grab window, owner events, pointer mode,

keyboard mode) - - -
Display *display;
int keyeode;
unsigned int modifiers;
Wmdow grab window;
Bool owner events;
int pointer_mode, keyboard_mode;

XUngrabKey(display, keyeode, modu.ers, grab window)
Display *display; -
int keyeode;
unsigned int modu.ers;
Wmdow grab_window;

ARGUMENTS
display

grab _window

keyboard_mode

Specifies the connection to the X setver.

Specifies the grab window.

Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

Specifies the KeyCode or AnyKey. keycode

modifiers Specifies the set of keymasks or AnyModifier. The mask is the bitwise
inclusive OR of the valid keymask bits.

owner events

DESCRIPTION

Specifies a Boolean value that indicates whether the pointer events are to be
reported as usual or reported with respect to the grab window if selected by
the event mask.

Specifies further processing of pointer events. You can pass GrabModeSync
or GrabModeAsync.

lbe XGrabKey function establishes a passive grab on the keyboard. In the future, the keyboard is
actively grabbed (as for XGrabKeyboard), the last-keyboard-grab time is set to the time at which
the key was pressed (as transmitted in the KeyPress event), and the KeyPress event is reported if all
of the following conditions are true:

• The keyboard is not grabbed and the specified key (which can itself be a modifier key) is
logically pressed when the specified modifier keys are logically down, and no other modifier
keys are logically down.

• Either the grab window is an ancestor of or is the focus window, or the grab window is a
descendant of the focus window and contains the pointer. -

• A passive grab on the same key combination does not exist on any ancestor of grab_window.

The interpretation of the remaining arguments is as for XGrabKeyboard. The active grab is
tenninated automatically when the logical state of the keyboard has the specified key released
(independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physical state if
device event processing is frozen.

A modifiers argument of AnyModifier is equivalent to issuing the request for all possible modifier
combinations (including the combination of no modifiers). It is not required that all modifiers
specified have currently assigned KeyCodes. A keycode argument of AnyKey is equivalent to
issuing the request for all possible KeyCodes. Otherwise, the specified keycode must be in the
range specified by min _keycode and max _ keycode in the connection setup, or a BadValue error

Hewlett-Packard Company -1- Jul 12, 1989

XGrabKey(3X11) XGrabKey(3X11)
Series 300 and 800 Only

results.

If some other client has issued a XGrabKey with the same key combination on the same window, a
BadAccess error results. When using AnyModifier or AnyKey, the request fails completely, and a
BadAccess error results (no grabs are established) if there is a conflicting grab for any
combination.

XGrabKey can generate BadAccess, BadValue, and BadWindow errors.

The XUngrabKey function releases the key combination on the specified window if it was grabbed
by this client. It has no effect on an active grab. A modifiers of Any Modifier is equivalent to
issuing the request for all possible modifier combinations (including the combination of no
modifiers). A keycode argument of Any Key is equivalent to issuing the request for all possible key
codes.

XUngrabKey can generate BadValue and BadWindow errors.

DIAGNOSTICS
BadAccess

BadValue

BadWindow

SEE ALSO

A client attempted to grab a key/button combination already grabbed by
another client.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

A value for a Window argument does not name a defined Window.

XAllowAccess(3Xll), XGrabButton(3Xll), XGrabKeyboard(3Xll), XGrabPointer(3Xll)

Hewlett-Packard Company -2- Jul 12, 1989

XGrabKeyboard (3X11) XGrabKeyboard (3X11)
Series 300 and 800 Only

NAME
XGrabKeyboard, XUngrabKeyboard - grab the keyboard

SYNOPSIS
int XGrabKeyboard(display, grab window, owner events, pointer mode, keyboard mode,
time) - - - -

Display *display;
Window grab window;
Bool owner eVents;
int pointer mode, keyboard mode;
Time time;- -

XUngrabKeyboard (display, time)
Display *display;
Time time;

ARGUMENTS
display

grab_window

keyboard_mode

Specifies the connection to the X setver.

Specifies the grab window.

Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

owner events Specifies a Boolean value that indicates whether the pointer events are to be
reported as usual or reported with respect to the grab window if selected by
the event mask.

time

DESCRIPTION

Specifies further processing of pointer events. You can pass GrabModeSync
or GrabModeAsync.

Specifies the time. You can pass either a timestamp or CurrentTime.

The XGrabKeyboard function actively grabs control of the keyboard and generates FocusIn and
FocusOut events. Further key events are reported only to the grabbing client. XGrabKeyboard
overrides any active keyboard grab by this client. If owner_events is ItFalse, all generated key
events are reported with respect to grab window. If owner events is 71ue and if a generated key event
would normally be reported to this cllent, it is reported normally; otherwise, the event is reported
with respect to the grab window. Both KeyPress and KeyRelease events are always reported,
independent of any event selection made by the client.

If the keyboard mode argument is GrabModeAsync, keyboard event processing continues as usual.
If the keyboardl.s currently frozen by this client, then processing of keyboard events is resumed. If
the keyboard_mode argument is GrabModeSync, the state of the keyboard (as seen by client
applications) appears to freeze, and the X setver generates no further keyboard events until the
grabbing client issues a releasingXAllowEvents call or until the keyboard grab is released. Actual
keyboard changes are not lost while the keyboard is frozen; they are simply queued in the server
for later processing.

If pointer_mode is GrabModeAsync, pointer event processing is unaffected by activation of the
grab. Ifpointer mode is GrabModeSync, the state of the pointer (as seen by client applications)
appears to freeze, and the X setver generates no further pointer events until the grabbing client
issues a releasing XAllowEvents call or until the keyboard grab is released. Actual pointer
changes are not lost while the pointer is frozen; they are simply queued in the setver for later
processing.

If the keyboard is actively grabbed by some other client, XGrabKeyboard fails and returns
AlreadyGrabbed. If grab window is not viewable, it fails and returns GrabNotViewable. If the
keyboard is frozen by an active grab of another client, it fails and returns GrahFrozen. If the specified
time is earlier than the last-keyboard-grab time or later than the current X server time, it fails and
returns GrabInvalidTime. Otherwise, the last-keyboard-grab time is set to the specified time
(CurrentTime is replaced by the current X setver time).

Hewlett-Packard Company -1- Ju112, 1989

XGrabKeyboard(3X11) XGrabKeyboard (3X11)
Series 300 and 800 Only

XGrabKeyboard can generate BadValue and BadWindow errors.

The XUngrabKeyboard function releases the keyboard and any queued events if this client has it
actively grabbed from either XGrabKeyboard or XGrabKey. XUngrabKeyboard does not release the
keyboard and any queued events if the specified time is earlier than the last-keyboard-grab time or
is later than the current X server time. It also generates Focusln and FocusOut events. The X
server automatically performs an UngrabKeyboard request if the event window for an active
keyboard grab becomes not viewable.

DIAGNOSTICS
BadValue Some numeric value falls outside the range of values accepted by the request.

Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

BadWindow A value for a Window argument does not name a defined Window.

SEE ALSO
XAllowEvents(3Xll), XGrabButton(3Xll), XGrabKey(3Xll), XGrabPointer(3Xll)

Hewlett-Packard Company -2- Ju112,1989

XGrabPointer (3X1!) XGrabPointer (3X1!)
Series 300 and 800 Only

NAME
XGrabPointer, XUngrabPointer, XChangeActivePointerGrab - grab the pointer

SYNOPSIS
int XGrabPointer(display, grab window, owner events, event mask, pointer mode,

keyboard mode, conf"me to, cursOr, time) - -
Display .display; - -
W"mdow grab window;
Bool owner events;
unsigned int event mask;
int pointer mode, keyboard mode;
Window coDrme to; -
Cursor cursor; -
Time time;

XUngrabPointer(display, time)
Display ·display;
Time time;

XChangeActivePointerGrab (display, event mask, cursor, time)
Display .display; -
unsigned int event mask;
Cursor cursor; -
Time time;

ARGUMENTS
confine_to Specifies the window to confine the pointer in or None.

cursor

display
event mask

Specifies the cursor that is to be displayed during the grab or ItNone.

Specifies the connection to the X server.

grab _window

keyboard_mode

owner events

pointer mode

time

DESCRIPTION

Specifies which pointer events are reported to the client. The mask is the
bitwise inclusive OR of the valid pointer event mask bits.

Specifies the grab window.

Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

Specifies a Boolean value that indicates whether the pointer events are to be
reported as usual or reported with respect to the grab window if selected by
the event mask.

Specifies further processing of pointer events. You can pass GrabModeSync
or GrabModeAsync.

Specifies the time. You can pass either a timestamp or CutTentTime.

The XGrabPointer function actively grabs control of the pointer and returns GrahSuccess if the
grab was successful. Further pointer events are reported only to the grabbing client.
XGrabPointer overrides any active pointer grab by this client. If owner_events is False, all
generated pointer events are reported with respect to grab _window and are reported only if
selected byevent mask. If owner events is 1iue and if a generated pointer event would normally
be reported to this client, it is repOrted as usual. Otherwise, the event is reported with respect to
the grab _window and is reported only if selected by event_mask. For either value of
owner_events, unreported events are discarded.

If the pointer_mode is GrabModeAsync, pointer event processing continues as usual. If the
pointer is currently frozen by this client, the processing of events for the pointer is resumed. If the
pointer_mode is GrabModeSync, the state of the pointer, as seen by client applications, appears to
freeze, and the X server generates no further pointer events until the grabbing client calls
XAllowEvents or until the pointer grab is released. Actual pointer changes are not lost while the
pointer is frozen; they are simply queued in the server for later processing.

Hewlett-Packard Company -1- Ju112, 1989

XGrabPointer (3X11) XGrabPointer(3X11)
Series 300 and 800 Only

If the keyboard mode is GrabModeAsync, keyboard event processing is unaffected by activation of
the grab. If the-keyboard _mode is GrabModeSync, the state of the keyboard, as seen by client
applications, appears to freeze, and the X setver generates no further keyboard events until the
grabbing client calls XAllowEvents or until the pointer grab is released. Actual keyboard changes
are not lost while the pointer is frozen; they are simply queued in the setver for later processing.

If a cursor is specified, it is displayed regardless of what window the pointer is in. If None is
specified, the normal cursor for that window is displayed when the pointer is in grab _window or
one of its subwindows; otherwise, the cursor for grab_window is displayed.

If a confine to window is specified, the pointer is restricted to stay contained in that window. The
confine to Window need have no relationship to the grab window. If the pointer is not initially in
the confine to window, it is warped automatically to the closest edge just before the grab activates
and enter/leave events are generated as usual. If the confine_to window is subsequently
reconfigured, the pointer is warped automatically, as necessary, to keep it contained in the
window.

The time argument allows you to avoid certain circumstances that come up if applications take a
long time to respond or if there are long network delays. Consider a situation where you have two
applications, both of which normally grab the pointer when clicked on. If both applications specify
the timestamp from the event, the second application may wake up faster and successfully grab the
pointer before the first application. The first application then will get an indication that the other
application grabbed the pointer before its request was processed.

XGrabPointer generates EnterNotify and LeaveNotify events.

Either if grab window or confine to window is not viewable or if the confine to window lies
completely outside the boundaries of the root window, XGrabPointer fails and returns
GrabNotViewable. If the pointer is actively grabbed by some other client, it fails and returns
AlreadyGrabbed. If the pointer is frozen by an active grab of another client, it fails and returns
GrabFrozen. If the specified time is earlier than the last-pointer-grab time or later than the current
X setver time, it fails and returns GrablnvalidTime. Otherwise, the last-pointer-grab time is set to
the specified time (CurrentTime is replaced by the current X setver time).

XGrabPointer can generate BadCursor, BadValue, and BadWindow errors.

The XUngrabPointer function releases the pointer and any queued events if this client has actively
grabbed the pointer from XGrabPointer, XGrabButton, or from a normal button press.
XUngrabPointer does not release the pointer if the specified time is earlier than the last-pointer­
grab time or is later than the current X server time. It also generates EnterNotify and LeaveNotify
events. The X setver performs an UngrabPointer request automatically if the event window or
confine_to window for an active pointer grab becomes not viewable or if window reconfiguration
causes the confine_to window to lie completely outside the boundaries of the root window.

The XChangeActivePointerGrab function changes the specified dynamic parameters if the pointer
is actively grabbed by the client and if the specified time is no earlier than the last-pointer-grab
time and no later than the current X setver time. This function has no effect on the passive
parameters of a XGrabButton. The interpretation of event_mask and cursor is the same as
described in XGrabPointer.

XChangeActivePointerGrab can generate a BadCursor and BadValue error.

DIAGNOSTICS
BadCursor

BadValue

BadWindow

SEE ALSO

A value for a Cursor argument does not name a defined Cursor.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

A value for a Window argument does not name a defined Window.

XAllowEvents(3Xll), XGrabButton(3Xll), XGrabKey(3Xll), XGrabKeyboard(3Xll)

Hewlett-Packard Company -2- Jul 12, 1989

XGrabServer (3X11)
Series 300 and 800 Only

NAME
XGrabSetver, XUngrabSetver - grab the setver

SYNOPSIS
XGrabServer(display)

Display -display;

XUngrabServer(display)
Display -display;

ARGUMENTS
display

DESCRIPTION

Specifies the connection to the X setver.

XGrabServer(3Xll)

The XGrabServer function disables processing of requests and close downs on all other
connections than the one this request arrived on. You should not grab the X server any more than
is absolutely necessary.

The XUngrabServer function restarts processing of requests and close downs on other connections.
You should avoid grabbing the X server as much as possible.

SEE ALSO
XGrabButton(3Xll), XGrabKey(3Xll), XGrabKeyboard(3Xll), XGrabPointer(3Xll)

Hewlett-Packard Company -1- Ju112, 1989

XHPAcknowledge (3X) XHPAcknowledge (3X)
Series 300 and 800 Only

NAME
XHPAcknowledge - Send an Acknowledge to an extended input device.

SYNOPSIS
#include <Xll/XHPlib.h>

XHPAcknowledge (display, deviceid, acknowledge)
Display ·display;
XID deviceid;
unsigned int acknowledge;

ARGUMENTS
display Specifies the connection to the X setver.

deviceid Specifies the ID of the desired device.

acknowledge Specifies the acknowledge to be sent. Valid values are:
GENERAL ACKNOWLEDGE, ACKNOWLEDGE 1, ACKNOWLEDGE 2,
ACKNOWCEDGE 3, ACKNOWLEDGE 4, ACKNOWLEDGE 5, -
ACKNOWLEDGE), ACKNOWLEDGE). -

DESCRIPTION
This function sends an acknowledge to an input device. This allows a previously received prompt
to be turned off.

A prompt is an audio or visual indication that the program controlling the input device is ready for
input. The program may indicate that status by turning on a prompt on the appropriate input
device.

Not all input devices support prompts and acknowledges. Any device that does support a
particular prompt will also support the corresponding acknowledge.

To determine whether an input device supports a particular prompt and acknowledge, the io _byte
field of the XHPDeviceList structure should be examined. The format of this structure is
described in the documentation for the XHPListInputDevices function.

RETURN VALUE
none

DIAGNOSTICS
Bad Device An invalid device ID was specified.

BadValue An invalid acknowledge was specified.

FILES
/usr/include/X11/XHPlib.h

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPListinputDevices(3x)
XHPPrompt(3x)

Hewlett-Packard Company -1- Jul13,1989

XHPChangeDeviceControI(3X) XHPChangeDeviceControI(3X)

NAME

Series 300 and 800 Only

XHPChangeDeviceControl - Change the control attributes of an extension input device.

XHPChangeDeviceKeyMapping - Change the key mapping of an extension input device.

SYNOPSIS
XHPChangeDeviceControl (display, deviceid, value mask, values)

Display .display; -
XID deviceid;
unsigned long value mask;
XHPDeviceControl *values;

XHPChangeDeviceKeyMapping (display, deviceid, first keycode,
keysyms yer _ keycode, keysyms; num _codes)

·display;

ARGUMENTS
display

Display
XID
int
int
KeySyms
int

deviceid;
first keycode;
keysYms yer _ keycode;

·keysymS;
num_codes;

Specifies the connection to the X server.

deviceid

XHPChangeDeviceControl
value mask

Specifies the ID of the device whose attributes are to be changed.

Specifies which attributes are to be changed. Each bit in the mask
specifies one attribute of the specified device.

values Specifies a pointer to the XHPDeviceControl structure containing
the values to be changed.

XHPChangeDeviceKeyMapping
first Jreycode Specifies the first keycode that is to be changed.

Specifies the number of keysyms per keycode. keysyms yer Jreycode

keysyms

num codes

Specifies a pointer to an array of keysyms that are to be used.

Specifies the number of keycodes that are to be changed.

DESCRIPTION
These functions are provided to support the use of input devices other than the X keyboard and X
pointer device. They allow the control attributes and key mapping of those input devices to be
changed. The specified device must have previously been opened (turned on) using the
XHPSetInputDevice function.

XHPChangeDeviceControI
The attributes to be changed are specified in the XHPDeviceControl structure. They are not
actually changed unless the corresponding bit is set in the value_mask parameter.

The following masks may be ORed into the value_mask:

#define DVKeyClickPercent (lL< <0)
#define DVBellPercent (lL< <1)
#define DVBellPitch (lL< <2)
#define DVBellDuration (lL< <3)
#define DVLed (lL< <4)
#define DVLedMode (lL< <5)
#define DVKey (lL< <6)
#define DVAutoRepeatMode (lL< <7)
#define DVAccelNum (lL< <8)
#define DVAccelDenom (lL< <9)
#define DVThreshold (lL< <10)

Hewlett-Packard Company -1- Jul13,1989

XHPChangeDeviceControl(3X)
Series 300 and 800 Only

The fields of the XHPDeviceControl structure are defined as follows:

typedef struct {
int key_click yercent;
int bellyercent;
int bellyitch;
int bell duration;
int led;-
int led mode;
int keY,
int auto repeat mode;
int acceiNumerator;
int accelDenominator;
int threshold;

} XHPDeviceControl;

XHPChangeDeviceControl(3X)

The key_click yercent member sets the volume for key clicks between 0 (oft) and 100 (loud)
inclusive, if possible. A setting of -1 restores the default. Other negative values generate a
BadValue error.

The bellyercent sets the base volume for the bell between 0 (oft) and 100 (loud) inclusive, if
possible. A setting of -1 restores the default. Other negative values generate a BadValue error.

The bellyitch member sets the pitch (specified in Hz) of the bell, if possible. A setting of -1
restores the default. Other negative values generate a BadValue error.

The bell duration member sets the duration, specified in milliseconds, of the bell, if possible. A
setting of -1 restores the default. Other negative values generate a BadValue error.

If both the led mode and led members are specified, the state of that LED is changed, if possible.
The led mode-member can be set to LedModeOn or LedModeOft'. If only led mode is specified,
the state of all LEDs are changed, if possible. At most 32 LEDs numbered from one are
supported. No standard interpretation of LEOs is defined. If an led is specified without an
led_mode, a BadMatch error is generated

If both the auto Jepeat_ mode and key members are specified, the auto Jepeat_ mode of that key is
changed (according to AutoRepeatModeOn , AutoRepeatModeOft' , or AutoRepeatModeDefault),
if possible. If only auto Jepeat_ mode is specified, the global auto Jepeat mode for the entire
device is changed, if possible, and does not affect the per key settings. If a key is specified without
an auto Jepeat_ mode, a BadMatch error is generated. -

XHPChangeDeviceKeyMapping
The XHPChangeDeviceKeyMapping function, starting with first keycode, defines the symbols for
the specified number of KeyCodes. The symbols for KeyCodes outside this range remained
unchanged. The number of elements must be:

num _codes * keysyms yer _ keycode

Otherwise, a BadLength error is generated. The specified first_ keycode must be greater than or
equal to min _ keycode supplied at connection setup and stored in the Display structure.
Otherwise, it generates a BadValue error. In addition, the following expression must be less than
or equal to max keycode as returned in the connection setup. Otherwise, a BadValue error is
generated. -

first_keycode + (num_codes / keysymsyer_keycode)-1

KeySym number N, counting from zero, for KeyCode K has the following index in keysyms,
counting from zero:

(K - first_ keycode) * keysyms yer _ keycode + N

The specified keysyms yer _ keycode can be chosen arbitrarily by the client to be large enough to
hold all desired symbOls. Use a special KeySym value of NoSymbol to fill in unused elements for
individual KeyCodes. NoSymbol may appear in nontrailing positions of the effective list for a
KeyCode. XHPChangeDeviceKeyMapping generates a DeviceMappingNotify event.

Hewlett-Packard Company -2- Jul13,1989

XHPChangeDevkeControl(3X) XHPChangeDevkeControl(3X)
Series 300 and 800 Only

There is no requirement that the X server interpret this mapping. It is merely stored for reading
and writing by clients.

DIAGNOSTICS
XHPChangeDeviceControl can generate BadDevice, BadMatch, and BadValue errors.

XHPChangeDeviceKeyMapping can generate Bad Device, Bad Length, and BadValue errors.

Bad Device The specified device does not exist, was not previously enabled via
XHPSetlnputDevice, or is the X system pointer or X system keyboard.

Bad Match An LED was specified but no valid LED mode, or a key was specified but no valid
AutoRepeat mode.

One of the values specified was beyond the range of valid values. BadValue

Bad Length The number of elements passed was not equal to keysyms J><:r _code times
num codes.

RETURN VALUE
none

FILES
none

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPGetDeviceKeyMapping(3x)
XGetKeyboardMapping(3x)
XChangeKeyboardMapping(3x)
XHPGetDeviceControl(3x)
XGetKeyboardControl(3x)
XChangeKeyboardControl(3x)
XGetPointerControl(3x)
XChangePointerControl(3x)

Hewlett-Packard Company -3- Jul 13, 1989

XHPConvertLookup (3X) XHPConvertLookup (3X)
Series 300 and 800 Only

NAME
XHPConvertLookup - convert key event into keysym and characters

SYNOPSIS
int
XHPConvertLookup(event struct, buffer return, bytes buffer, keysym return, status in out,
convert routine) - - - - - -
XKeyEV'ent *event struct;
char *buffer return;
int bytes buffer;
KeySym *keysym return;
XComposeStatus -*status in out;
int (*convert Joutine)0; - -

DESCRIPTION
event strnct Specifies the key event structure to be used. You can pass XKeyPressedEvent or

XKeyReleasedEvent.

Returns the translated characters. buffer Jetum

bytes_buffer Specifies the length of the buffer. No more than bytes buffer of translation are
returned. -

keysym Jetum
status in out

Returns the keysym computed from the event if this argument is not NULL.

Specifies or returns the XComposeStatus structure or NULL.

convert routine Specifies the routine which will map the keysym into a character code, if
appropriate. It also handles all other processing necessary for the input language
(e.g. input server control for 16-bit languages) If this value is NULL, ISO-LatinI
characters will be returned.

The XHPConvertLookup function maps a key event to a keysym and a string. The modifier bits in
the key event are used to indicate shift, lock, control and keyboard group.

Shift, lock and keyboard group modifier bits are used to initially set the keysym.

If the lock modifier has a caps lock keysym associated with it, XHPConvertLookup interprets the
lock modifier to perform caps lock processing using the keysym value.

It then checks to see if that keysym has been rebound and if it has it returns the appropriate string
in buffer Jetum.

The keysym and the modifier bits are then passed to the convert Joutine along with buffer Jetum,
bytes _buffer, and status _in _out. This routine will convert the keysym into a character code if
appropriate and return it in the buffer handed to it. It will also handle control processing if
appropriate. The convert routine may use status in out to contain state information for input. See
the manual page for any convert routine used to see how it is used. Also, if multiple input servers
are running at the same time, they must each be maintained by separate XComposeStatus
parameters.

The calling sequence for convert Joutine is as follows:

(*convert routine)(display, keysym, modifiers, buffer return, bytes buffer, status in out)
Display *display; - - - -
Keysym *keysym;
unsigned int modifiers;
char *buffer return;
int bytes buffer;
XCompOseStatus *status)n _out;

The meanings of the parameters are as follows:

display The display from the key event

keysym A pointer to the keysym value of this key event.

modifiers The modifiers (state) of this key event.

Hewlett-Packard Company -1- Jul13, 1989

XHPConvertLookup (3X) XHPConvertLookup (3X)
Series 300 and 800 Only

Returns the translated characters. buffer ..!etum

bytes_buffer Specifies the length of the buffer. No more than bytes buffer of translation are
returned. -

status in out Specifies or returns the XComposeStatus structure or NULL.

conven routine will return the number of characters in buffer return. - -
RETURN VALUE

The return value is the length of the string returned in buffer ..!etum.

EXAMPLES
The following example shows an application doing input in HP's Roman 8 character set.

XKeyEvent *event;
char buffer[80);
KeySym keysym;
XComposeStatus *status;
extern int XHPInputRoman80;
int count;

count = XHPConvertLookup (event, buffer, nbytes, &keysym, status, XHPInputRoman8);

The next example shows an application that supports all the default character sets for HP's
Eurasian keyboards.

Display display;

count = XHPConvertLookup (event, buffer, nbytes, &keysym, status,
XHPGetEurasianCvt(display));

An application which wished to do input in ISO-IATINI would use:

count = XHPConvertLookup (event, buffer, nbytes, &keysym, status, 0);

An application could provide its own routine to map from keysym to character code. If an
application had a routine,InputISO Latin20 that mapped keysyms into ISO-IATIN2 characters it
would be used as follows: -

extern int InputISO _ Latin20;

count = XHPConvertLookup (event, buffer, nbytes, &keysym, status, InputISO _ Latin2);

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPInputChinese s(3X), XHPInputChinese t(3X), XHPInputJapanese(3X),
XHPInputKorean(3X), XHPlnputRoman8(3X), XHPSetKeyboardLanguage(3X),

INTERNATIONAL SUPPORT
8-bit and 16-bit character data.

Hewlett-Packard Company -2- Ju113, 1989

XHPDeviceAutoRepeatOn (3X) XHPDeviceAutoRepeatOn (3X)

NAME

Series 300 and 800 Only

XHPDeviceAutoRepeatOn - Tum autorepeat on for an extension input device.

XHPDeviceAutoRepeatOft' - Tum autorepeat off for an extension input device.

SYNOPSIS
XHPDeviceAutoRepeatOn (display, deviceid, mode)

Display ·display;
XID deviceid;
unsigned int mode;

XHPDeviceAutoRepeatOft' (display, deviceid)
Display .display;
XID deviceid;

ARGUMENTS
display Specifies the connection to the X setver.

Specifies the ID of the desired device. deviceid

mode Valid for XHPDeviceAutoRepeatOn only. Specifies the auto-repeat rate. Valid
values are: REPEAT 30, which will cause repeats to take place every 1/30th second,
and REPEAT_60, which will cause repeats to take place every 1/60th second.

DESCRIPTION
These functions are provided to support the use of input devices other than the X keyboard and X
pointer device. They cannot be used to tum auto-repeat on or off for the X keyboard device. The
core XAutoRepeatOn and XAutoRepeatOft' functions should be used for that purpose.

XHPDeviceAutoRepeatOn turns on or changes auto-repeat for an extended input device that is
attached to the specified display.

XHPDeviceAutoRepeatOft'turns off autorepeat for an extended input device that is attached to the
specified display.

RETURN VALUE
none

DIAGNOSTICS
Either function can return a Bad Device error. XHPDeviceAutoRepeatOn can return a BadValue
error.

Bad Device An invalid device ID was specified.

BadValue An invalid mode was specified.

FILES
/usr /include/X11/XHPlib.h

ORIGIN
Hewlett-Packard Company

SEE ALSO
XAutoRepeatOn(3x)
XAutoRepeatOff(3x)

Hewlett-Packard Company -1- Jul 13, 1989

XHPDisableReset (3X)
Series 300 and 800 Only

NAME
XHPDisableReset - Disable the reset key sequence.

SYNOPSIS
XHPDisableReset (display)

Display .display;

ARGUMENTS
display

DESCRIPTION

Specifies the connection to the X server.

XHPDisableReset (3X)

This function is intended for use by client programs such as xsecure(l) that provide security to X
systems.

XHPDisableReset disables the key sequence that is pressed to reset the X server. This function
will fail with a BadAccess error if some other client has already disabled the reset key sequence.

If a client program disables reset, then terminates, reset will automatically be re-enabled by the X
server.

RETURN VALUE
none

DIAGNOSTICS
BadAccess Some other client has already disabled the reset key sequence.

FILES
none

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPEnableReset(3x)

Hewlett-Packard Company -1- Jul 13, 1989

XHPEnableReset (3X)

Series 300 and 800 Only

NAME
XHPEnableReset - Enable the reset key sequence.

SYNOPSIS
XHPEnableReset

Display
(display)
·display;

ARGUMENTS
display Specifies the connection to the X server.

DESCRIPTION

XHPEnableReset (3X)

This function is intended for use by client programs such as xsemre(l) that provide security to X
systems.

XHPEnableReset enables the key sequence that is pressed to reset the X server. The key
sequence used is the one specified in the Jusr/lib/Xll/X.pointerkeys file, or the default
sequence Left_Shift - Control - Break if that file does not exist.

This function is only valid for a client that has previously made a successful XHPDisableReset
request. For other clients, a BadAccess XError will be returned.

DIAGNOSTICS
BadAccess This client did not previously disable the reset key sequence.

RETURN VALUE
none

FILES
none

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPDisableReset(3x)

Hewlett-Packard Company -1- Jul13, 1989

XHPFlleToPixmap (3X) XHPFlleToPixmap (3X)
Series 300 and 800 Only

NAME
XHPFileToPixmap - Transfer an image stored in a file into a pixmap.

SYNOPSIS
XHPFileToPixmap (display, pixmap, cmap, gc, src _X, src y, dst _X, dst y, width, height, filename)

Display .display;
Pixmap pixmap;
Colormap cmap;
GC gc;
int
int
unsigned int
char

src X, src y;
dest X, dest y;
width, height;
·filename;

ARGUMENTS
display Specifies the connection to the X server.

pixmap

cmap

gc
src_x, srcy

width, height

filename

Specifies the pixmap ID. This is where the image will be placed.

Specifies colormap ID. If nonzero, the colormap is updated from colormap data
contained in the image file.

Specifies the graphics context.

Specifies the x and y coordinates of the upper left comer of the rectangle to be
transfered from the image file.

Specifies the x and y coordinates within the window where the upper left comer
of the image will be drawn.

Specifies the width and height of the sub image. These arguments define the
dimensions of the rectangle.

Specifies the file name to use. The format of the file name is operating system
specific.

DESCRIPTION
The XHPFileToPixmap function is similar to XHPFileToWindow but has a cmap parameter to
directly specify the colormap to be modified by the colormap stored in the image file. If cmap is
zero, the colormap is not modified.

RETURN VALUE

FILES

ORIGIN

The XHPFiIeToPixmap function returns one of the following values defined in
/usr/include /Xll /XHPlmageIO.h:

XHPIFSuccess Successful completion.

XHPIFDrawableElT Couldn't get drawable attributes or geometry.

XHPIFFileElT Problem accessing file.

XHPIFRequestElT Bad placement or size.

XHPIFAllocElT Memory allocation failure.

XHPIFHeaderElT File header version or size problem.

none

Hewlett-Packard Company

SEE ALSO
XHPFileToWindow(3X)
XHPPixmapToFile(3X)
XHPQueryImageFile(3X)
XHPWindowToFile(3X)

Hewlett-Packard Company -1- Jul13, 1989

XHPFileToWindow(3X) XHPFileToWindow(3X)
Series 300 and 800 Only

NAME
XHPFileToWindow - Transfer an image stored in a file into a window.

SYNOPSIS
XHPFileToWindow (display, w, modify cmap, gc, src X, src y, dst X, dst y, width, height, filename)

Display .display; - - - - -
Window w;
ind modify _ cmap;
GC gc;
int src X, src y;
int dest X, dest y;
unsigned int width, height;
char .filename;

ARGUMENTS
display Specifies the connection to the X server.

w
modify _cmap

gc

src_x, srcy

width, height

filename

Specifies the window ID. This is where the image will be placed.

Specifies colormap modification. If zero, the window's colormap is unchanged; if
nonzero, the window's colormap is updated from colormap data contained in the
image file.

Specifies the graphics context.

Specifies the x and y coordinates of the upper left corner of the rectangle to be
transfered from the image file.

Specifies the x and y coordinates within the window where the upper left corner
of the image will be drawn.

Specifies the width and height of the sub image. These arguments define the
dimensions of the rectangle.

Specifies the file name to use. The format of the file name is operating system
specific.

DESCRIPTION
The XHPFileToWindow function transfers an image saved in a file in the (ad hoc) standard xwd
(X Window Dump) format into a window.

The graphics context specified by the gc parameter is used to control image transfer details. Refer
to the description of graphics context associated with XPutImage in the "Transferring Images
Between Client and Server" section of the Programming With Xlib manual.

If the gc parameter is zero, the default graphics context for the display's default screen will be
used.

RETURN VALUE

FILES

ORIGIN

The XHPFileToWindow function returns one of the following values defined in
jusrjincludejXlljXHPlmageIO.h:

XHPIFSuccess

XHPIFDrawableEIT

XHPIFFileEIT

XHPIFRequestEIT

XHPIFAllocEIT

XHPIFHeaderEIT

none

Successful completion.

Couldn't get drawable attributes or geometry.

Problem accessing file.

Bad placement or size.

Memory allocation failure.

File header version or size problem.

Hewlett-Packard Company

Hewlett-Packard Company -1- Jul 13, 1989

XHPFileToWindow(3X)

SEE ALSO
XHPFileToPixmap(3X)
XHPPixmapToFile(3X)
XHPQueryImageFile(3X)
XHPWindowToFile(3X)
XPutlmage(3X)

Hewlett-Packard Company

XHPFileToWindow(3X)
Series 300 and 800 Only

- 2- Jul13, 1989

XHPFreeDeviceList (3X)
Series 300 and 800 Only

NAME
XHPFreeDeviceList - Free the input device list.

SYNOPSIS
#include <XlljXHPlib.h>

XHPFreeDeviceList (list)
XHPDeviceList *list;

XHPFreeDeviceList (3X)

ARGUMENTS
list Specifies the pointer to the XHPDeviceList array returned by a previous call to

XHPListInputDevices.

DESCRIPTION
This function frees the array of XHPDeviceList structures allocated by XHPListInputDevices.

RETURN VALUE
none

FILES
/usr/include/Xll/XHPlib.h

ORIG(N
Hewlett-Packard Company

SEE ALSO
XHPListlnputDevices(3x)

Hewlett-Packard Company - 1 - Jul 13, 1989

XHPGetCurrentDeviceMask(3X) XHPGetCurrentDeviceMask(3X)
Series 300 and 800 Only

NAME
XHPGetCurrentDeviceMask - Get the current extension event mask.

SYNOPSIS
XHPGetCurrentDeviceMask (display, window, deviceid, mask return)

Display ·display; -

ARGUMENTS
display

window

deviceid

Wmdowwindow;
XID deviceid;
Mask mask_return;

Specifies the connection to the X server.

Specifies the ID of the desired window.

Specifies the ID of the desired extension input device.

mask return Address of a variable into which the server can return the mask.

DESCRIPTION
This function is provided to support the use of input devices other than the X keyboard and X
pointer device.

XHPGetCurrentDeviceMask returns the current event selection mask for the specified extended
input device and window. This is the mask that was specified by the calling client program on a
previous XHPSelectExtensionEvent request.

This function is not valid for the X pointer device or the X keyboard device. The current event
selection mask for those devices can be obtained by using the XGetwindowAttribute(3x) function.

RETURN VALUE
none

FILES
none

ORIGIN
Hewlett-Packard Company

SEE ALSO
XGetwindowAttribute(3x)
XHPSelectExtensionEvent(3x)
XHPGetExtEventMask(3x)

Hewlett-Packard Company -1- Ju113, 1989

XHPGetDeviceFocus (3X) XHPGetDeviceFocus (3X)

NAME

Series 300 and 800 Only

XHPGetDeviceFocus - Get the focus window ID for an extension input device.

XHPGetDeviceMotionEvents - Get the motion history buffer for a device.

XHPGetDeviceControl - Get the control attributes of an extension input device.

XHPGetDeviceKeyMapping - Get the key mapping of an extension input device.

XHPGetDeviceModifierMapping - Get the modifier mapping of an extension input device.

SYNOPSIS
XHPGetDeviceFocus (display, deviceid, focus return, revert to return)

Display .display; - - -
XID deviceid;
W"mdow ·focus return;
int ·revert _to Jeturn;

XHPfimeCoord .XHPGetDeviceMotionEvents (display, deviceid, w, start,
stop, nevents return)
Display .display;
XID deviceid;
Window w;
Time start, stop;
int ·nevents Jeturn;

XHPGetDeviceControl (display, deviceid, values return)
Display ·display; -
XID deviceid;
XHPDeviceState ·values Jeturn;

KeySym
·XHPGetDeviceKeyMapping (display, deviceid, first keycode wanted,

keycode _count, keysyms yer:. keycod~ return)
·display; Display

XID
KeyCode
int
int

deviceid;
first keycode wanted;

keycode count;­
·keysyms_per_keycode_return;

XModifierKeyMap
·XHPGetDeviceModirIerMapping (display, deviceid)

ARGUMENTS
display

Display ·display;
XID deviceid;

Specifies the connection to the X setver.

Specifies the ID of the desired device. deviceid

XHPGetDeviceFocus Only
focusJeturn Specifies the address of a variable into which the setver can

return the ID of the window that contains the device focus.

revert to return

XHPGetDeviceMotionEvents Only
window

start

stop

Hewlett-Packard Company

Specifies the address of a variable into which the setver can
return the current revert to status for the device.

Must contain the constant ALL WINDOWS.

Specifies the start time.

Specifies the stop time.

-1- Ju113,1989

XHPGetDeviceFocus (3X)

nevents return

XHPGetDeviceControl Only
values return

XHPGetDeviceKeyMapping Only
first -'ceycode _wanted
keycode _count

keysyms yer _ keycode ...!eturn

DESCRIPTION

XHPGetDeviceFocus (3X)
Series 300 and 800 Only

Specifies the address of a variable into which the server will
return the number of events in the motion buffer returned for
this request.

Specifies a pointer to an XHPDeviceState structure in which
the device values will be returned.

Specifies the first keycode that is to be returned.

Specifies the number of keycodes that are to be returned.

Returns the number of keysyms per keycode.

These functions are provided to support the use of input devices other than the X keyboard device
and X pointer device.

XHPGetDeviceFocus
XHPGetDeviceFocus allows a client to determine the focus for a particular extended input device.
It returns the focus window id and the current focus state of the specified extended input device.

This function may not be used to determine the focus of the X keyboard device. The
XGetInputFocus function should be used for that purpose.

XHPGetDeviceMotionEvents
This function returns all events in the device's motion history buffer that fall between the specified
start and stop times inclusive. If the start time is in the future, or is later than the stop time, no
events are returned.

For all currently supported input devices, the window parameter must be the constant
ALL WINDOWS, which can be obtained by including <Xll/XHPlib.h>.

The return type for this function is a structure defined as follows:

typedef struct {
Time time;
unsigned short .data;

} XHPTimeCoord;

In order to correctly interpret the data returned by this function, client programs need information
about the device that generated that data. This information is reported by the
XHPListInputDevices function.

The data field of the XHPTimeCoord structure is a pointer to an array of data items. Each item is
of type short, and there is one data item per axis of motion reported by the device. The number of
axes reported by the device can be determined from the num axes field of the HPDeviceList
structure for the device that is returned by the XHPListInput1'>evices function.

The value of the data items depends on the mode of the device, which is reported in the mode
field of the XHPDeviceList function, and may be compared to constants defined in
<Xll/XHPlib.h>. If the mode is ABSOLUTE, the data items are the raw values generated by
the device. These may be scaled by the client program using the maximum values that the device
can generate for each axis of motion that it reports. The maximum value for each axis is reported
in the XHPaxis _info structure pointed to by the XHPDeviceList structure.

If the mode is RELATIVE, the data items are the relative values generated by the device. The
client program must choose an initial position for the device and maintain a current position by
accumulating these relative values.

The client program should use XFree to free the data returned by this function.

Hewlett-Packard Company -2- Jul 13, 1989

XHPGetDevlceFocus (3X) XHPGetDeviceFocus (3X)
Series 300 and 800 Only

This function is not valid for the X pointer device, or for devices that do not generate motion
events. Invoking this function for an invalid device will result in a Bad Device error.

The motion history buffer for the X pointer device can be obtained by using the
XGetMotionEvents(3x) function.

EXAMPLE
The following code fragment shows how positional data could be received from a graphics tablet
via the motion buffer. It assumes that the client only is interested in the first two axes of motion.

#include <Xll/XHPlib.h>

1* Find the graphics tablet information via XHPListinputDevices * /
1* Scale the input to a window whose origin is at winx, winy * /
/* and whose size is winw bywinh. * /

slist = XHPListinputDevices (disp, &ndevices);
for (i = O,list = slist; i < ndevices; i + + ,list + +)

if (list- > type = = TABLE!)
{
XHPSetinputDevice (disp, list->x_id, (ON I DEVICE_EVENTS»;
tablet = list->x id;
ax = list->axes;
if (list- > mode = = ABSOLUTE)

{
scalex = (float) winw / (float) (ax+ +)->max_val;
scaley = (float) winh / (float) (ax+ +)->max_ val;
}

else
{
scalex = 1;
sealey = 1;
}

axes = list- > num axes;
} -

XHPFreeDeviceList (slist);

buf = XHPGetDeviceMotionEvents (disp, tablet, ALLWINDOWS,
start, stop, &nevents);

savbuf = buff;

for (i =0; i <nevents; i + +)
{
dp = buf->data;
time = buf- > time;
x = winx + (*dp + + * scalex);
y = winy + (*dp+ + * scaley);

1* now do something with the motion data. * /

buf+ +;
}

XFree (savbut);

XHPGetDeviceControl
The XHPGetDeviceControl function returns the control attributes of the device in the

Hewlett-Packard Company -3- Jul 13, 1989

XHPGetDeviceFocus (3X) XHPGetDeviceFocus (3X)
Series 300 and 800 Only

XHPDeviceState structure.

The fields of the XHPDeviceState structure are defined as follows:

typedef struct {
int key_click yercent;
int bellyercent;
unsigned int bellyitch;
unsigned int bell duration;
unsigned long led mask;
int global auto rePeat;
int accelNumerator;
int accelDenominator;
int threshold;

char auto Jepeats[32];
} XHPDeviceState;

For the LEOs, the least significant bit of led mask corresponds to LED one, and each bit set to 1
in led mask indicates an LED that is lit. The auto repeats member is a bit vector. Each bit set to
1 indicates that auto-repeat is enabled for the corresponding key. The vector is represented as 32
bytes. Byte N (from 0) contains the bits for keys 8N to 8N + 7, with the least significant bit in the
byte representing key 8N. The global_auto Jepeat member can be set to either
AutoRepeatModeOn or AutoRepeatModeOtI'.

XHPGetDeviceKeyMapping
The XHPGetDeviceKeyMapping function, starting with first_ keycode, returns the symbols for the
specified number of KeyCodes. The value specified in the first keycode argument must be
greater than or equal to min keycode as returned in the Display structure at connection setup.
Otherwise, XHPGetDeviceKeyMapping generates a BadValue error. In addition, the following
expression must be less than or equal to max _ keycode as returned in the Display structure at
connection setup:

first_keycode + keycode_count-l

If this is not the case, a BadValue error is generated. The number of elements in the KeySyms list
is:

keycode _count * keysyms yer _ keycode Jeturn

KeySym number N, counting from zero, for KeyCode K has the following index in the list,
counting from zero:

(K - first_code) * keysyms yer _code + N

The keysyms yer _ keycode Jeturn value is chosen arbitrarily by the X setver to be large enough to
report all requested symbols. A special KeySym value of NoSymbol is used to fill in unused
elements for individual KeyCodes.

To free the storage returned by XHPGetDeviceKeyMapping, use XFree.

XHPGetDeviceModifierMapping
The XHPGetDeviceModifierMapping function returns a newly created XModifierKeymap
structure that contains the keys being used as modifiers for the specified device. The structure
should be freed after use by calling XFreeModifiennap. If only zero values appear in the set for
any modifier, that modifier is disabled.

DIAGNOSTICS
XHPGetDeviceKeyMapping can generate BadDevice and BadValue errors.

BadDevice The specified device does not exist, was not previously enabled via
XHPSetInputDevice, or is the X system pointer or X system keyboard.

BadValue One of the values specified was beyond the range of valid values.

RETURN VALUE
XHPGetDeviceMotionEvents returns a pointer to the motion history buffer.

Hewlett-Packard Company -4- Jul13,1989

XHPGetDeviceFocus (3X) XHPGetDeviceFocus (3X)

FILES

ORIGIN

Series 300 and 800 Only

XHPGetDeviceKeyMapping returns a pointer to an array of KeySyms.

XHPGetDeviceModifierMapping returns an XModifierMap structure that contains the keys being
used as modifiers for the device.

none

Hewlett-Packard Company

SEE ALSO
XGetlnputFocus(3x)
XHPListInputDevices(3x)
XHPSetDeviceFocus(3x)
XGetMotionEvents(3x)
XHPListinputDevices(3x)
XHPChangeDeviceControl(3x)
XGetKeyboardControl(3x)
XChangeKeyboardControl(3x)
XGetPointerControl(3x)
XChangePointerControl(3x)
XHPChangeDeviceKeyMapping(3x)
XGetKeyboardMapping(3x)
XChangeKeyboardMapping(3x)
XGetModifierMapping(3x)
XChangeModifierMapping(3x)
XHPSetDeviceModifierMapping(3x)

Hewlett-Packard Company -5- Jul13,1989

XHPGetEurasianCvt (3X) XHPGetEurasianCvt (3X)
Series 300 and 800 Only

NAME
XHPGetEurasianCvt - return the convert routine for Eurasian keyboards

SYNOPSIS
#include <Xll/XHPlib.h>

PFI
XHPGetEurasianCvt(display)
Display *display;

DESCRIPTION
XHPGetEurasianCvt will return the convert routine required by XHPConvertLookup to convert
keysyms to HP character codes. The display argument is used to identify the keymap currently
associated with the display structure.

Note that calling XHPGetEurasianCvt forces all convert routines for all character sets that
correspond to HP keyboards to be linked with your code. If this is not desired, this routine should
not be used.

Users of this routine will also want to perform initialization of the keyboard previous to its use in
XHPConvertLookup. A macro has been provided that will do this. This macro, XHPlnputlnit,
should be called as part of the initialization of any client making use XHPGetEurasianCvt.

RETURN VALUE
XHPGetEurasianCvt returns a pointer to the convert routine if it succeeds; it returns zero upon
failure.

EXAMPLES

ORIGIN

The following is an extract from an application that supports all the default character sets for HP's
Eurasian keyboards. The call to XHPConvertLookup converts a keyevent to a keysym, and then
into a string of characters. The function returned by XHPGetEurasianCvt tells
XHPConvertLookup into which HP character set the string is to be encoded.

Display *display;
XComposeStatus *status;

XHPlnputlnit(display, status);

count = XHPConvertLookup (event, buffer, nbytes, &keysym, status,
XHPGetEurasianCvt(display));

Hewlett-Packard Company

SEE ALSO
XHPConvertLookup(3X), XHPGetKeyboard _ Id(3X), XHPlnputChinese _s(3X),
XHPlnputChinese _ t(3X), XHPlnputJapanese(3X), XHPlnputKorean(3X),
XHPlnputRoman8(3X), XHPSetKeyboardMapping(3X)

Hewlett-Packard Company -1- Ju113,1989

XHPGetExtEventMask(3X) XHPGetExtEventMask(3X)
Series 300 and 800 Only

NAME
XHPGetExtEventMask - Get an extension event mask.

SYNOPSIS
XHPGetExtEventMask (display, event constant, event type, event mask)

Display *display; - - -

ARGUMENTS
display

long event constant;
long *event type;
Mask *even(mask;

Specifies the connection to the X setver.

event constant
- Specifies the constant corresponding to the desired event.

event _type Specifies the address of a varible in which the setver can return the event type of the
desired event.

event mask Specifies the address of a varible in which the setver can return the event mask for
the desired event.

DESCRIPTION
This function is provided to support the use of input devices other than the X pointer device and
X keyboard device.

XHPGetExtEventMask is used by client programs to determine the event mask to be used in
selecting extended events. The function passes a constant to the setver that corresponds to the
desired event. The setver returns the event mask and event type for the desired event.

Valid constants that may be used by the client to request corresponding event masks and types are:

HPDeviceKeyPressreq
HPDeviceKeyReleasereq
HPDeviceButtonPressreq
HPDeviceButtonReleasereq
HPDeviceMotionNotifyreq
HPDeviceFocuslnreq
HPDeviceFocusOutreq
HPProximitylnreq
HPProximityOutreq
HPDeviceKeymapNotifyreq

For example, if an X system was configured with an extension key device, and a client program
had determined the device ID of that device via XHPListInputDevices, and the client program
wished to receive key presses from that device in window win, it would do the following:

#include <XHPlib.h>

Display display;
Windowwin;
XID deviceid;
long devicekeypresstypej
Mask devicekeypressmaskj

(connection to the X setver)
(determining the device id via XHPListlnputDevices)

XHPGetExtEventMask (display, HPDeviceKeyPressreq,
&devicekeypresstype, &devicekeypressmask);

Hewlett-Packard Company -1- Jul13, 1989

XHPGetExtEventMask(3X)
Series 300 and 800 Only

XHPSelectExtensionEvent (display, window, deviceid,
devicekeypressmask);

XNextEvent (display, &event);

if (event.type = = devicekeypresstype)
(process the event)

DIAGNOSTICS
BadEvent The constant passed was not one of the valid constants.

RETURN VALUE
none

FILES
none

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPListlnputDevices(3x)
XHPSelectExtensionEvent(3x)
XHPGetCurrentDeviceMask(3x)

Hewlett-Packard Company -2-

XHPGetExtEventMask(3X)

Ju113, 1989

XHPGetServerMode (3X) XHPGetServerMode (3X)
Series 300 and 800 Only

NAME
XHPGetSetverMode - Get the mode of the specified screen.

SYNOPSIS
int
XHPGetServerMode (display, screen)

Display .display;
int screen;

ARGUMENTS
display Specifies the connection to the X setver.

screen Specifies the number of the screen whose mode is requested.

DESCRIPTION
This function enables a client program to determine the mode of a screen. The mode returned is
an integer that can be compared against one of the predefined modes. The following modes are
defined:

XHPOVERIAY MODE The X setver is running in the overlay planes.

XHPlMAGE _MODE The X setver is running in the image planes.

XHPSTACKED SCREENS MODE - - The X setver is running with the overlay and image planes on
different screens.

XHPCOMBINED MODE The X setver is running in both the overlay and image planes.

These constants can be obtained by including the file lusr/include/Xll/XHPHb.h.

If an invalid screen number is used, a -1 will be returned by this function.

DIAGNOSTICS
The return value indicates success or failure.

RETURN VALUE

FILES

ORIGIN

This function returns the display mode if the request is succesful, and a -1 if an invalid screen id is
used.

lusr linclude IX11/XHPlib.h

Hewlett-Packard Company

Hewlett-Packard Company -1- Jul 13, 1989

XHPGrabDevice (3X) XHPGrabDevice (3X)

NAME

Series 300 and 800 Only

XHPGrabDevice - Grab an extended input device.

XHPGrabDeviceButton - Establish a passive grab on a button on an extension input device.

XHPGrabDeviceKey - Establish a passive grab on a key on an extension input device.

SYNOPSIS
XHPGrabDevice (display, deviceid, grab window, pointer mode,

device mode, owner events, time) -
Display ·display;
XID deviceid;
WIndow grab windoW;
int pointer mode, device mode;
Bool owner events; -
Time time;-

XHPGrabDeviceButton (display, deviceid, button, modifiers, grab window,
owner events, event mask, pointer mode, device mode) -

DIsplay - ·display; - -
XID deviceid;
unsigned int button;
unsigned int modifiers;
Window grab window;
Bool owner events;
unsigned int event mask;
int pointer_mode, device_mode;

XHPGrabDeviceKey (display, deviceid, keycode, modifiers, grab window,
owner events, pointer mode, device mode) -

ARGUMENTS
display
deviceid

DIsplay .display;-
XID deviceid;
unsigned int keycode;
unsigned int modifiers;
Window grab windoW;
Bool owner events;
int pointer_mode, device_mode;

Specifies the connection to the X server.

Specifies the ID of the desired device.

grab window
pointer mode

device mode

owner events

Specifies the ID of a window associated with the device specified above.

Only the constant GrabModeAsync is currently supported.

XHPGrabDevice
time

XHPGrabDeviceButton
button

event mask

Only the constant GrabModeAsync is currently supported.

Specifies a boolean value of either True or False.

Specifies the time. This may be either a timestamp expressed in milliseconds, or
CurrentTime.

Specifies the code of the button that is to be grabbed. You can pass either the
keycode or AnyButton.

Specifies which device events are to be reported to the client. They can be the
bitwise inclusive OR of these device mask bits: DeviceButtonPressMask,
DeviceButtonReleaseMask, DevicePointerMotionmask,
DeviceKeymapStateMask.

Hewlett-Packard Company -1- Jul 13, 1989

XHPGrabDevice (3X) XHPGrabDevice (3X)
Series 300 and 800 Only

XHPGrabDeviceKey
keycode Valid for XHPGrabDeviceKey only. Specifies the keycode of the key that is to be

grabbed. You can pass either the keycode or AnyKey.

XHPGrabDeviceKey and XHPGrabDeviceButton Only
modifiers Specifies the set of keyrnasks. This mask is the bitwise inclusive OR of these

keyrnask bits: ShiftMask, LockMask, ControlMask, ModlMask, ModlMask,
M0d3Mask, M0d4Mask, ModSMask.

You can also pass AnyModifier, which is equivalent to issuing the grab key request for all possible
modifier combinations (including the combination of no modifiers).

DESCRIPTION
These functions are provided to support the use of input devices other than the X keyboard and X
pointer device. They allow a client to grab an extension input device, or a button or key on such a
device. The device must have previously been opened (turned on) using the XHPSetlnputDevice
function.

XHPGrabDevice
XHPGrabDevice causes an HPDeviceFocusln event to be sent to the client doing the grab, and an
HPDeviceFocusOut event to be sent to the window losing the device focus. XHPGrabDevice
cannot be used to grab the X pointer device or the X keyboard device. The core XGrabPointer
and XGrabKeyboard functions should be used for that purpose.

XHPGrabDeviceButton
The XHPGrabDeviceButton function establishes a passive grab on a device. Consequently, in the
future,

• IF the device is not grabbed and the specified button is logically pressed when the specified
modifier keys logically are down (and no other buttons or modifier keys are down),

• AND the grab window contains the device,

• AND a passive grab on the same device and button/key combination does not exist on any
ancestor of the grab window,

• THEN the device is actively grabbed, as for XHPGrabDevice, the last-grab time is set to the
time at which the button was pressed (as transmitted in the DeviceButtonPress event), and
the DeviceButtonPress event is reported.

The interpretation of the remaining arguments is as for XHPGrabDevice. The active grab is
terminated automatically when logical state of the device has all buttons released (independent of
the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier
combinations (including the combination of no modifiers). It is not required that all modifiers
specified have currently assigned keycodes. A Button of AnyButton is equivalent to issuing the
request for all possible Buttoncodes. OtheIWise, it is not required that the specified button be
assigned to a physical button.

A BadAccess error is generated if some other client has issued a XHPGrabDeviceButton with the
same device and button combination on the same window. When using AnyModifier or
AnyButton, the request fails completely and the X server generates a BadAccess error and no
grabs are established if there is a conflicting grab for any combination.

XHPGrabDeviceButton can generate BadDevice, BadAccess, BadWindow, and BadValue errors.

This function cannot be used to grab a button on the X pointer device. The core XGrabButton
function should be used for that purpose.

XHPGrabDeviceKey
The XHPGrabDeviceKey function establishes a passive grab on a device. Consequently, in the
future,

Hewlett-Packard Company -2- Jul13, 1989

~rab~~(3X) ~rab~vice(3X)

Series 300 and 800 Only

• IF the device is not grabbed and the specified key, which itself can be a modifier key, is
logically pressed when the specified modifier keys logically are down (and no other keys are
down),

• AND no other modifier keys logically are down,

• AND EfTIlER the grab window is an ancestor of (or is) the focus window OR the grab
window is a descendent of the focus window and contains the pointer,

• AND a passive grab on the same device and key combination does not exist on any ancestor
of the grab window,

• THEN the device is actively grabbed, as for XHPGrabDevice, the last-grab time is set to the
time at which the key was pressed (as transmitted in the DeviceKeyPress event), and the
DeviceKeyPress event is reported.

The interpretation of the remaining arguments is as for XHPGrabDevice. The active grab is
terminated automatically when logical state of the device has the specified key released
(independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier
combinations (including the combination of no modifiers). It is not required that all modifiers
specified have currently assigned keycodes. A key of AnyKey is equivalent to issuing the request
for all possible keycodes. Othetwise, the key must be in the range specified by min _ keycode and
max_ keycode in the connection setup. If it is not within that range, XHPGrabDeviceKey generates
a BadValue error.

A BadAccess error is generated if some other client has issued a XHPGrabDeviceKey with the
same device and key combination on the same window. When using AnyModifier or AnyKey, the
request fails completely and the X server generates a BadAccess error and no grabs are
established if there is a conflicting grab for any combination.

XHPGrabDeviceKey can generate Bad Device, BadAccess, BadWindow, and BadValue errors.

This function cannot be used to grab a key on the X keyboard device. The core XGrabKey
function should be used for that purpose.

DIAGNOSTICS
Bad Device An invalid device ID was specified.

BadAccess An grab combination was specified that conflicts with an existing grab.

BadWindow An invalid window ID was specified.

BadVaJue An invalid mode was specified.

RETURN VALUE
none

FILES
none

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPListlnputDevices(3x)
XHPSetInputDevice(3x)
XHPUngrabDevice(3x)
XGrabKeyboard(3x)
XGrabPointer(3x)
XGrabButton(3x)

Hewlett-Packard Company -3- Jul 13, 1989

XHPInputCbinese _ s (3X) XHPInputChinese _ s (3X)
Series 300 and 800 Only

NAME
XHPlnputChinese _ s - map keysyms into Chinese _ s characters.

SYNOPSIS
int
XHPlnputChinese s(display, keysym, modifiers, buffer return, bytes buffer, status in out)
Display *display; - - - - -
KeySym *keysym;
unsigned int modifiers;
char *buffer return;
int bytes_buffer;
XComposeStatus *status _in_out;

DESCRIPTION
display

keysym

mOdifiers

buffer Jetum

bytes _buffer

status in out

Specifies the connection to the X server.

Specifies the keysym that is to be converted into a character.

Specifies the modifiers to be applied to the keysym.

Returns the translated characters.

Specifies the length of the buffer. No more than bytes_buffer of translation are
returned.

Specifies the XComposeStatus structure.

XHPlnputChinese s will convert keysym into an ASCII character, if appropriate. It will also
handle 16-bit input using NLIO. If the value pointed to by keysym is used by the NLIO server,
that value will be changed to NoSymboL It will use status in out to keep the state information
necessary to control NLIO. This structure must contain null values before this routine is first
invoked, and must remain unchanged between uses.

This routine will also process the control modifier.

XHPlnputChinese s will use /usr/lib/nlio/selV/Xll/xcOinput as the NLIO server. NLIO input
will be invoked when the right extend char key is hit, and it will be terminated when the left
extend char key is hit. If the appropriate server is not running it will be started when it is first
invoked.

Users of this routine may want to exec the NLIO server previous to it being started up when the
invoke key is first struck. This can also be accomplished using XHPNlioctl.

The keys used to invoke and terminate the NLIO server can also be changed using XHPNlioctl.

This routine is intended to be used in conjunction with XHPConvertLookup

RETURN VALUE
The return value is the length of the string returned in buffer Jetum.

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPConvertLookup(3X), XHPNlioctl(3X)

INTERNATIONAL SUPPORT
8-bit and 16-bit character data.

Hewlett-Packard Company -1- Jul13,1989

XHPInputChinese _t (3X) XHPInputChinese _ t (3X)
Series 300 and 800 Only

NAME
XHPInputChinese _t - map keysyms into Chinese _t characters.

SYNOPSIS
int
XHPInputChinese t(display, keysym, modifiers, buffer return, bytes buffer, status in out)
Display *display; - - - - -
KeySym *keysym;
unsigned int modifiers;
char *buffer return;
int bytes_buffer;
XComposeStatus *status _in_out;

DESCRIPTION
display

keysym

modifiers

buffer Jetum

bytes_buffer

Specifies the connection to the X server.

Specifies the keysym that is to be converted into a character.

Specifies the modifiers to be applied to the keysym.

Returns the translated characters.

Specifies the length of the buffer. No more than bytes_buffer of translation are
returned.

status in out Specifies the XComposeStatus structure.

XHPInputChinese t will convert keysym into an ASCII character, if appropriate. It will also
handle 16-bit input using NLIO. If the value pointed to by keysym is used by the NLIO server,
that value will be changed to NoSymboL It will use status in out to keep the state information
necessary to control NLIO. This structure must contain null values before this routine is first
invoked, and must remain unchanged between uses.

This routine will also process the control modifier.

XHPInputChinese t will use /usr/lib/nlio/serv/Xll/xtOinput as the NLIO server. NLIO input
will be invoked when the right extend char key is hit, and it will be terminated when the left
extend char key is hit. If the appropriate server is not running it will be started when it is first
invoked.

Users of this routine may want to exec the NLIO server previous to it being started up when the
invoke key is first struck. This can also be accomplished using XHPNlioctl.

The keys used to invoke and terminate the NLIO server can also be changed using XHPNlioctl.

This routine is intended to be used in conjunction with XHPConvertLookup

RETURN VALUE
The return value is the length of the string returned in buffer Jetum.

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPConvertLookup(3X), XHPNlioctl(3X)

INTERNATIONAL SUPPORT
8-bit and 16-bit character data.

Hewlett-Packard Company -1- Jul 13, 1989

XHPInputlS07sub(3X) XHPInputlS07sub{3X)
Series 300 and 800 Only

NAME
XHPInputlS07sub - map keysyms into ISO 7-bit substitution characters.

SYNOPSIS
int
XHPInputIS07sub(dispiay, keysym, modifiers, buffer return, bytes buffer, status in out)
Display *display; - - - -
KeySym *keysym;
unsigned int modifiers;
char *buffer return;
int bytes buffer;
XComposeStatus *status _in_out;

DESCRIPTION

ORIGIN

display

keysym

modifiers

buffer ..!eturn

bytes_buffer

Specifies the connection to the X server.

Specifies the keysym that is to be converted into an ISO 7-bit subsitution
character.

Specifies the modifiers to be applied to the keysym.

Returns the translated characters.

Specifies the length of the buffer. No more than bytes buffer of translation are
returned. -

status in out Specifies the XComposeStatus structure.

XHPInputIS07sub will convert keysym into a ISO 7-bit substitution character, if appropriate.
This routine will also process the control modifier. The return value is the length of the string
returned in buffer return. This routine is intended to be used in conjunction with
XHPConvertLookUp.

status _in _out is used to hold the information necessary to perform 7-bit substitution input. This
structure must contain null values before this routine is first invoked, and must remain unchanged
between uses.

Hewlett-Packard Company

SEE ALSO
XHPConvertLookup(3X)

Hewlett-Packard Company -1- Jul 13, 1989

XHPInputJapanese (3X) XHPInputJapanese (3X)
Series 300 and 800 Only

NAME
XHPlnputJapanese - map keysyrns into Japanese characters.

SYNOPSIS
int
XHPlnputJapanese(display, keysyrn, modifiers, buffer return, bytes buffer, status in out)
Display *display; - - - -
KeySyrn *keysyrn;
unsigned int modifiers;
char *buffer return;
int bytes buffer;
XCompoSeStatus *status _in_out;

DESCRIPfION
display

keysym

modifiers

buffer Jetum

bytes_buffer

status in out

Specifies the connection to the X server.

Specifies the keysyrn that is to be converted into a Kanji character.

Specifies the modifiers to be applied to the keysym.

Returns the translated characters.

Specifies the length of the buffer. No more than bytes buffer of translation are
returned. -

Specifies the XComposeStatus structure.

XHPInputJapanese will convert keysym into a Kanji8 character, if appropriate. It will also handle
16-bit input using NLIO. If the value pointed to by keysym is used by the NLIO server, that value
will be changed to NoSyrnbol. It will use status in out to keep the state information necessary to
control NLIO. This structure must contain null values before this routine is first invoked, and
must remain unchanged between uses.

This routine will also process the control modifier.

XHPlnputJapanesewill use /usr/lib/nlio/serv/Xll/xjOinput as the NLIO server. The left extend
char key will cause the state of NLIO input to be toggled between invoked and terminated. If the
appropriate server is not running it will be started when it is first invoked.

Users of this routine may want to exec the NLIO server previous to it being started up when the
invoke key is first struck. This can also be accomplished using XHPNlioctl.

The keys used to invoke and terminate the NLIO server can also be changed using XHPNliocti.

This routine is intended to be used in conjunction with XHPConvertLookup

RETURN VALUE
The return value is the length of the string returned in buffer ..!etum.

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPConvertLookup(3X), XHPNlioctl(3X)

INTERNATIONAL SUPPORT
8-bit and 16-bit character data.

Hewlett-Packard Company -1- Jul 13, 1989

XHPInputKorean (3X) XHPlnputKorean (3X)
Series 300 and 800 Only

NAME
XHPlnputKorean - map keysyms into Korean characters.

SYNOPSIS
int
XHPlnputKorean(display, keysym, modifiers, buffer return, bytes buffer, status in out)
Display *display; - - - -
KeySym *keysym;
unsigned int modifiers;
char *buffer return;
in t bytes_buffer;
XComposeStatus *status _in_out;

DESCRIPTION
display

keysym
modifiers

buffer Jetum

bytes _buffer

status in out

Specifies the connection to the X server.

Specifies the keysym that is to be converted into a character.

Specifies the modifiers to be applied to the keysym.
Returns the translated characters.

Specifies the length of the buffer. No more than bytes buffer of translation are
returned. -

Specifies the XComposeStatus structure.

XHPlnputKorean will convert keysym into an ASCII character, if appropriate. It will also handle
16-bit input using NLIO. If the value pointed to by keysym is used by the NLIO server, that value
will be changed to NoSymbol.1t will use status in out to keep the state information necessary to
control NLIO. This structure must contain null values before this routine is first invoked, and
must remain unchanged between uses.

This routine will also process the control modifier.

XHPlnputKorean will use /usr/lib/nlio/selV/Xll/xkOinput as the NLIO server. NLIO input will
be invoked when the right extend char key is hit, and it will be terminated when the left extend
char key is hit. If the appropriate server is not running it will be started when it is first invoked.

Users of this routine may want to exec the NLIO server previous to it being started up when the
invoke key is first struck. This can also be accomplished using XHPNlioctl.

The keys used to invoke and terminate the NLIO server can also be changed using XHPNlioctl.

This routine is intended to be used in conjunction with XHPConvertLookup

RETURN VALUE
The return value is the length of the string returned in bujferJetum.

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPConvertLookup(3X), XHPNlioctl(3X)

INTERNATIONAL SUPPORT
8-bit and 16-bit character data.

Hewlett-Packard Company -1- Jul 13, 1989

XHPINPUTROMAN8(3X) XHPINPUTROMAN8(3X)
Series 300 and 800 Only

NAME
XHPlnputRoman8 - map keysyms into Roman8 characters.

SYNOPSIS
int
XHPlnputRoman8(display, keysym, modulers, buffer return, bytes buffer, status in out)
Display *display; - - - -
KeySym *keysym;
unsigned int modifiers;
char *buffer return;
int bytes buffer;
XComposeStatus *status _in_out;

DESCRIPTION
display

keysym

modifiers

buffer Jetum

bytes_buffer

status in out

Specifies the connection to the X server.

Specifies the keysym that is to be converted into a Roman8 character.

Specifies the modifiers to be applied to the keysym.

Returns the translated characters.

Specifies the length of the buffer. No more than bytes_buffer of translation are
returned.

Specifies the XComposeStatus structure.

XHPlnputRomanS will convert keysym into a Roman8 character, if appropriate. It will also
handle the input of muted characters. It will use status _in _out to hold the state information
necessary to do this. This structure must contain null values before this routine is first invoked,
and must remain unchanged between uses.

This routine will also process the control modifier.

This routine is intended to be used in conjunction with XHPConvertLookup

RETURN VALUE
The return value is the length of the string returned in buffer Jetum.

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPConvertLookup(3X)

Hewlett-Packard Company - 1 - Jul 13, 1989

XHPLlstInputDevices (3X) XHPListInputDevices (3X)
Series 300 and 800 Only

NAME
XHPListlnputDevices - List all available X input devices.

SYNOPSIS
#include <Xll/XHPlib.h>

typedef struct
{
unsigned int
unsigned short
unsigned short
} XHPaxis }nfo;

typedef struct
{
XID
char
XHPaxis info
unsigned-short
unsigned short
unsigned short
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
} XHPDeviceList;

resolution;
min val;
max-:='val;

x id;
·iiame;
·axes;
type;
min keycode;
maxkeycode;
hil_id;
mode;
num axes;
num -buttons;
num-keys;
io bYte;
pad [8];

,. resolution in counts, mete"',
,. min value this axis returns·,
,. max value this axis returns·,

,. device X identifier .,
,. device name .,
,. pointer to axes array .,
,. device type .,
,. min X keycode from this d~'
,. max X keycode from this d~'
,. device HIL identifier • ,
,. ABSOLUfE or RElATIVE .,
,. # axes this device has .,
,. # buttons on this device .,
,. # keys on this device .,
,. device i,o descriptor byte .,
,. reserved for future use • ,

XHPDeviceList .XHPListinputDevices (display, ndevices)
Display .display;

ARGUMENTS
display

int ·ndevices ,. RETURN .,

Specifies the connection to the X setver.

ndevices Specifies the address of a variable into which the setver can return the number of
input devices available to the X setver.

DESCRIPTION
This function allows a client to determine which devices are available for X input and obtain
information about those devices. The X pointer device and X keyboard are listed as well as any
extension input devices available to the X setver.

The X pointer device is listed first. The x id field in the XHPDeviceList structure corresponding
to the X pointer device contains the value XPOINTER. The X keyboard device is listed second.
The x}d field in the XHPDeviceList structure corresponding to the X keyboard device contains
the value XKEYBOARD.

XHPListInputDevices returns an array of XHPDeviceList structures, one for each device available
to the X setver. The number of entries in the list is returned in the ndevices parameter.

The device name is a null-terminated string consisting of an ordinal number describing the
position of the device, an underscore, and the type of the device. The device position is
determined by following the HIL cable from the computer to the device and counting how many
devices of that same type there are. The device type is described below. As an example, if a
computer was configured with a keyboard and two graphics tablets connected in that order, the
device names would be as follows:

FIRST KEYBOARD

Hewlett-Packard Company -1- Jul 13, 1989

XHPListInputDevices (3X) XHPListInputDevices (3X)

FIRST TABLET
SECOND TABLET

Series 300 and 800 Only

Client programs may use this name to search for a particular instance of a particular device.

The following device types are defined in the file <Xll/XHpprolo.h>. This file is automatically
included when you include <Xll/XHPlib.h>.

MOUSE
TABLET
KEYBOARD
TOUCHSCREEN
TOUCHPAD
BUTTONBOX
BARCODE
ONE KNOB
NINE KNOB
TRACKBALL
QUADRATURE
ID MODULE

These constants may be compared with the type field of the XHPDeviceList structure to locate a
particular type of device.

The min keycode, max keycode, and num keys fields are valid only for devices that have keys.
Theywilr otherwise be zero. -

The max val field of the XHPAxis info structure contains a value that may be used to scale the
input of an absolute pointing device such as a touchscreen or graphics tablet. For each axis of
absolute pointing devices, the minimum and maximum values it can generate will be returned.

For relative pointing devices, the min_val and max_val fields will contain o.
The io byte field contains the information from the device I/O Descriptor byte. The 8 bits are
interpreted as follows:

Bit 7 Set if the device implements the general purpose Prompt and Acknowledge
functions.

Bits 6, 5, and 4
Indicates specific Prompt/Acknowledges implemented in the device. Zeros indicate
that none of the specific Prompt/Acknowledges are implemented. A non-zero value
means that Prompt/Acknowledges 1 through that value inclusive are implemented
in the device.

Bit 3 Set if the device reports Proximity In/Out information.

Bits 2, 1, and 0
Indicates which buttons the device reports. Zeros indicate that no buttons are
reported. A non-zero value means that buttons 1 through that value are reported by
the device.

This function returns NULL if there are no input devices to list.

RETURN VALUE
XHPListInputDevices returns an array of XHPDeviceList structures. XHPListlnputDevices
returns NULL if no input devices are available to the X server.

FILES
/usr /include /X11/XHPlib.h

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPFreeDeviceList(3x)

Hewlett-Packard Company -2- Jul13,1989

XHPNlioctl(3X) XHPN1ioctl(3X)
Series 300 and 800 Only

NAME
XHPNlioctl- configure the 16-bit input environment

SYNOPSIS
#include <Xll/XHPlib.h>

Status XHPNlioctl (display, status in out, command, arg)
Display ·display; - -
XComposeStatus .status in out;
int command; - -
char .arg;

DESCRIPTION
display Specifies the display

status in out Specifies the XComposeStatus structure which this routine, along with
XHPConvertLookup, will use to maintain infonnation about this 16-bit input
setver.

command specifies the command associated with this call.

arg The meaning of arg is dependent upon the value of command.

This routine controls the environment for the 16-bit input setver maintained in status _in _out.

The contents of status in out must be zero before its use by either XHPConvertLookup or
XHPNlioctl. Also, if muitiple input setvers are running at the same time, they must each be
maintained by separate XComposeStatus paramaters.

Upon successful completion, this routine returns O. If an error has occurred, -1 is returned and
ermo is set to indicate the error.

The following commands are supported by this library. Other control commands may be
supported by the NLIO input setvers, see the documentation for the NLIO product for details.

K16 ALT ON
- lethe current state of the keyboard is in the alternate character set the value of the integer

pointed to byarg to one, else set the value of the integer pointed to byarg to zero.

K16 EXEC PROC
Exec the 16-bit input setver process associated with the keyboard mapping for display.
The state infonnation for this setver will be maintained in status in out. If the setver
could not be started, -1 is returned and the external variable emio WIll contain the error
for the last system call that XHPNlioctl called. The value of arg is ignored.

K16 GET STATEKEYS
- Get the keysyms for the keys which control state for the Asian keyboards. The keys that

are returned are those which control the state ofNLIO (invoke/tenninate) and those
which control the state of the alternate keyboard (set/unset). The current values are
returned in the K16 state structure.

NoSymbol is returned for all values for non-Asian keyboards. The default settings for the
Asian keyboards are contained in the following table.

Hewlett-Packard Company -1- Jul13, 1989

XHPNIioctl(3X)
Series 300 and 800 Only

Japanese
set alternate. XK Meta R

unset alternate XK-Meta-R
invOke nlio XK-Meta-L

terminate nlio XK-Meta-L

Katakana
set alternate XK Meta R

unset alternate XK-Meta-L
invOke nlio NoSymbol

terminate nlio NoSymbol
Korean, S Chinese, T Chinese
set alternate

unset alternate
invOke nlio

terminate nlio

A programming example follows.

Display *display;
XCompose compose;
struct K16 state k16state;
KeySym inVoke nlio, terminate nlio;
KeySym set_alternate, unset_alternate;

NoSymbol
NoSymbol

XK Meta R
XK-Meta-L

XHPNlioctl (display, &compose, K16 _ GET _ SfATEKEYS, &k16state);

invoke nlio = k16state.invoke nlio;
terminate nlio = k16state.terminate nlio;
set alternate = k16state.set nlio; -
unset_alternate = k16state.unset_ niio;

XHPNIioctl(3X)

K16 KILL PROC
Kill the 16-bit input setver process which is being maintained in status _in _out. No error
is returned. The value of arg is ignored.

K16 NLIO ON
- If the 16-bit input setver is currently receiving characters, set the value of the integer

pointed to byarg to one, else set the value of the integer pointed to byarg to zero.

K16 SET STATEKEYS
set the keys which control state for the Asian keyboards. The keys that can be set are '
those which control the state of NLIO (invoke/terminate) and those which control the
state of the alternate keyboard (set/unset). The keys are set by setting the proper flag
and by specifying the keysym which controls a particular state in the K16 _state structure.

If the keysyms that set and unset a state are the same, then that keywill be a toggle key. If
both keysyms are set to NoSymbol then that functionality is effectively disabled. Note: no
checking is made for the existence of keysyms on the current keyboard. Functionality can
be enabled and disabled by the use of XChangeKeyboardMapping.

If the current keyboard mapping for display is that for a non-Asian keyboard the error
XHPINP _ INV AL is returned. If the current keyboard is other than Japanese or
Katakana andflags has K16 ALTSfATE set, -1 is returned and ermo is set to EINVAL.
If the current keyboard mapping is Katakana and flags has K16 _ NLIOSTATE set, -1 is
returned and ermo is set to EINVAL.

A programming example follows.

Display *display;
XCompose compose;
struct K16 _state k16state;

Hewlett-Packard Company -2- Jul13,1989

XHPNlioctl(3X) XHPNIioctl(3X)

ERRORS

Series 300 and 800 Only

KeySym invoke nlio, terminate nlio;
KeySym set_alternate unset_alternate

kl6state.flags = K16 NLIOSfATE I K16 ALTSfATE;
kl6state.invoke nlio -= invoke nlio; -
kl6state.terminate nlio = terriiinate nlio;
k16state.set alternate = set alternate;
k16state.unset_ alternate = unset_alternate;

XHPNlioctl (display, &compose, K16 _ SET _ SfATEKEYS, &k16state);

XHPNlioctl will fail if:

ORIGIN

[FACCES]

[FAGAlN]

[EINVAL]

[EIO]

[EMFILE]

[ENOENf)

The user is trying to exec the input setver and does not have execute permission
for the input setver.

The user is trying to fork the input setver and a system imposed limit for the
number of processes would be exceeded.

An invalid parameter was passed to the routine.

An error occurred in communicating with the input setver.

The user is trying to start up the input setver and the maximum number of file
descriptors is currently open.

The user is trying to exec the input setver and the file does not exist.

Hewlett-Packard Company

SEE ALSO
XGetKeyboardMapping(3X), XHPConvertLookup(3X), XHPlnputChinese _s(3X),
XHPlnputChinese _t(3X), XHPlnputJapanese(3X), XHPlnputKorean(3X),
XHPSetKeyboardMapping(3X)

Hewlett-Packard Company -3- Jul13,1989

XHPPixmapToFile (3X) XHPPixmapToFile (3X)
Series 300 and 800 Only

NAME
XHPPixmapToFile - Save the contents of a rectangular pixmap area in a file.

SYNOPSIS
XHPPixmapToFile (display, pixmap, color w, X, y, width, height, plane mask, format, rdename)

Display .display; - -
Pixmap pixmap;
Wmdow color _ w;
int X,y;
unsigned int width, height;
long plane mask;
int format;
char .filename;

ARGUMENTS
display Specifies the connection to the X setver.

Specifies the pixmap ID of the image to be saved. pixmap
color w

width, height

plane_mask

Jonnat
filename

Specifies a window ID. This window's colormap will be saved in the image file.
Visual attributes associated with this window are used in constructing the image
file header.

Specifies the x and y coordinates. These coordinates define the upper left
comer of the rectangle and are relative to the origin of the drawable.

Specifies the width and height of the subimage. These arguments define the
dimensions of the rectangle.

Specifies the plane mask.

Specifies the format for the image. You can pass XYPixmap or ZPixmap.

Specifies the file name to use. The format of the file name is operating system
specific.

DESCRIPTION
The XHPPixmapToFile function is similar to XHPWindoWfoFile but requires an additional
parameter to specify the color map to be stored with the image. If the color w parameter is zero,
the root window associated with the pixmap is used to derive visual attributes and the colormap
which get stored in the image file.

RETURN VALUE
The XHPPixmapToFile function returns one of the following values defined in
/usr/include/XII/XHPlmageIO.h:
XHPIFSuccess

XHPIFDrawableErr

XHPIFFileErr

XHPIFRequestErr

XHPIFAllocErr

Successful completion.

Couldn't get drawable attributes or geometry.

Problem accessing file.

Bad placement or size.

Memory allocation failure.

FILES
none

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPFileToWindow(3X)
XHPFileToPixmap(3X)
XHPQuerylmageFile(3X)
XHPWindowToFile(3x)

Hewlett-Packard Company -1- Jul13,1989

XHPPrompt (3X)
Series 300 and 800 Only

NAME
XHPPrompt - Send a prompt to an extended input device.

SYNOPSIS
#include <Xll/XHPlib.h>

XHPPrompt (display, deviceid, prompt)
Display .display;

ARGUMENTS
display

XID deviceid;
unsigned int prompt;

Specifies the connection to the X server.

Specifies the ID of the desired device.

XHPPrompt (3X)

deviceid

Prompt Specifies the Prompt to be sent. Valid values are: GENERAL_PROMPT,
PROMPT 1, PROMYf 2, PROMPT 3, PROMPT 4, PROMYf 5, PROMYf 6,
PROMPT-'. - - - - -

DESCRIPTION
This function sends a prompt to an input device.

A prompt is an audio or visual indication that the program controlling the input device is ready for
input. The program may indicate that status by turning on a prompt on the appropriate input
device.

Not all input devices support prompts and acknowledges. Any device that does support a
particular prompt will also support the corresponding acknowledge.

To determine whether an input device supports a particular prompt and acknowledge, the io _byte
field of the XHPDeviceList structure should be examined. The format of this structure is
described in the documentation for the XHPListInputDevices function.

RETURN VALUE
none

DIAGNOSTICS
Bad Device An invalid device ID was specified.

BadValue An invalid prompt was specified.

FILES
/usr/include/X11/XHPlib.h

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPListlnputDevices(3x)
XHPAcknowledge(3x)

Hewlett-Packard Company -1- Ju113, 1989

XHPQueryImageFile (3X) XHPQueryImageFile (3X)
Series 300 and 800 Only

NAME
XHPQueryImageFile - Return image file header structure.

SYNOPSIS
XHPQueryImageFile (filename, xwd header return)

char *filename;-
XWDFileHeader *xwd _header Jeturn;

ARGUMENTS
filename Specifies the file name to use. The format of the file name is operating

system specific.

xwd header return Returns information about the stored image in the XWDFileHeader
structure.

DESCRIPTION
The XHPQueryImageFile function returns an image file's header structure in the
xwd_header Jeturn parameter. The file /usr/include/Xll/XWDFile.h is shown in appendix E,
"HP Extensions," of the Programming With Xlib manual.

RETURN VALUE
The XHPQueryImageFile function returns one of the following values defined in
/usr/include/Xll/XHPlmageIO.h:

XHPIFSuccess

XHPIFFileE1T

Successful completion.

Problem accessing file.

FILES
none

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPFileToPixmap(3X)
XHPFileToWindow(3X)
XHPPixmapToFile(3X)
XHPWindowToFile(3X)

Hewlett-Packard Company -1- Jul13,1989

XHPSelectExtensionEvent (3X)
Series 300 and 800 OnJy

NAME
XHPSelectExtensionEvent - Select an extension event.

SYNOPSIS
XHPSelectExtensionEvent (display, window, deviceid, mask)

Display *display;

ARGUMENTS
display

window

deviceid

mask

DESCRIPTION

Wmdowwindow;
XID deviceid;
Mask mask;

Specifies the connection to the X setver.

Specifies the window from which input is desired.

Specifies the device from which input is desired.

Specifies the mask of input events that are desired.

XHPSelectExtensionEvent (3X)

This function is provided to support the use of input devices other than the X keyboard and X
pointer device. It allows input from other input devices to be selected independently from that
coming from the X pointer and keyboard.

XHPSelectExtensionEvent requests the setver to send an extended event that matches the
specified event mask and comes from the specified device and window. In order to use this
function, the client program must first determine the appropriate deviceid by using the
XHPListlnputDevice function, and the appropriate event mask by using the
XHPGetExtEventMask function. Multiple event masks returned by XHPGetExtEventMask may
be OR'd together and specified in a single request to XHPSelectExtensionEvent.

This function cannot be used to select any of the core X events, or to receive input from the X
Keyboard or X pointer device. The core XSelectInput function should be used for that purpose.

DIAGNOSTICS
Bad Device An invalid device ID was specified.

BadWindow An invalid window ID was specified.

RETURN VALUE
none

FILES
none

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPListlnputDevices(3x)
XHPGetExtEventMask(3x)
XSelectlnput(3x)

Hewlett-Packard Company -1- Ju113,1989

XHPSetDeviceFocus (3X) XHPSetDeviceFocus (3X)

NAME

Series 300 and 800 Only

XHPSetDeviceFocus - Set the focus for an extended input device.

XHPSetDeviceModifierMapping - Change the modifier mapping of an extension input device.

SYNOPSIS
XHPSetDeviceFocus (display, deviceid, focus, revert to, time)

Display ·display; -
XID deviceid;
Window focuS;
int revert to;
Time time;-

XHPSetDeviceModifierMapping (display, deviceid, modmap)
Display .display;
XID deviceid;

ARGUMENTS
display

deviceid

XModifierKeymap .modmap;

Specifies the connection to the X setver.

Specifies the ID of the desired device.

XHPSetDeviceFocus Only
focus Specifies the ID of the window to which the device's focus should be set. This may

be a window ID, or either Pointer Root or None.

revert to

time

Specifies to which window the focus of the device should revert if the focus window
becomes not viewable. One of the following constants may be passed:
RevertToParent, RevertToPointerRoot, or RevertToNone.

Specifies the time. You can pass either a timestamp, expressed in milliseconds, or
CU1TentTime.

XHPSe~DeviceModifierMapping Only
'modmap Specifies a pointer to an XModifierKeymap structure.

DESCRIPTION
These function are provided to support the use of input devices other than the X keyboard device
and X pointer device.

XHPSetDeviceFocus
XHPSetDeviceFocus allows a client to redirect the focus for a particular extended input device.
This function causes an HPDeviceFocusOut event to be sent to the window losing the device focus,
and an HPDeviceFocusln event to be sent to the window gaining the device focus.

This function may not be used to set the focus of the X keyboard device. The XSetInputFocus
function should be used for that purpose.

XHPSetDeviceModUlerMapping
This function is provided to support the use of input devices other than the X keyboard and X
pointer device. It allows a client program to define the keycodes that are to be used as modifiers
for an extension device.

The XHPSetDeviceModirIerMapping function specifies the KeyCodes of the keys, if any, that are
to be used as modifiers for the specified input device. X permits at most eight modifier keys. If
more than eight are specified in the XModifierKeymap structure, a BadLength error will be
generated.

There are eight modifiers, and the modifiermap member of the XModifierKeymap structure
contains eight sets of max _ keypermod KeyCodes, one for each modifier in the order Shift, Lock,
Control, Modi, Mod2, Modl, M0d4, and ModS. Only nonzero KeyCodes have meaning in each
set, and zero KeyCodes are ignored. In addition, all of the nonzero KeyCodes must be in the
range specified by min keycode and max keycode in the Display structure. Otherwise, a
BadValue error is generated. No KeyCode may appear twice in the entire map. Otherwise, a

Hewlett-Packard Company -1- Jul13,1989

XHPSetDeviceFocus (3X) XHPSetDeviceFocus (3X)
Series 300 and 800 Only

BadValue error will be generated.

A X server can impose restrictions on how modifiers can be changed, for example, if certain keys
do not generate up transitions in hardware or if multiple modifier keys are not supported. If
some such restriction is violated, the status reply is MappingFailed, and none of the modifiers are
changed. If the new KeyCodes specified for a modifier differ from those currently defined and
any (current or new) keys for that modifier are in the logically down state, the status reply is
MappingBusy, and none of the modifiers are changed. XHPSetDeviceModifierMapping
generates a MappingNotify event when it returns MappingSuccess.

DIAGNOSTICS
XHPSetDeviceFocus can generate BadMatch, BadWmdow, and BadDevice errors.

XHPSetDeviceModifierMapping can generate Bad Device, BadLength, and BadValue errors.

BadMatch The focus window was not viewable.

BadWindow An invalid window ID was specified.

Bad Device The specified device does not exist, was not previously enabled via
XHPSetInputDevice, or is the X system pointer or X system keyboard.

Bad Length More than 8 modifier keys were specified.

BadValue One of the values specified was beyond the range of valid values.

RETURN VALUE
none

FILES
none

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPListlnputDevices(3x)
XHPSetlnputDevice(3x)
XHPGetDeviceFocus(3x)
XHPGetDeviceModifierMapping(3x)
XGetModifierMapping(3x)
XSetModifierMapping(3x)

Hewlett-Packard Company -2- Jul 13, 1989

XHPSetErrorHandler (3X) XHPSetErrorHandler (3X)
Series 300 and 800 Only

NAME
XHPSetErrorHandler - Register an X error handling routine.

SYNOPSIS
#include <XlljXHPlib.h>

typedef int (·PFI) 0;

PFI XHPSetErrorHandier (display, routine)
Display ·display;
int (·routine) 0;

int routine (display, error)
Display .display;
XErrorEvent .error,

DESCRIPTION

FILES

ORIGIN

This function registers with Xlib the address of a routine to handle X errOrs. It is intended to be
used by libraries and drivers that wish to establish an error handling routine without interfering
with any error handling routine that may have been established by the client program.

XHPSetErrorHandler records one error handling routine per connection to the server.
Therefore, in order for a library or driver to set up its own error handling routine without
affecting that of the client, the library or driver must first have established its own connection to
the server via XOpenDisplay.

When an XErrorEvent is received by the client, which error handling routine is invoked is
determined by the display associated with the error. If the display matches that associated with a
driver error handling routine, that error handling routine will be invoked. If it does not match any
driver routine, the error handling routine established by the client, if any exists, will be invoked.
Otherwise, the default Xlib error handler will be invoked.

XHPSetErrorHandler returns the address of the previously established error handler. If that
error handler was the default error handler, NULL is returned.

A driver or library may remove its error handler by invoking XHPSetErrorHandler with a NULL
error handling routine.

jusr jincludejX11jXHPlib.h

Hewlett-Packard Company

SEE ALSO
XSetErrorHandler(3x)

Hewlett-Packard Company -1- Jul13, 1989

XHPSetinputDevice (3X) XHPSetInputDevice(3X)
Series 300 and 800 Only

NAME
XHPSetlnputDevice - Open a device for X input.

SYNOPSIS
#include <Xll/XHPlib.h>

XHPSetInputDevice (display, deviceid, mode)
Display·display;
XID deviceid;
int mode;

ARGUMENTS
display Specifies the connection to the X server.

Specifies the ID of the desired device.

Specifies the desired mode of access.

deviceid

mode
DESCRIPTION

This function is provided to support input devices other than the X keyboard device and the X
pointer device.

Client programs use the XHPSetInputDevice to open an input device for extended input and to
close the device. XHPSetInputDevice requires a mode parameter that specifies the function being
requested (ON or OFF) and, if the function is ON, whether the device should be opened as an
extension to the X keyboard or pointer (SYSTEM EVENTS), or as an independently selectable
device (DEVICE EVENTS). The value of the mode parameter is set by ORing together the above
constants, which maybe obtained by including the file <Xll/XHPlib.h>.

To open an input device as a device whose input can be selected independent of the X keyboard
and X pointer, the client program would use the mode ON OR'd with the mode
DEVICE EVENTS. To open an input device as an extension of the X keyboard or X pointer, the
client program would use the mode ON or'd with the mode ~"YSTEM EVENTS. Valid values for
the mode parameter are: -

ON I SYSTEM EVENTS
ON I DEVICE -EVENTS
OFF -

This request will fail with a BadMode error if some other client is already using the device with a
different mode.

DIAGNOSTICS
Bad Mode An invalid mode was specified.

Bad Device An invalid device ID was specified.

RETURN VALUE
none

FILES
jusrjincludejX11jXHPlib.h

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPListlnputDevices(3x)
XHPGetExtEventMask(3x)
XHPSelectExtensionEvent(3x)

Hewlett-Packard Company -1- Ju113, 1989

XHPSetKeyboardMappJng (3X) XHPSetKeyboardMappJng (3X)
Series 300 and 800 Only

NAME
XHPSetKeyboardMapping, XHPRefreshKeyboardMapping - set/refresh the keyboard mapping

SYNOPSIS
#indude <Xll/XHPlib.h>

Status XHPSetKeyboardMapping(display, kbd id, force read)
Display *display; --
KEYBOARD ID kbd id;
int force_read; -

XHPRefreshKeyboardMapping(event map)
XMappingEvent *event_ map; -

XHPSetKbdMapInit(display, kbd id, force read, status in out)
Display *display; - - - -
KEYBOARD ID kbd id;
int force read; -
XCompoSestatus status}n _out;

DESCRIPTION
XHPSetKeyboardMapping allows an application to emulate other keyboards. It does this by
replacing the key map associated with display. The keyboard to be emulated is specified by
kbd id.

XHPSetKeyboardMapping reads the key map from the file /usr/lib/Xll/XHPKeymaps.
However, if the keyboard specified with kbd _id is the same as the physical keyboard recognized by
the server as the input device, XHPSetKeyboardMapping requests the key map directly from the
server. In this way, any changes to the key map (SUCh as with XChangeKeyboardMapping) are
preserved. This functionality can be overridden by setting force read to a non-NULL value; if the
value of force read is non-NULL, XHPSetKeyboardMapping will always obtain the key map from
the file /usr/ilb/Xll/XHPKeymaps.
XHPSetKeyboardMapping fails if kbd id is an unrecognized value or if it cannot open the key
map file; the display's copy of the key map is not modified.

If the server's keyboard is a non-HP keyboard, XHPSetKeyboardMapping returns an error code
and does not modify the key map.

XHPSetKbdMapInit is a macro defined in XHPlib.h. It is intended for clients using
XHPGetEurasianCvt and will perform the necessary inititialization and cleanup for that routine,
as well as setting the key map for display.

The following values for kbd _id are define in <Xll/HXPlib.h>:

KB _ US_English specifies an HP46021A US ASCII keyboard

KB _Canada_French specifies an HP4602IAC Canadian French keyboard

KB German specifies an HP4602IAD German keyboard

KB _ Euro _Spanish specifies an HP46021AE European Spanish keyboard

KB French specifies an HP46021AF French keyboard

KB Dutch specifies an HP46021AH Dutch keyboard

KB Katakana specifies an HP46021AJ Katakana keyboard

KB _ Canada_English specifies an HP4602lAL Canadian English keyboard

KB _Latin_Spanish specifies an HP4602IAM Latin American Spanish keyboard

KB _ NOIwegian specifies an HP46021AN Norwegian keyboard

KB Swiss German2 specifies an HP4602IAP Swiss German keyboard

Hewlett-Packard Company - 1- Ju113, 1989

XHPSetKeyboardMapping (3X) XHPSetKeyboardMapping (3X)

KB Swiss German

KB Swiss Frenchl

KB Swiss French

KB Swedish

KB _UK_English

KB_Belgian

KB Finnish

KB Danish

KB Italian

KB T Chinese

KB Korean

KB S Chinese

KB _Japanese

Series 300 and 800 Only

specifies an HP46020 Swiss German keyboard

specifies an HP46021AQ Swiss French keyboard

specifies an HP46020 Swiss French keyboard

specifies an HP46021AS Swedish keyboard

specifies an HP46021AU UK English keyboard

specifies an HP46021A W Belgian keyboard

specifies an HP46021AX Finnish keyboard

specifies an HP46021AY Danish keyboard

specifies an HP46021AZ Italian keyboard

specifies an HP46021AW/I'ZAA Traditional Chinese keyboard

specifies an HP46021AW/IZAB Korean keyboard

specifies an HP46021AW/IZAC Simplified Chinese keyboard

specifies an HP46021AW/lZALJapanese keyboard

XHPRefreshKeyboardMapping refreshes display's copy of the key map and modifier information.
It facilitates handling MappingNotify events when using XHPSetKeyboardMapping with the
force read argument set to NULL (i.e. when the key map for the keyboard is read from the server
and not from the XHPKeymaps file).

If the key map has been read from XHPKeymaps, changes to the server's key map are irrelevant;
MappingNotify events should be ignored when using XHPSetKeyboardMapping with force ..lead
set to a non-NULL value.

RETURN VALUE

ORIGIN

XHPSetKeyboardMapping returns zero if it succeeds, othetwise it returns one of the following
values, defined in <Xll/HXPlib.h>:

XHPKB NOKEYFILE

XHPKB BADMAGIC

The file /usr/lib/Xll/XHPKeymaps does not exist or could not
be opened.

Either libxHPll.a or /usr/lib/Xll/XHPKeymaps is not the latest
version.

XHPKB BADKBID The kbd _id argument is set to an improper value.

XHPKB NONHPINPUTDEV The keyboard attached to the server is not an HP keyboard. The
key map requested was not loaded.

Hewlett-Packard Company

SEE ALSO
XHPConvertLookup(3X), XHPGetEurasianCvt(3X)

Hewlett-Packard Company -2- Ju113,1989

XHPUngrabDevice (3X) XHPUngrabDevice (3X)

NAME

Series 300 and 800 Only

XHPUngrabDevice - Release a grab of an extension input device.

XHPUngrabDeviceButton - Release a passive grab of a button on an extension input device.

XHPUngrabDeviceKey - Release a passive grab of a key on an extension input device.

SYNOPSIS
XHPUngrabDevice (display, deviceid, time)

Display -display;
XID deviceid;
Time time;

XHPUngrabDeviceButton (display, deviceid, button, modifiers,
ungrab window)
Display -display;
XID deviceid;
unsigned int button;
unsigned int modifiers;
Wmdow ungrab _windOW;

XHPUngrabDeviceKey (display, deviceid, keycode, modifiers,
ungrab window)
Display -display;
XID deviceid;

ARGUMENTS
display

deviceid

XHPUngrabDevice
time

unsigned int keycode;
unsigned int modifiers;
Window ungrab _windoW;

Specifies the connection to the X server.

Specifies the ID of a previously grabbed device.

Specifies a timestamp, or CU1TentTime.

XHPUngrabDeviceButton
button Specifies the code of the button that is to be ungrabbed. You can pass either a

button or AnyButton.

XHPUngrabDeviceKey
keycode Specifies the keycode of the key that is to be ungrabbed. You can pass either the

keycode or AnyKey.

XHPUngrabDeviceButton and XHPUngrabDeviceKey Only
modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of these

keymask bits: ShiftMask, LockMask, ControlMask, ModlMask, Mod2Mask,
M0d3Mask, Mod4Mask, Mod5Mask.

You can also pass AnyModifier, which is equivalent to issuing the ungrab key request for all
possible modifier combinations (including the combination of no modifiers).

ungrab _window Specifies the ID of a window associated with the device specified above.

DESCRIPTION
These functions are provided to support the use of input devices other than the X keyboard and X
pointer device. They allow a client to release a grab of an extended input device, or a button or
key on such a device. That grab must have previously been established using the corresponding
grab function.

XHPUngrabDevice
XHPUngrabDevice does not release the grab if the specified time is earlier than the last-device­
grab time or is later than the current X server time. It also generates DeviceFocusIn and

Hewlett-Packard Company -1- Jol13, 1989

XHPUngrabDevice (3X) XHPUngrabDevice(3X)
Series 300 and 800 Only

DeviceFocusOut events. The X setver automatically performs an XHPUngrabDevice if the event
window for an active device grab becomes not viewable.

XHPUngrabDevice cannot be used to release a grab of the X pointer device or the X keyboard
device. The core XUngrabPointer and XUngrabKeyboard functions should be used for that
purpose.

XHPUngrabDeviceButton
The XHPUngrabDeviceButton function removes a passive grab of a button on an extension device.
A modifier of AnyModifier is equivalent to issuing the request for all possible modifier
combinations (including the combination of no modifiers). XHPUngrabDeviceButton can
generate Bad Device and BadWindow errors.

XHPUngrabDeviceButton cannnot be used to ungrab a button on the X pointer device. The core
XUngrabButton function should be used for that purpose.

XHPUngrabDeviceKey
The XHPUngrabDeviceKey function removes a passive grab of a key on an extension device. A
modifier of AnyModir.er is equivalent to issuing the request for all possible modifier
combinations (including the combination of no modifiers). XHPUngrabDeviceKey can generate
BadDevice and BadWindow errors.

XHPUngrabDeviceKey cannot be used to ungrab a key on the X keyboard device. The core
XUngrabKey function should be used for that purpose.

DIAGNOSTICS
Bad Device An invalid device ID was specified.

BadWindow An invalid window ID was specified.

RETURN VALUE
none

FILES
none

ORIGIN
Hewlett-Packard Company

SEE ALSO
XHPListlnputDevices(3x)
XHPSetlnputDevice(3x)
XHPGrabDevice(3x)
XHPGrabDeviceButton(3x)
XHPGrabDeviceKey(3x)
XUngrabKeyboard(3x)
XUngrabPointer(3x)
XUngrabButton(3x)
XUngrabKey(3x)

Hewlett-Packard Company -2- Jul 13, 1989

XHPWindoWfoFile (3X) XHPWindoWfoFile (3X)
Series 300 and 800 Only

NAME
XHPWindoWI'oFile - Save the contents of a rectangular window in a file.

SYNOPSIS
XHPWindoWI'oFile (display, w, X, y, width, height, plane mask, format, filename)

Display ·display; -
Window w;
int X,y;
unsigned int width, height;
long plane mask;
int format;
char ·filenam~

ARGUMENTS
display Specifies the connection to the X setver.

Specifies the window ID of the image to be saved. w

.x;y

width, height

plane_mask

[onnat

filename

Specifies the x and y coordinates. These coordinates define the upper left
comer of the rectangle and are relative to the origin of the drawable.

Specifies the width and height of the subimage. These arguments define the
dimensions of the rectangle.

Specifies the plane mask.

Specifies the format for the image. You can pass XYPixmap or ZPixmap.

Specifies the file name to use. The format of the file name is operating system
specific.

DESCRIPTION
XHPWindoWI'oFile saves the specified window rectangle in the format defined by the xwd (X
Window Dump) utility program. This stores a file header and a color map along with the image.

The plane mask parameter controls which image planes will be included in the file. A value of -0
(or -1) canbe given to have all image planes be stored.

Images saved using XHPWindoWI'oFile may be viewed using the xwud utility or restored under
program control using XHPFileToWindow or XHPFileToPixmap.

Hardcopy of a saved image can be generated using the xpr utility or by translating the image into
Starbase format using xwd2sb and piping the result to the pcltrans utility. This can be done under
program control using the system(3S) library routine to issue the appropriate shell command.

RETURN VALUE

FILES

ORIGIN

The XHPWindoWI'oFile function returns one of the following values defined in
/usr/include/Xll/XHPlmageJO.h:

XHPIFSuccess Successful completion.

XHPIFDrawableElT Couldn't get drawable attributes or geometry.

XHPIFFileElT Problem accessing file.

XHPIFRequestElT Bad placement or size.

XHPIFAllocElT Memory allocation failure.

none

Hewlett-Packard Company

SEE ALSO
XHPFileToPixmap(3X)
XHPFileToWindow(3X)
XHPPixmapToFile(3X)

Hewlett-Packard Company - 1- Ju113,1989

XHPWindoWfoFile (3X) XHPWindoWfoFile (3X)
Series 300 and 800 Only

XHPQuerylmageFile(3X)

Hewlett-Packard Company -2- Jul13, 1989

XItEvent (3X11) XItEvent(3X11)

Series 300 and 800 Only

NAME
XIfEvent, XChecklfEvent, XPeeklfEvent - check the event queue with a predicate procedure

SYNOPSIS
XItEvent (display, event return, predicate, arg)

Display .display;-
XEvent .event return;
BooJ (·predicate)O;
char ·arg;

Bool XCheekItEvent(display, event return, predicate, arg)
Display ·display; -
XEvent ·event return;
Bool (.predicate)O;
char .arg;

XPeekItEvent (display, event return, predicate, arg)
Display .display; -
XEvent .event return;
Bool (.predicate)O;
char .arg;

ARGUMENTS
arg Specifies the user-supplied argument that will be passed to the predicate

procedure.

display

event return

predicate

DESCRIPTION

Specifies the connection to the X server.

Returns either a copy of or the matched event's associated structure.

Specifies the procedure that is to be called to determine if the next event in
the queue matches what you want.

The XIjEvent function completes only when the specified predicate procedure returns Trne for an
event, which indicates an event in the queue matches. XIjEvent flushes the output buffer if it
blocks waiting for additional events. XIjEvent removes the matching event from the queue and
copies the structure into the client-supplied XEvent structure.

When the predicate procedure finds a match, XCheckljEvent copies the matched event into the
client-supplied XEvent structure and returns TIue. (Ibis event is removed from the queue.) If the
predicate procedure finds no match, XCheckljEvent returns False, and the output buffer will have
been flushed. All earlier events stored in the queue are not discarded.

The XPeekljEvent function returns only when the specified predicate procedure returns TIue for
an event. After the predicate procedure finds a match, XPeekljEvent copies the matched event
into the client-supplied XEvent structure without removing the event from the queue.
XPeekljEvent flushes the output buffer if it blocks waiting for additional events.

SEE ALSO
XPutBackEvent(3X11) XNextEvent(3Xll), XSendEvent(3X11)

Hewlett-Packard Company -1- Ju112,1989

XInstallColormap(3X11) XinstallColormap (3X11)
Series 300 and 800 Only

NAME
XInstallColormap, XUninstallColormap, XListInstalledColormaps - control colormaps

SYNOPSIS
XInstallColormap (display, colormap)

Display .display;
Colormap colormap;

XUninstallColonnap (display, colormap)
Display .display;
Colormap colormap;

Colormap ·XListInstalledColormaps(display, w, num return)
Display ·display; -
Window w;
int .num _return;

ARGUMENTS
colormap

display

num return

w
DESCRIPTION

Specifies the colormap.

Specifies the connection to the X server.

Returns the number of currently installed colormaps.

Specifies the window that determines the screen.

The XInstaJlColormap function installs the specified colormap for its associated screen. All
windows associated with this colormap immediately display with true colors. You associated the
windows with this colormap when you created them bycallingXOeateWindow,
XOeateSimpleWindow, XChangeWindowAttributes, or XSetWindowColormap.

If the specified colormap is not already an installed colormap, the X server generates a
ColormapNotify event on each window that has that colormap. In addition, for every other
colormap that is installed as a result of a call to XInstaJlColormap, the X server generates a
ColormapNotify event on each window that has that colormap.

XInstaJlColormap can generate a BadColor error.

The XUninstaJlColormap function removes the specified colormap from the required list for its
screen. As a result, the specified colormap might be uninstalled, and the X server might implicitly
install or uninstall additional colormaps. Which colormaps get installed or uninstalled is server­
dependent except that the required list must remain installed.

If the specified colormap becomes uninstalled, the X server generates a ColormapNotify event on
each window that has that colormap. In addition, for every other colormap that is installed or
uninstalled as a result of a call to XUninstaJlColormap, the X server generates a ColormapNotify
event on each window that has that colormap.

XUninstaJlColormap can generate a BadColor error.

The XListlnstaJledColormaps function returns a list of the currently installed colormaps for the
screen of the specified window. The order of the colormaps in the list is not significant and is no
explicit indication of the required list. When the allocated list is no longer needed, free it by using
XFree.

XListlnstaJledColormaps can generate a BadWindow error.

DIAGNOSTICS
BadColor A value for a Colormap argument does not name a defined Colormap.

BadWindow A value for a Window argument does not name a defined Window.

Hewlett-Packard Company -1- Jul 12, 1989

XIntersectRegion (3X11) XIntersectRegion (3X11)

NAME

Series 300 and 800 Only

XIntersectRegion, XUnionRegion, XUnionRectWithRegion, XSubtractRegion, XXorRegion,
XOffsetRegion, XShrinkRegion - region arthmetic

SYNOPSIS
XIntersedRegion(sra, srb, dr return)

Region sra, srb, dr _ retu-m;

XUnionRegion(sra, srb, dr return)
Region sra, srb, dr_return;

XUnionRectWithRegion(rectangle, src region, dest region return)
XRectangle ·rectangle; - --
Region src region;
Region dest JegionJetum;

XSubtractRegion(sra, srb, dr return)
Region sra, srb, dr_retUrn;

XXorRegion(sra, srb, dr return)
Region sra, srb, dr-:' return;

XOtfsetRegion(r, rue, dy)
Region r;
int dx, dy;

XShrinkRegion(r, 0, dy)

ARGUMENTS

Region r;
int dx, dy;

dest Jegion Jetum

dr return

dx

Returns the destination region.

Returns the result of the computation.

dy Specify the x and y coordinates, which define the amount you want to the
specified region.

r
rectangle

sra

Specifies the region.

Specifies the rectangle.

srb Specify the two regions with which you want to perform the computation.

sTCJegion Specifies the source region to be used.

DESCRIPTION
TheXIntersectRegion function computes the intersection of two regions.

The XUnionRegion function computes the union of two regions.

The XUnionRectWithRegion function updates the destination region from a union of the specified
rectangle and the specified source region.

The XSubtractRegion function subtracts srb from sra and stores the results in dr Jeturn.

TheXX"orRegion function calculates the difference between the union and intersection of two
regions.

The XOffsetRegion function moves the specified region by a specified amount.

The XShrinkRegion function reduces the specified region by a specified amount. Positive values
shrink the size of the region, and negative values expand the region.

SEE ALSO
XCreateRegion(3Xll), XEmptyRegion(3Xll)

Hewlett-Packard Company - 1- Jul 12, 1989

XInternAtom (3X11) XInternAtom (3X11)
Series 300 and 800 Only

NAME
XInternAtom, XGetAtomName - create or return atom names

SYNOPSIS
Atom XlnternAtom(display, atom name, only if exists)

Display ·display; - - -
char .atom name;
Bool only}l_ exists;

char .XGetAtomName(display, atom)
Display .display;

ARGUMENTS
atom

Atom atom;

atom name

display

Specifies the atom for the property name you want returned.

Specifies the name associated with the atom you want returned.

Specifies the connection to the X setver.

only _iL exists Specifies a Boolean value that indicates whether XIntemAtom creates the
atom.

DESCRIPI10N
The XIntemAtom function returns the atom identifier associated with the specified atom_name
string. If only if exists is False, the atom is created if it does not exist. Therefore, XIntemAtom
can return None-:You should use a null-terminated ISO Latin-1 string for atom name. Case
matters; the strings thing, Thing, and thinG all designate different atoms. The atom will remain
defined even after the client's connection closes. It will become undefined only when the last
connection to the X setver closes.

XIntemAtom can generate BadAlloc and BadValue errors.

The XGetAtomName function returns the name associated with the specified atom. To free the
resulting string, call XFree.

XGetAtomName can generate a BadAtom error.

DIAGNOSTICS
BadAlloc The setver failed to allocate the requested resource or setver memory.

BadAtom

BadValue

A value for an Atom argument does not name a defined Atom.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the fun range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

SEE ALSO
XGetWindowProperty(3X11)

Hewlett-Packard Company -1- Jul 12, 1989

XListFonts (3X11) XListFonts (3X11)

NAME

Series 300 and 800 Only

XListFonts, XFreeFontNames, XListFontsWithInfo, XFreeFontinfo - obtain or free font names
and information

SYNOPSIS
char ··XListFonts(display, pattern, maxnames, actual count return)

Display .display; - -
char .pattern;
int maxnames;
int ·actuat countJeturn;

XFreeFontN ames (list)
char .list [];

char ··XListFontsWithlnfo(display, pattern, maxnames, count return, info return)
Display ·display; - -
char ·pattern;
int maxnames;
int ·count return;
XFontStruct ··info Jeturn;

XFreeFontInfo(names, free info, actual count)
char •• names; - -
XFontStruct ·free info;
int actuat count; -

ARGUMENTS
actual count Specifies the actual number of matched font names returned by

XListFonts WithInfo.

actual count return Returns the actual number of font names.

count return

display

info,Jeturn

free_info

list

maxnames

Returns the actual number of matched font names.

Specifies the connection to the X server.

Returns a pointer to the font information.

Specifies the pointer to the font information returned by
XListFonts WithInfo.

Specifies the array of strings you want to free.

Specifies the maximum number of names to be returned.

names

pattern

Specifies the list of font names returned by XListFontsWithInfo.

Specifies the null-terminated pattern string that can contain wildcard
characters.

DESCRIPTION
The XListFonts function returns an array of available font names (as controlled by the font search
path; see XSetFontPath) that match the string you passed to the pattern argument. The string
should be ISO Latin-1; uppercase and lowercase do not matter. Each string is terminated by an
ASCII null. The pattern string can contain any characters, but each asterisk (*) is a wildcard for
any number of characters, and each question mark (?) is a wildcard for a single character. The
client should call XFreeFontNames when finished with the result to free the memory.

The XFreeFontNames function frees the array and strings returned by XListFonts or
XListFonts WithInfo.

The XListFonts WithInfo function returns a list of font names that .ilatch the specified pattern and
their associated font information. The list of names is limited to size specified by maxnames. The
information returned for each font is identical to what XLoadQueryFont would return except that
the per-character metrics are not returned. The pattern string can contain any characters, but
each asterisk (*) is a wildcard for any number of characters, and each question mark (?) is a
wildcard for a single character. To free the allocated name array, the client should call

Hewlett-Packard Company -1- Jul 12, 1989

XListFonts (3X1!) XListFonts (3X1l)
Series 300 and 800 Only

XFreeFontNames. To free the the font information array, the client should call XFreeFontlnfo.

The XFreeFondnfo function frees the the font information array.

SEE ALSO
XLoadFont(3X11), XSetFontPath(3X11)

Hewlett-Packard Company -2- Ju112, 1989

XLoadFont(3X11) XLoadFont(3X11)

NAME

Series 300 and 800 Only

XLoadFont, XQueryFont, XLoadQueryFont, XFreeFont, XGetFontProperty, XUnloadFont - load
or unload fonts

SYNOPSIS
Font XLoadFont (display, name)

Display .display;
char .name;

XFontStruct .XQueryFont(display, lont ID)
Display .display; -
XID font_ID;

XFontStruct .XLoadQueryFont (display, name)
Display ·display;
char .name;

XFreeFont(display, font struct)
Display .display; -
XFontStruct ·font _ struct;

Bool XGetFontProperty(font struct, atom, value return)
XFontStruct ·font struct; -
Atom atom; -
unsigned long *value Jetum;

XUnloadFont (display, font)
Display .display;
Font font;

ARGUMENTS
atom

display

font

fontJD

font _struct

gc

name

value return

DESCRIPTION

Specifies the atom for the property name you want returned.

Specifies the connection to the X server.

Specifies the font.

Specifies the font ID or the GContext ID.

Specifies the storage associated with the font.

Specifies the GC.

Specifies the name of the font, which is a null-terminated string.

Returns the value of the font property.

The XLoadFont function loads the specified font and returns its associated font ID. The name
should be ISO Latin-1 encoding; uppercase and lowercase do not matter. IfXLoadFont was
unsuccessful at loading the specified font, a BadName error results. Fonts are not associated with
a particular screen and can be stored as a component of any Gc. When the font is no longer
needed, call XUnloadFont.

XLoadFont can generate BadAlloc and BadName errors.

The XQueryFont function returns a pointer to the XFontStruct structure, which contains
information associated with the font. You can query a font or the font stored in a GC. The font
ID stored in the XFontStruct structure will be the GContext ID, and you need to be careful when
using this ID in other functions (seeXGContextFromGC). To free this data, useXFreeFontlnfo.

XLoadQueryFont can generate a BadAlloc error.

The XLoadQueryFont function provides the most common way for accessing a font.
XLoadQueryFont both opens (loads) the specified font and returns a pointer to the appropriate
XFontStruct structure. If the font does not exist, XLoadQueryFont returns NULL.

The XFreeFont function deletes the association between the font resource ID and the specified
font and frees the XFontStruct structure. The font itself will be freed when no other resource

Hewlett-Packard Company - 1- Jul 12, 1989

XLoadFont (3X11)
Series 300 and 800 Only

references it. The data and the font should not be referenced again.

XFreeFont can generate a BadFont error.

XLoadFont(3X11)

Given the atom for that property, the XGetFontProperty function returns the value of the specified
font property. XGetFontProperty also returns False if the property was not defined or Tiue if it was
defined. A set of predefined atoms exists for font properties, which can be found in
< Xll/Xatom.h >. This set contains the standard properties associated with a font. Although it is
not guaranteed, it is likely that the predefined font properties will be present.

The XUnloadFont function deletes the association between the font resource ID and the specified
font. The font itself will be freed when no other resource references it. The font should not be
referenced again.

XUnloadFont can generate a BadFont error.

DIAGNOSTICS
BadAl/oc The server failed to allocate the requested resource or server memory.

Bad Font

BadName

SEE ALSO

A value for a Font or GContext argument does not name a defined Font.

A font or color of the specified name does not exist.

XListFonts(3X11), XSetFontPath(3X11)

Hewlett-Packard Company -2- Ju112,1989

XLookupKeysym(3X11) XLookupKeysym(3X11)

NAME

Series 300 and 800 Only

XLookupKeysym, XRefreshKeyboardMapping, XLookupString, XRebindKeySym - handle
keyboard input events

SYNOPSIS
KeySym XLookupKeysym(key event, index)

XKeyEvent ·key event; -
int index; -

XRefreshKeyboardMapping(event map)
XMappingEvent ·event_ maP;

int XLookupString(event strud, buffer return, bytes buffer, keysym return, status in out)
XKeyEvent .event strud; - - - - -
char .buffer return;
int bytes buffer;
KeySym .keysym return;
XComposeStatus -.status _ in_out;

XRebindKeysym(display, keysym, list, mod count, string, bytes string)
Display ·display; - -
KeySym keysym;
KeySym list [];
int mod count;
unsigned char ·string;
int bytes_string;

ARGUMENTS
buffer ..!etum Returns the translated characters.

bytes _bUffer Specifies the length of the buffer. No more than bytes_buffer of translation
are returned.

bytes_string

display

event_map

event struct

index

key_event
keysym

keysym ..!etum
list

mod count

status in out

string

DESCRIPTION

Specifies the length of the string.

Specifies the connection to the X server.

Specifies the mapping event that is to be used.

Specifies the key event structure to be used. You can pass XKeyPressedEvent
or XKeyReleasedEvent.

Specifies the index into the KeySyms list for the event's KeyCode.

Specifies the KeyPress or KeyRelease event.

Specifies the KeySym that is to be .

Returns the KeySym computed from the event if this argument is not NULL.

Specifies the KeySyms to be used as modifiers.

Specifies the number of modifiers in the modifier list.

Specifies or returns the XComposeStatus structure or NULL.

Specifies a pointer to the string that is copied and returned by
XLookupString.

The XLookupKeysym function uses a given keyboard event and the index you specified to return
the KeySym from the list that corresponds to the KeyCode member in the XKeyPressedEvent or
XKeyReleasedEvent structure. If no KeySym is defined for the KeyCode of the event,
XLookupKeysym returns NoSymbol.

The XRefreshKeyboardMapping function refreshes the stored modifier and keymap information.
You usually call this function when a MappingNotifY event with a request member of
MappingKeyboard or MappingModiJier occurs. The result is to update Xlib's knowledge of the
keyboard.

Hewlett-Packard Company -1- Jul 12, 1989

XLookupKeysym (3Xll) XLookupKeysym(3X11)
Series 300 and 800 Only

TheXLookupString function is a convenience routine that maps a key event to an ISO Latin-l
string, using the modifier bits in the key event to deal with shift, lock, and control. It returns the
translated string into the user's buffer. It also detects any rebound KeySyms (see XRebindKeysym)
and returns the specified bytes. XLookupString returns the length of the string stored in the tag
buffer. If the lock modifier has the caps lock KeySym associated with it, XLookupString interprets
the lock modifier to perform caps lock processing.

If present (non-NULL), theXComposeStatus structure records the state, which is private to X1ib,
that needs preservation across calls to XLookupString to implement compose processing.

The XRebindKeysym function can be used to rebind the meaning of a KeySym for the client. It
does not redefine any key in the X setver but merely provides an easy way for long strings to be
attached to keys. XLookupString returns this string when the appropriate set of modifier keys are
pressed and when the KeySym would have been used for the translation. Note that you can rebind
a KeySym that may not exist.

SEE ALSO
XStringToKeysym(3Xll)

Hewlett-Packard Company -2- Jul 12, 1989

XrmMergeDatabases (3X11) XrmMergeDatabases (3X11)

NAME

Series 300 and 800 Only

XnnMergeDatabases, XnnGetFileDatabase, XrmPutFileDatabase, XnnGetStringDatabase -
manipulate resource databases

SYNOPSIS
void XrmMergeDatabases(source db, target db)

XnnDatabase source_db, ·target _db; -

XrmDatabase XrmGetFlleDatabase(filename)
char .filename;

void XnnPutFlleDatabase(database, stored db)
XrmDatabase database; -
dmr oiIstored _db;

Xmillatabai8e XrmGetStringDatabase(data)
char .data;

ARGUMENTS
data Specifies the database contents using a string.

Specifies the database that is to be used.

Specifies the resource database file name.

database

filename

source db

stored db

target_db

Specifies the resource database that is to be merged into the target database.

Specifies the file name for the stored database.

DESCRIPTION

Specifies a pointer to the resource database into which the source database
is to be merged.

The XrmMergeDatabases function merges the contents of one database into another. It may
overwrite entries in the destination database. This function is used to combine databases (for
example, an application specific database of defaults and a database of user preferences). The
merge is destructive; that is, the source database is destroyed.

The XrmGetFileDatabase function opens the specified file, creates a new resource database, and
loads it with the specifications read in from the specified file. The specified file must contain lines
in the format accepted by XrmPutLineResource. If it cannot open· the specified file,
XrmGetFileDatabase returns NULL.

The XrmPutFileDatabase function stores a copy of the specified database in the specified file. The
file is an ASCII text file that contains lines in the format that is accepted by XnnPutLineResource.

The XrmGetStringDatabase function creates a new database and stores the resources specified in
the specified null-terminated string. XnnGetStringDatabase is similar to XrmGetFileDatabase
except that it reads the information out of a string instead of out of a file. Each line is separated
by a new-line character in the format accepted by XrmPutLineResource.

SEE ALSO
XrmGetResource(3X11), XrmlnitiaJize(3X11), XnnPutResource(3X11),
XnnUniqueQuark(3X11)

Hewlett-Packard Company - 1- Ju112,1989

XMapWindow(3X11) XMapWindow(3X11)
Series 300 and 800 Only

NAME
XMapWinow, XMapRaised, XMapSubwindows - map windows

SYNOPSIS
XMapWmdow(display, w)

Display .display;
Wmdoww;

XMapRaised(display, w)
Display ·display;
Wmdoww;

XMapSubwindows(display, w)
Display .display;
Wmdoww;

ARGUMENTS
display Specifies the connection to the X server.

Specifies the window. w

DESCRIPTION
The XMapWindow function maps the window and all of its subwindows that have had map
requests. Mapping a window that has an unmapped ancestor does not display the window but
marks it as eligible for display when the ancestor becomes mapped. Such a window is called
unviewable. When all its ancestors are mapped, the window becomes viewable and will be visible
on the screen if it is not obscured by another window. This function has no effect if the window is
already mapped.

If the override-redirect of the window is False and if some other client has selected
SubstrnctureRedirectMask on the parent window, then the X server generates a MapRequest event,
and the XMapWindow function does not map the window. Othetwise, the window is mapped, and
the X server generates a MapNoti/Y event.

If the window becomes viewable and no earlier contents for it are remembered, the X server tiles
the window with its baCkground. If the window's background is undefined, the existing screen
contents are not altered, and the X server generates zero or more Expose events. If backing-store
was maintained while the window was unmapped, no Expose events are generated. If backing­
store will now be maintained, a full-window exposure is always generated. Othetwise, only visible
regions may be reported. Similar tiling and exposure take place for any newly viewable inferiors.

If the window is an InputOutput window, XMapWindow generates Expose events on each
InputOutput window that it causes to be displayed. If the client maps and paints the window and if
the client begins processing events, the window is painted twice. To avoid this, first ask for Expose
events and then map the window, so the client processes input events as usual. The event list will
include Expose for each window that has appeared on the screen. The client's normal response to
an Expose event should be to repaint the window. This method usually leads to simpler programs
and to proper interaction with window managers.

XMapWindow can generate a BadWindow error.

TheXMapRaised function essentially is similar toXMapWindow in that it maps the window and all
of its subwindows that have had map requests. However, it also raises the specified window to the
top of the stack.

XMapRaised can generate a BadWindow error.

The XMapSubwindows function maps all subwindows for a specified window in top-to-bottom
stacking order. The X server generates Expose events on each newly displayed window. This may
be much more efficient than mapping many windows one at a time because the server needs to
perform much of the work only once, for all of the windows, rather than for each window.

XMapSubwindows can generate a BadWindow error.

DIAGNOSTICS

Hewlett-Packard Company -1- Ju112, 1989

XMapWindow(3X11) XMapWindow(3X11)
Series 300 and 800 Only

BadWindow A value for a Window argument does not name a defined Window.

SEE ALSO
XChangeWindowAttributes(3Xll), XConfigureWindow(3X11), XCreateWindow(3X11),
XDestroyWindow(3X11), XRaiseWindow(3X11), XUnmapWindow(3X11)

Hewlett-Packard Company - 2- Jul 12, 1989

XNextEvent(3X11) XNextEvent(3X11)
Series 300 and 800 Only

NAME
NextEvent, XPeekEvent, XWindowEvent, XCheckWindowEvent, XMaskEvent,
XCheckMaskEvent, XCheckTypedEvent, XCheckTypedWindowEvent - select events by type

SYNOPSIS
XNextEvent(display, event return)

Display .display; -
XEvent .eventJeturn;

XPeekEvent(dispIay, event return)
Display $display; -
XEvent ·event Jeturn;

XWindowEvent(display, w, event mask, event return)
Display .display; - -
Wmdoww;
long event mask;
XEvent .eV'entJeturn;

BooI XCheckWindowEvent(display, w, event mask, event return)
Display .display; --
Window w;
long event mask;
XEvent $eventJeturn;

XMaskEvent(display, event mask, event return)
Display ·display; - -
long event mask;
XEvent .eV'ent_ return;

Bool XCheckMaskEvent(di5play, event mask, event return)
Display $display; - -
long event mask;
XEvent $eVl!lnt Jetum;

Bool XChecJaYpedEvent (display, event type, event return)
Display "'display; --
int event type;
XEvent -eventJeturn;

Bool XChec){lypedWindowEvent(display, w, event type, event return)
Display !ltdisplay; --
Window w;
int event type;
XEvent *eventJetum;

ARGUMENTS
display
event mask

event return

event return

event return

w
DESCRIPTION

Specifies the connection to the X server.

Specifies the event mask.

Returns the matched event's associated structure.

Returns the next event in the queue.

Returns a copy of the matched event's associated structure.

Specifies the event type to be compared.

Specifies the window whose event uou are interested in.

The XNextEvent function copies the first event from the event queue into the specified XEvent
structure and then removes it from the queue. If the event queue is empty, XNextEvent flushes the
output buffer and blocks until an event is received.

Hewlett-Packard Company -1- Jul 12, 1989

XNextEvent(3X11) XNextEvent(3X11)
Series 300 and 800 Only

The XPeekEvent function returns the first event from the event queue, but it does not remove the
event from the queue. If the queue is empty, XPeekEvent flushes the output buffer and blocks
until an event is received. It then copies the event into the client-supplied XEvent structure
without removing it from the event queue.

The XWindowEvent function searches the event queue for an event that matches both the
specified window and event mask. When it finds a match, XWindowEvent removes that event from
the queue and copies it into the specified XEvent structure. The other events stored in the queue
are not discarded. If a matching event is not in the queue, XWindowEvent flushes the output
buffer and blocks until one is received.

The XCheckWindowEvent function searches the event queue and then the events available on the
server connection for the first event that matches the specified window and event mask. If it finds
a match, XCheckWindowEvent removes that event, copies it into the specified XEvent structure,
and returns 1iue. The other events stored in the queue are not discarded. If the event you
requested is not available, XCheckWindowEvent returns False, and the output buffer will have
been flushed.

The XMaskEvent function searches the event queue for the events associated with the specified
mask. When it finds a match, XMaskEvent removes that event and copies it into the specified
XEvent structure. The other events stored in the queue are not discarded. If the event you
requested is not in the queue, XMaskEvent flushes the output buffer and blocks until one is
received.

The XCheckMaskEvent function searches the event queue and then any events available on the
server connection for the first event that matches the specified mask. If it finds a match,
XCheckMaskEvent removes that event, copies it into the specified XEvent structure, and returns
1iue. The other events stored in the queue are not discarded. If the event you requested is not
available, XCheckMaskEvent returns False, and the output buffer will have been flushed.

The XCheck1jpedEvent function searches the event queue and then any events available on the
server connection for the first event that matches the specified type. If it finds a match,
XCheckIYpedEvent removes that event, copies it into the specified XEvent structure, and returns
'flue. The other events in the queue are not discarded. If the event is not available,
XCheck1jpedEvent returns False, and the output buffer will have been flushed.

The XCheck1jpedWindowEvent function searches the event queue and then any events available
on the server connection for the first event that matches the specified type and window. If it finds
a match, XCheck1jpedWindowEvent removes the event from the queue, copies it into the specified
XEvent structure, and returns 1iue. The other events in the queue are not discarded. If the event
is not available, XCheckTypedWindowEvent returns False, and the output buffer will have been
flushed.

SEE ALSO
XItEvent(3Xl1), XPutBackEvent(3Xll), XSendEvent(3Xll)

Hewlett-Packard Company -2- Jul 12, 1989

XOpenDispJay(3X11) XOpenDispJay(3X11)
Series 300 and 800 Only

NAME
XOpenDisplay, XCloseDisplay - connect or disconnect to X server

SYNOPSIS
Display ·XOpenDisplay(display name)

char ·display _name; -

XCloseDisplay(display)
Display .display;

ARGUMENTS
display Specifies the connection to the X server.

display _name Specifies the hardware display name, which determines the display and
communications domain to be used. On a UNIX-based system, if the

DESCRIPTION

display name is NULL, it defaults to the value of the DISPLAY environment
variable.

The XOpenDisplay function returns a Display structure that serves as the connection to the X
server and that contains all the information· about that X server. XOpenDisplay connects your
application to the X server through TCP, UNIX domain, or DECnet communications protocols.
If the hostname is a host machine name and a single colon (:) separates the hostname and display
number, XOpenDisplay connects using TCP streams. If the hostname is unix and a single colon
(:) separates it from the display number, XOpenDisplay connects using UNIX domain IPC
streams. If the hostname is not specified, Xlib uses whatever it believes is the fastest transport. If
the hostname is a host machine name and a double colon (::) separates the hostname and display
number, XOpenDisplay connects using DECnet. A single X server can support any or all of these
transport mechanisms simultaneously. A particular Xlib implementation can support many more
of these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is defined in
< Xll/Xlib.h >. If XOpenDisplay does not succeed, it returns NULL. After a successful call to
XOpenDisplay, all of the screens in the display can be used by the client. The screen number
specified in the display_name argument is returned by the DefaultScreen macro (or the
XDefaultScreen function). You can access elements of the Display and Screen structures only by
using the information macros or functions. For information about using macros and functions to
obtain information from the Display structure, see section 2.2.1.

The XCloseDisplay function closes the connection to the X server for the display specified in the
Display structure and destroys all windows, resource IDs (Window, Font, Pixmap, Colormap,
Cursor, and GContext), other resources that the client has created on this display, unless the
close-down mode of the resource has been changed (seeXSetCloseDownMode). Therefore, these
windows, resource IDs, and other resources should never be referenced again or an error will be
generated. Before exiting, you should call XCloseDisplay explicitly so that any pending errors are
reported as XCloseDisplay performs a final XSync operation.

XCloseDisplay can generate a BadGC error.

Hewlett-Packard Company -1- Jul 12, 1989

XParseGeometry(3X11) XParseGeometry(3X11)
Series 300 and 800 Only

NAME
XParseGeometry, XGeometry, XParseColor - parse window geometry and color

SYNOPSIS
int XParseGeometry(parsestring, x retum, y retum, width retum, height retum)

char *parsestring; - - - -
int *x retum, *y retum;
int .width Jetum, ·height _ retum;

int XGeometry(display, screen, position, default~sition, bwidth, (width, theight, xadder,
yadder, x retum, y retum, width retum, height retum)

Display *display; - - - -
int screen;
char *position, *derault ~sition;
unsigned int bwidth;
unsigned int (width, theight;
int xadder, yadder;
int *x retum, *y retum;
int *width Jetum, ·height _ retum;

Status XParseColor(display, colormap, spec, exact def retum)
Display .display; - -
Colormap colormap;
char *spec;
XColor *exact_derJetum;

ARGUMENTS
bwidth

colormap
position
default "position

Specifies the border width.

Specifies the colormap.

Specify the geometry specifications.

Specifies the connection to the X setver. display

exact_deL return Returns the exact color value for later use and sets the DoRed, DoGreen, and
DoBlue flags.

/height
fwidth

parsestring

screen

spec

width return
heigh~ return
xadder
yadder

x return

Specify the font height and width in pixels (increment size).

Specifies the string you want to parse.

Specifies the screen.

Specifies the color name string; case is ignored.

Return the width and height determined.

Specify additional interior padding needed in the window.

y..!etum Return the x and y offsets.

DESCRIPTION
By convention, X applications use a standard string to indicate window size and placement.
XParseGeometry makes it easier to conform to this standard because it allows you to parse the
standard window geometry. Specifically, this function lets you parse strings of the form:

[=][<width >x<height>][{ +-} <xoffset> {+-} <yojfset>]

The items in this form map into the arguments associated with this function. (Items enclosed in
< > are integers, items in [] are optional, and items enclosed in {} indicate "choose one of'.
Note that the brackets should not appear in the actual string.)

Hewlett-Packard Company -1- Ju112,1989

XParseGeometry(3X11) XParseGeometry(3Xll)
Series 300 and 800 Only

The XParseGeometry function returns a bitmask that indicates which of the four values (width,
height, xoffset, and yoffset) were actually found in the string and whether the x and yvalues are
negative. By convention, -0 is not equal to +0, because the user needs to be able to say "position
the window relative to the right or bottom edge." For each value found, the corresponding
argument is updated. For each value not found, the argument is left unchanged. The bits are
represented by XValue, YValue, WidthValue, HeightValue, XNegative, or YNegative and are defined
in < Xll/Xutil.h >. They will be set whenever one of the values is defined or Qne of the signs is
set.

If the function returns either the XValue or YValue flag, you should place the window at the
requested position.

You pass in the border width (bwidth), size of the increments fwidth and fheight (typically font
width and height), and any additional interior space (xadder and yadder) to make it easy to
compute the resulting size. The XGeometry function returns the position the window should be
placed given a position and a default position. XGeometry determines the placement of a window
using a geometry specification as specified by XParseGeometry and the additional information
about the window. Given a fully qualified default geometry specification and an incomplete
geometry specification, XParseGeometry returns a bitmask value as defined above in the
XParseGeometry call, by using the position argument.

The returned width and height will be the width and height specified by defaultyosition as
overridden by any user-specified position. They are not affected by fwidth, fbeight, xadder, or
yadder. The x and y coordinates are computed by using the border width, the screen width and
height, padding as specified by xadder and yadder, and the fheight and fwidth times the width and
height from the geometry specifications.

The XParseColor function provides a simple way to create a standard user interface to color. It
takes a string specification of a color, typically from a command line or XGetDefault option, and
returns the corresponding red, green, and blue values that are suitable for a subsequent call to
XAllocColor or XStoreColor. The color can be specified either as a color name (for example,
XAllocNamedColor) or as an initial sharp sign character followed by a numeric specification, in
one of the following formats:

• #RGB
#RRGGBB
#RRRGGGBBB
RRRRGGGGBBBB

(4 bi,ts each)
(8 bits each)
(12 bits each)
(16 bits each)

The R, G, and B represent single hexadecimal digits (both uppercase and lowercase). When
fewer than 16 bits each are specified, they represent the most-significant bits of the value. For
example, #3a7 is the same as #3000a0007000. The colormap is used only to determine which
screen to look up the color on. For example, you can use the screen's default colormap.

If the initial character is a sharp sign but the string otherwise fails to fit the above formats or if the
initial character is not a sharp sign and the named color does not exist in the server's database,
XParseColor fails and returns zero.

XParseColor can generate a BadColor error.

DIAGNOSTICS
BadColor A value for a Colormap argument does not name a defined Colormap.

Hewlett-Packard Company -2- Jul12,1989

XPolygonRegion (3X11)
Series 300 and 800 Only

NAME
XPolygonRegion, XClipBox - generate regions

SYNOPSIS
Region XPolygonRegion(points, n, rill rule)

XPoint points[]; -
int 1l;
int fill_rule;

XClipBox(r, red return)
Region r; -
XRectangle -red Jeturn;

XPolygonRegion (3X11)

ARGUMENTS

JillJule Specifies the fill-rule you want to set for the specified Gc. You can pass
EvenOddRule or WindingRule.

n

points

r
reet return

DESCRiPTION

Specifies the number of points in the polygon.

Specifies an array of points.

Specifies the region.

Returns the smallest enclosing rectangle.

The XPolygonRegion function returns a region for the polygon defined by the points array. For an
explanation of fill_rule, see XCreateGc.

The XClipBox function returns the smallest rectangle enclosing the specified region.

Hewlett-Packard Company - 1- Jul 12, 1989

XPutBackEvent(3Xll)
Series 300 and 800 Only

NAME
XPutBackEvent - put events back on the queue

SYNOPSIS
XPutBadilivent (display, event)

Display ·display;
XEvent ·event;

ARGUMENTS
display

event

DESCRIPTION

Specifies the connection to the X setver.

Specifies a pointer to the event.

XPutBackEvent (3X11)

The XPutBackEvent function pushes an event back onto the head of the display's event queue by
copying the event into the queue. This can be useful if you read an event and then decide that you
would rather deal with it later. There is no limit to the number of times in succession that you can
call XPutBackEvent.

SEE ALSO
XlfEvent(3X11), XNextEvent(3X11), XSendEvent(3X11)

Hewlett-Packard Company -1- Jul 12, 1989

XPutImage(3X11) XPutImage(3X11)
Series 300 and 800 Only

NAME
XPutImage, XGetImage, XGetSublmage - transfer images

SYNOPSIS
XPutImage(display, d, gc, image, src_x, srcy, dest_x, destJ, width, height)

Display .display;
Drawable d;
GC gc;
Xlmage .image;
int src x, src y;
int dest x, dest y;
unsigned int width, height;

Xlmage .XGetlmage(display, d, x, y, width, height, plane mask, format)
Display .display; -
Drawable d;
int x, y;
unsigned int width, height;
long plane mask;
int format;

Xlmage .XGetSublmage(display, d, x, y, width, height, plane mask, format, dest image,
dest_x, --

destJ)
Display .display;
Drawable d;
int x, y;
unsigned int width, height;
unsigned long plane mask;
int format; -
Xlmage *dest image;
int dest _x, dest J;

ARGUMENTS
d

dest_image

dest x
desty

display

format

gc
image

plane_mask

src x

srcy

width
height

Hewlett-Packard Company

Specifies the drawable.

Specify the destination image.

Specify the x and y coordinates, which are relative to the origin of the
drawable and are the coordinates of the sub image or which are relative to
the origin of the destination rectangle, specify its upper-left comer, and
determine where the subimage is placed in the destination image.

Specifies the connection to the X server.

Specifies the format for the image. You can pass XYBitmap, XYPixmap, or
ZPixmap.

Specifies the Gc.

Specifies the image you want combined with the rectangle.

Specifies the plane mask.

Specifies the offset in X from the left edge of the image defined by the
XImage data structure.

Specifies the offset in Y from the top edge of the image defined by the
XImage, data structure.

Specify the width and height of the subimage, which define the dimensions of
the rectangle.

-1- Ju112,1989

XPutImage(3Xll)

x
y

DESCRIPTION

XPutImage(3X11)
Series 300 and 800 Only

Specify the x and y coordinates, which are relative to the origin of the
drawable and define the upper-left corner of the rectangle.

TheXPutImage function combines an image in memory with a rectangle of the specified drawable.
If XYBitmap format is used, the depth must be one, or a Bad Match error results. The foreground
pixel in the GC defines the source for the one bits in the image, and the background pixel defines
the source for the zero bits. For XYPixmap and ZPixmap, the depth must match the depth of the
drawable, or a BadMatch error results. The section of the image defined by the src _ X, src y,
width, and height arguments is drawn on the specified part of the drawable.

This function uses these GC components: function, plane-mask, subwindow-mode, clip-x-origin,
clip-y-origin, and clip-maSk. It also uses these GC mode-dependent components: foreground and
background.

XPutImage can generate BadDrawable, BadGe, Bad Match, and BadValue errors.

The XGetImage function returns a pointer to an XImage structure. This structure provides you
with the contents of the specified rectangle of the drawable in the format you specify. If the
format argument is .I XYPixmap , the image contains only the bit planes you passed to the
plane_mask argument. If the plane_mask argument only requests a subset of the planes of the
display, the depth of the returned image will be the number of planes requested. If the format
argument is ZPixmap , XGetImage returns as zero the bits in all planes not specified in the
plane_mask argument. The function performs no range checking on the values in plane_mask and
ignores extraneous bits.

XGetImage returns the depth of the image to the depth member of the XImage structure. The
depth of the image is as specified when the drawable was created, except when getting a subset of
the planes in XYPixmap format, when the depth is given by the number of bits set to 1 in
plane_mask.

If the drawable is a pixmap, the given rectangle must be wholly contained within the pixmap, or a
Bad Match error results. If the drawable is a window, the window must be viewable, and it must be
the case that if there were no inferiors or overlapping windows, the specified rectangle of the
window would be fully visible on the screen and wholly contained within the outside edges of the
window, or a BadMatch error results. Note that the borders of the window can be included and
read with this request. If the window has backing-store, the backing-store contents are returned
for regions of the window that are obscured bynoninferior windows. If the window does not have
backing-store, the returned contents of such obscured regions are undefined. The returned
contents of visible regions of inferiors of a different depth than the specified window's depth are
also undefined. The pointer cursor image is not included in the returned contents.

XGetImage can generate BadDrawable, BadMatch, and BadValue errors.

The XGetSubImage function updates dest image with the specified subimage in the same manner
as XGetImage. If the format argument is XYPixmap, the image contains only the bit planes you
passed to the plane mask argument. If the format argument is ZPixmap, XGetSubImage returns
as zero the bits in ali planes not specified in the plane_mask argument. The function performs no
range checking on the values in plane_mask and ignores extraneous pits. As a convenience,
XGetSubImage returns a pointer to the same XImage structure specified by desUmage.

The depth of the destination XImage structure must be the same as that of the drawable. If the
specified sub image does not fit at the specified location on the destination image, the right and
bottom edges are clipped. If the drawable is a pixmap, the given rectangle must be wholly
contained within the pixmap, or a BadMatch error results. If the drawable is a window, the
window must be viewable, and it must be the case that if there were no inferiors or overlapping
windows, the specified rectangle of the window would be fully visible on the screen and wholly
contained within the outside edges of the window, or a Bad Match error results. If the window has
backing-store, then the backing-store contents are returned for regions of the window that are
obscured by noninferior windows. If the window does not have backing-store, the returned
contents of such obscured regions are undefined. The returned contents of visible regions of
inferiors of a different depth than the specified window's depth are also undefined.

Hewlett-Packard Company -2- Jul 12, 1989

XPutlmage(3Xll) XPutlmage(3Xll)
Series 300 and 800 Only

XGetSublmage can generate BadDrawable, BadGe, BadMatch, and BadValue errors.

DIAGNOSTICS
Bad Drawable A value for a Drawable argument does not name a defined Window or

Pixmap.

BadGe

Bad Match

BadMatch

BadValue

Hewlett-Packard Company

A value for a GContext argument does not name a defined GContext.

An InputOnly window is used as a Drawable.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

-3- Jul 12, 1989

XrmPutResource (3X11) XrmPutResource(3X11)

NAME

Series 300 and 800 Only

XrmPutResource, XrmQPutReuJurce, XrmPutStringResource, XrmQPutStringResource,
XrmPutLineResource - store database resources

SYNOPSIS
void XrmPutResource(database, speeDier, type, value)

XnnDatabase .database;
char .speeifier;
char .type;
XnnValue ~alue;

void XnnQPutResource(database, bindings, quarks, type, value)
XnnDatabase ·database;
XnnBindingList bindings;
XnnQuarkList quarks;
XnnRepresentation type;
XnnValue ~alue;

void XrmPutStringResource(database, speeDier, value)
XnnDatabase .database;
char .speeDIer;
char ~alue;

void XnnQPutStringResource(database, bindings, quarks, value)
XnnDatabase .database;
XnnBindingList bindings;
XnnQuarkList quarks;
char ~alue;

void XnnPutLineResource(database, line)
XnnDatabase .database;
char .line;

ARGUMENTS
bindings Specifies a list of bindings.

Specifies a pointer to the resource database. database

line Specifies the resource value pair as a single string. A single colon (:)
separates the name from the value.

quarks

specifier

type

value

DESCRIPTION

Specifies the complete or partial name or the class list of the resource.

Specifies a complete or partial specification of the resource.

Specifies the type of the resource.

Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmPutResource creates a new database and returns a pointer to it.
XrmPutResource is a convenience function that calls XrmStringToBindingQuarkList followed by:

XrmQPutResource(database, bindings, quarks, XrmStringToQuark(type), value)

If database contains NULL, XrmQPutResource creates a new database and returns a pointer to it.

If database contains NULL, XrmPutStringResource creates a new database and returns a pointer to
it. XrmPutStringResource adds a resource with the specified value to the specified database.
XrmPutStringResource is a convenience routine that takes both the resource and value as null­
terminated strings, converts them to quarks, then calls XrmQPutResource, using a "String"
representation type.

If database contains NULL, XrmQPutStringResource creates a new database and returns a pointer
to it. XrmQPutStringResource is a convenience routine that constructs an XrmValue for the value
string (by calling strlen to compute the size) and then calls XrmQPutResource, using a "String"
representation type.

Hewlett-Packard Company -1- Ju112,1989

XrmPutResource (3Xll) XrmPutResource (3X1!)
Series 300 and 800 Only

If database contains NULL, XrmPutLineResource creates a new database and returns a pointer to
it. XrmPutLineResource adds a single resource entty to the specified database. Any white space
before or after the name or colon in the line argument is ignored. The value is terminated by a
new-line or a NULL character. To allow values to contain embedded new-line characters, a "\n"
is recognized and replaced by a new-line character. For example, line might have the value
"xterm*background:green\n". Null-terminated strings without a new line are also permitted.

SEE ALSO
XrrnGetResource(3Xll), XrrnInitialize(3X11), XrrnMergeDatabases(3Xl1),
XrrnUniqueQuark(3Xl1)

Hewlett-Packard Company -2- JuI12,1989

XQueryBestSize (3X11) XQueryBestSize(3Xll)
Series 300 and 800 On1y

NAME
XQueryBestSize, XQueryBestTile, XQueryBestStipple - determine efficient sizes

SYNOPSIS
Status XQueryBestSize(display, class, which screen, width, height, width return,
height return) - -

Display -display;
int class;
Drawable which screen;
unsigned int width, height;
unsigned int *width_return, -height Jetum;

Status XQueryBestTile(display, which screen, width, height, width return, height return)
Display -display; - --
Drawable which screen;
unsigned int width, height;
unsigned int *width_return, -height_return;

Status XQueryBestStipple(display, which screen, width, height, width return, height return)
Display -display; - --
Drawable which screen;
unsigned int width, height;
unsigned int *width Jeturn, -heightJetum;

ARGUMENTS
class Specifies the class that you are interested in. You can pass TileShape,

CursorShape, or StippleShape.

display

width
height

Specifies the connection to the X server.

Specify the width and height.

Specifies any drawable on the screen. which screen

width return
heighijeturn Return the width and height of the object best supported by the display

hardware.

DESCRIPTION
The XQueryBestSize function returns the best or closest size to the specified size. For
CursorShape, this is the largest size that can be fully displayed on the screen specified by
which_screen. For TileShape, this is the size that can be tiled fastest. For StippleShape, this is the
size that can be stippled fastest. For CursorShape, the drawable indicates the desired screen. For
TileShape and StippleShape, the drawable indicates the screen and possibly the window class and
depth. An InputOnly window cannot be used as the drawable for TileShape or StippleShape, or a
BadMatch error results.

XQueryBestSize can generate BadDrawable, Bad Match, and BadValue errors.

The XQueryBestTile function returns the best or closest size, that is, the size that can be tiled
fastest on the screen specified bywhich screen. The drawable indicates the screen and possibly
the window class and depth. If an Inputonly window is used as the drawable, a BadMatch error
results.

XQueryBestTile can generate BadDrawable and Bad Match errors.

XQueryBestTile can generate BadDrawable and Bad Match errors.

The XQueryBestStipple function returns the best or closest size, that is, the size that can be
stippled fastest on the screen specified by which screen. The drawable indicates the screen and
possibly the window class and depth. If an Inpu'iOnly window is used as the drawable, a BadMatch
error results.

XQueryBestStipple can generate Bad Drawable and Bad Match errors.

Hewlett-Packard Company -1- Jul 12, 1989

XQueryBestSize (3X11)

DIAGNOSTICS
BadMatch

BadDrawable

BadMatch

BadValue

SEE ALSO

XQueryBestSize(3X11)
Series 300 and 800 Only

An InputOnly window is used as a Drawable.

A value for a Drawable argument does not name a defined Window or
Pixmap.

The values do not exist for an InputOnly window.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XCreateGC(3X11), XSetArcMode(3X11), XSetClipOrigin(3X11), XSetFillStyle(3X11),
XSetFont(3X11), XSetLineAttributes(3X11), XSetState(3X11), XSetTile(3X11)

Hewlett-Packard Company -2- Ju112, 1989

XQueryColor(3X11) XQueryColor(3X11)
Series 300 and 800 Only

NAME
XQueryColor, XQueryColors, XLookupColor - obtain color values

SYNOPSIS
XQueryColor(display, colormap, def in out)

Display ·display; - -
Colormap colormap;
XColor .det in_out;

XQueryColors(display, colormap, defs in out, ncolors)
Display .display; - -
Colormap colormap;
XColor defs in out[];
int ncolors; - -

Status XLookupColor(display, colormap, color name, exact def return, screen def return)
Display·display; - - - - -
Colormap colormap;
char .color name;
XColor ·exict _ det return, ·screen _ det return;

ARGUMENTS
colormap

color name

deLin_out

defs _in _out

display

exact _ def ...!etum

ncolors

screen _ def ...!etum

DESCRIPfION

Specifies the colormap.

Specifies the color name string (for example, red) whose color definition
structure you want returned.

Specifies and returns the RGB values for the pixel specified in the structure.

Specifies and returns an array of color definition structures for the pixel
specified in the structure.

Specifies the connection to the X setver.

Returns the exact RGB values.

Specifies the number of XColor structures in the color definition array.

Returns the closest RGB values provided by the hardware.

The XQueryColor function returns the RGB values for each pixel in the XColor structures and sets
the DoRed, DoGreen, and DoBlue flags. The XQueryColors function returns the RGB values for
each pixel in the XColor structures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColor and XQueryColors can generate BOOCoior and BOOVaJue errors.

The XLookupColor function looks up the string name of a color with respect to the screen
associated with the specified colormap. It returns both the exact color values and the closest
values provided by the screen with respect to the visual type of the specified colormap. You
should use the ISO Latin-1 encoding; uppercase and lowercase do not matter. XLookupColor
returns nonzero if the name existed in the color database or zero if it did not exist.

DIAGNOSTICS
BOOCoior

BOOVaJue

SEE ALSO

A value for a Colormap argument does not name a defined Colormap.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XAllocColor(3X11), XCreateColormap(3X11), XStoreColors(3X11)

Hewlett-Packard Company -1- Jul 12, 1989

XQueryPointer (3X11) XQueryPointer(3X11)
Series 300 and 800 Only

NAME
XQueryPointer - get pointer coordinates

SYNOPSIS
Bool XQueryPointer(display, w, root return, cbild return, root x return, root y return,

win x return, wiD y return, mask return) - - - -

ARGUMENTS

Display .display; - - - - -
Wmdoww;
Wmdow ·root return, ·child return;
int .root_ x Jeturn, .rootyjeturn;
int ~in x return, ~ y return;
unsigned- bit ~sk JetUrR;

child return Returns the child window that the pointer is located in, if any.

Specifies the connection to the X server. display

mask return

root return

root x return
root y ..!eturn

Returns the current state of the modifier keys and pointer buttons.

Returns the root window that the pointer is in.

w

Return the pointer coordinates relative to the root window's origin.

Specifies the window.

win x return
win y..!eturn Return the pointer coordinates relative to the specified window.

DESCRIPTION
The XQueryPointer function returns the root window the pointer is logically on and the pointer
coordinates relative to the root window's origin. If XQueryPointer returns False, the pointer is not
on the same screen as the specified window, and XQueryPointer returns None to child Jeturn and
zero to win_ x_return and winy_return. If XQueryPointer returns 1}ue , the pointer coordinates
returned to win _x Jeturn and winy Jeturn are relative to the origin of the specified window. In
this case, XQueryPointer returns the child that contains the pointer, if any, or else None to
child return.

XQueryPointer returns the current logical state of the keyboard buttons and the modifier keys in
mask return. It sets mask return to the bitwise inclusive OR of one or more of the button or
modifier key bitmasks to match the current state of the mouse buttons and the modifier keys.

XQueryPointer can generate a BadWindow error.

DIAGNOSTICS
BadWindow A value for a Window argument does not name a defined Window.

SEE ALSO
XGetWindowAttributes(3X11), XQueryTree(3X11)

Hewlett-Packard Company -1- Ju112,1989

XQuery1i'ee (3X11) XQuery'Iree(3Xll)
Series 300 and 800 Only

NAME
XQueryTree - query window tree information

SYNOPSIS
Status XQuel')Tree(display, w, root return, parent return, children return, nchildren return)

Display -display; - - - -
Wmdoww;
Wmdow -root return;
Window -parent return;
Wmdow --children return;
unsigned int -nchildren Jetum;

ARGUMENTS
children return

display

nchildren return

parent_return

root return

w

Returns a pointer to the list of children.

Specifies the connection to the X server.

Returns the number of children.

Returns the parent window.

Returns the root window.

Specifies the window whose list of children, root, parent, and number of
children you want to obtain.

DESCRIPTION

NOTES

The XQueryTree function returns the root ID, the parent window ID, a pointer to the list of
children windows, and the number of children in the list for the specified window. The children
are listed in current stacking order, from bottommost (first) to topmost (last). XQuery1tee returns
zero if it fails and nonzero if it succeeds. To free this list when it is no longer needed, use XFree.

This really should return a screen *, not a root window ID.

SEE ALSO
XGetWindowAttributes(3X11), XQueryPointer(3X11)

Hewlett-Packard Company -1- Ju112,1989

XRaiseWindow(3X11) XRaiseWindow(3X11)

NAME

Series 300 and 800 Only

XRaiseWindow, XLowerWindow, XCirculateSubwindows, XCirculateSubwindowsUp,
XCirculateSubwindowsDown, XRestackWindows - change window stacking order

SYNOPSIS
XRaiseWindow(display, w)

Display *display;
Wmdoww;

XLowerWmdow(display, w)
Display *display;
Wmdoww;

XCirculateSubwindows(display, w, direction)
Display *display;
Window w;
int direction;

XCirculateSubwindowsUp (display, w)
Display *display;
Window w;

XCirculateSubwindowsDown(display, w)
Display *display;
Window w;

XRestackWindows (display, windows, nwindows);
Display *display;
Window windows [];
int nwindows;

ARGUMENTS
direction Specifies the direction (up or down) that you want to circulate the window.

You can pass RaiseLowest or LowerHighest.

display
nwindows

w

windows

DESCRIPTION

Specifies the connection to the X setver.

Specifies the number of windows to be restacked.

Specifies the window.

Specifies an array containing the windows to be restacked.

The XRaiseWindow function raises the specified window to the top of the stack so that no sibling
window obscures it. If the windows are regarded as overlapping sheets of paper stacked on a
desk, then raising a window is analogous to moving the sheet to the top of the stack but leaving its
x and y location on the desk constant. Raising a mapped window may generate Expose events for
the window and any mapped subwindows that were formerly obscured.

If the override-redirect attribute of the window is False and some other client has selected
Substructure Redirect Mask on the parent, the X setver generates a ConfigureRequest event, and no
processing is performed. Otherwise, the window is raised.

XRaiseWindow can generate a BadWindow error.

The XLowerWindow function lowers the specified window to the bottom of the stack so that it
does not obscure any Sibling windows. If the windows are regarded as overlapping sheets of paper
stacked on a desk, then lowering a window is analogous to moving the sheet to the bottom of the
stack but leaving its x and y location on the desk constant. Lowering a mapped window will
generate Expose events on any windows it formerly obscured.

If the override-redirect attribute of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X setver generates a ConfigureRequest event, and no
processing is performed. Otherwise, the window is lowered to the bottom of the stack.

Hewlett-Packard Company -1- Jul 12, 1989

XRaiseWindow(3XU) XRaiseWindow(3X11)
Series 300 and 800 Only

XLowerWindow can generate a BadWindow error.

The XCirculateSubwindows function circulates children of the specified window in the specified
direction. If you specify RaiseLowest, XCirculateSubwindows raises the lowest mapped child (if
any) that is occluded by another child to the top of the stack. If you specify Lower Highest,
XCirculateSubwindows lowers the highest mapped child (if any) that occludes another child to the
bottom of the stack. Exposure processing is then performed on formerly obscured windows. If
some other client has selected SubstructureRedirectMask on the window, the X server generates a
CirculateRequest event, and no further processing is performed. If a child is actually restacked, the
X server generates a CirculateNotify event.

XCirculateSubwindows can generate BadValue and BadWindow errors.

The XCirculateSubwindowsUp function raises the lowest mapped child of the specified window
that is partially or completely occluded by another child. Completely unobscured children are not
affected. This is a convenience function equivalent to XCirculateSubwindows with Raise Lowest
specified.

XCirculateSubwindowsUp can generate a BadWindow error.

The XCirculateSubwindowsDown function lowers the highest mapped child of the specified
window that partially or completely occludes another child. Completely unobscured children are
not affected. This is a convenience function equivalent to XCirculateSubwindows with
Lower Highest specified.

XCirculateSubwindowsDown can generate a BadWindow error.

The XRestackWindows function restacks the windows in the order specified, from top to bottom.
The stacking order of the first window in the windows array is unaffected, but the other windows
in the array are stacked underneath the first window, in the order of the array. The stacking order
of the other windows is not affected. For each window in the window array that is not a child of
the specified window, a BadMatch error results.

If the override-redirect attribute of a window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates ConfigureRequest events for each
window whose override-redirect flag is not set, and no further processing is performed.
Otherwise, the windows will be restacked in top to bottom order.

XRestackWindows can generate BadWindow error.

DIAGNOSTICS
BadValue

BadWindow

SEE ALSO

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

A value for a Window argument does not name a defined Window.

XChangeWindowAttributes(3Xll), XConfigureWindow(3Xll), XCreateWindow(3Xll),
XDestroyWindow(3Xll), XMapWindow(3Xll), XUnmapWindow(3Xll)

Hewlett-Packard Company -2- Ju112, 1989

XReadBitmapFile(3X11) XReadBitmapFile (3X11)

NAME

Series 300 and 800 Only

XReadBitmapFile, XWriteBitmapFile, XCreatePixmapFromBitmapData,
XCreateBitmapFromData - manipulate bitmaps

SYNOPSIS
int XReadBitmapFile(display, d, filename, width return, height return, bitmap return,
x_hot _return, - - -

y hot return)
Display -display; - -
Drawable d;
(har -filename;
unsigned int *width return, -height return;
Pixmap -bitmap return; -
int *X_hot _ retu~ *y _hot_return;

int XWriteBitmapFile(display, filename, bitmap, width, height, x hot, y hot)
Display -display; - -
(har -filename;
Pixmap bitmap;
unsigned int width, height;
int x_hot, y_hot;

Pixmap XCreatePixmapFromBitmapData(display, d, data, width, height, fg, bg, depth)
Display -display;
Drawable d;
(har -data;
unsigned int width, height;
unsigned long fg, bg;
unsigned int depth;

Pixmap XCreateBitmapFromData(display, d, data, width, height)
Display -display;
Drawable d;
(har -data;
unsigned int width, height;

ARGUMENTS
bitmap

bitmap _return

d

data

data

depth

display

fg
bg

Specifies the bitmap.

Returns the bitmap that is created.

Specifies the drawable that indicates the screen.

Specifies the data in bitmap format.

Specifies the location of the bitmap data.

Specifies the depth of the pixmap.

Specifies the connection to the X setver.

Specify the foreground and background pixel values to use.

filename Specifies the file name to use. The format of the file name is operating­
system dependent.

width
height

width return
heighijeturn

x hot
y=hot

Hewlett-Packard Company

Specify the width and height.

Return the width and height values of the read in bitmap file.

Specify where to place the hotspot coordinates (or -1,-1 if none are present)
in the file.

-1- Ju112,1989

XReadBitmapFile (3X11) XReadBitmapFile (3X11)
Series 300 and 800 Only

x hot return
y -horreturn Return the hotspot coordinates.

DESCRIPfION
The XReadBitmapFile function reads in a file containing a bitmap. The file can be either in the
standard X version 10 format (that is, the format used by X version 10 bitmap program) or in the
X version 11 bitmap format. If the file cannot be opened, XReadBitmapFile returns
BitmapOpenFailed. If the file can be opened but does not contain valid bitmap data, it returns
BitmapFile/nvalid. If insufficient working storage is allocated, it returns BitmapNoMemory. If the
file is readable and valid, it returns BitmapSuccess.
XReadBitmapFile returns the bitmap's height and width, as read from the file, to width Jeturn and
height_return. It then creates a pixmap of the appropriate size, reads the bitmap data from the
file into the pixmap, and assigns the pixmap to the caller's variable bitmap. The caller must free
the bitmap using XFreePixmap when finished. If name _x_hot and name y _hot exist,
XReadBitmapFile returns them to x _ hotJeturn and y _hot Jeturn; othetwise, it returns -1,-I.

XReadBitmapFile can generate BadAlloc and BadDrawable errors.

The XWriteBitmapFile function writes a bitmap out to a file. While XReadBitmapFile can read in
either X version 10 format or X version 11 format, XWriteBitmapFile always writes out X version
11 format. If the file cannot be opened for writing, it returns BitmapOpenFailed. If insufficient
memory is allocated, XWriteBitmapFile returns BitmapNoMemory; othetwise, on no error, it
returns BitmapSuccess. If x hot and y hot are not -1, -1, XWriteBitmapFile writes them out as the
hotspot coordinates for the-bitmap. -

XWriteBitmapFile can generate BadDrawable and Bad Match errors.

The XCreatePixmapFromBitmapData function creates a pixmap of the given depth and then does a
bitmap-format XPut/mage of the data into it. The depth must be supported by the screen of the
specified drawable, or a BadMatch error results.

XCreatePixmapFromBitmapData can generate BadAlloc and BadMatch errors.

TheXCreateBitmapFromData function allows you to include in your C program (using #include)
a bitmap file that was written out by XWriteBitmapFile (X version 11 format only) without reading
in the bitmap file. The following example creates a gray bitmap:

#include "gray.bitmap"

Pixmap bitmap;
bitmap = XCreateBitmapFromData(display, window, graLbits, graLwidth, gray_height);

If insufficient working storage was allocated, XCreateBitmapFromData returns None. It is your
responsibility to free the bitmap using XFreePixmap when finished.

XCreateBitmapFromData can generate a BadAlloc error.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server memory.

BadDrawable

BadMatch

Hewlett-Packard Company

A value for a Drawable argument does not name a defined Window or
Pixmap.

An InputOnly window is used as a Drawable.

-2- JuI 12, 1989

XRecolorCursor (3X11) XReeolorCursor(3X11)
Series 300 and 800 Only

NAME
XRecolorCursor, XFreeCursor, XQueryBestCursor - manipulate cursors

SYNOPSIS
XR«olorCursor(display, cursor, foreground color, background color)

Display -display; - -
Cursor cursor;
XColor -foreground_color , -background_color;

XFreeCursor(display, cursor)
Display -display;
Cursor cursor;

Status XQueryBestCursor(display, d, width, height, width return, height return)
Display "'display; --
Drawable d;
unsigned int width, height;
unsigned int ~dth Jeturn, ·heightJeturn;

ARGUMENTS
background_color

cursor

d

display

foreground_color

width

Specifies the RGB values for the background of the source.

Specifies the cursor.

Specifies the drawable, which indicates the screen.

Specifies the connection to the X server.

Specifies the RGB values for the foreground of the source.

height Specify the width and heightof the cursor that you want the size information
for.

width return
heigh"(. return

DESCRIPTION

Return the best width and height that is closest to the specified width and
height.

The XRecolorCursor function changes the color of the specified cursor, and if the cursor is being
displayed on a screen, the change is visible immediately.

XRecolorCursor can generate a BadCursor error.

The XFreeCursor function deletes the association between the cursor resource ID and the
specified cursor. The cursor storage is freed when no other resource references it. The specified
cursor ID should not be referred to again.

XFreeCursor can generate a BadCursor error.

Some displays anow larger cursors than other displays. The XQueryBestCursor function provides a
way to find out what size cursors are actually possible on the display. It returns the largest size
that can be displayed. Applications should be prepared to use smaller cursors on displays that
cannot support large ones.

XQueryBestCursor can generate a BadDrawahle error.

DIAGNOSTICS
BadCursor

BadDrawahle

SEE ALSO

A value for a Cursor argument does not name a defined Cursor.

A value for a Drawable argument does not name a defined Window or
Pixmap.

XCreateFontCursor(3X11), XDefineCusor(3X11)

Hewlett-Packard Company -1- JuI12,1989

XReparentWindow(3Xll) XReparentWindow(3X11)
Series 300 and 800 Only

NAME
XReparentWindow - reparent windows

SYNOPSIS
XReparentWindow(display, w, parent, x, y)

Display *display;
Wmdow w;
Wmdow parent;
int x, y;

ARGUMENTS
display

parent

w

Specifies the connection to the X server.

Specifies the parent window.

Specifies the window.

x
y Specify the x and y coordinatesof the position in the new parent window.

DESCRIPfiON
If the specified window is mapped, XReparentWindow automatically performs an Unmap Window
request on it, removes it from its current position in the hierarchy, and inserts it as the child of the
specified parent. The window is placed in the stacking order on top with respect to sibling
windows.

After reparenting the specified window, XReparentWindow causes the X server to generate a
ReparentNotify event. The override redirect member returned in this event is set to the window's
corresponding attribute. Window manager clients usually should ignore this window if this
member is set to 1}ue. Finally, if the specified window was originally mapped, the X setver
automatically performs a MapWindow request on it.

The X server performs normal exposure processing on formerly obscured windows. The X server
might not generate Expose events for regions from the initial UnmapWindow request that are
immediately obscured by the final MapWindow request. A Bad Match error results if:

• The new parent window is not on the same screen as the old parent window.

• The new parent window is the specified window or an inferior of the specified window.

• The specified window has a ParentRelative background, and the new parent window is not
the same depth as the specified window.

XReparentWindow can generate Bad Match and BadWindow errors.

DIAGNOSTICS
BadWindow A value for a Window argument does not name a defined Window.

SEE ALSO
XChangeSaveSet(3X11)

Hewlett-Packard Company -1- Ju112, 1989

XrmGetResource (3X11) XrmGetResource (3X11)

NAME

Series 300 and 800 Only

XrmGetResource, XrmQGetResource, XrmQGetSearchList, XrmQGetSearchResource - retrieve
database resources and search lists

SYNOPSIS
Bool XnnGetResource(database, str name, str class, str type return, value return)

XnnDatabase database; - - - - -
char .str name;
char ·str -class;
char ··str type return;
XnnValue *value_return;

Bool XnnQGetResource(database, quark name, quark class, quark type return,
value return) - - --

XnnDatabase database;
XnnNameList quark name;
XnnClassList quark -class;
XnnRepresentation .quark type return;
XnnValue ·value Jeturn; - -

typedef XnnHashTable .XnnSearchList;

Bool XnnQGetSearchList (database, names, classes, list return, list length)
XnnDatabase database; --
XnnNameList names;
XnnClassList classes;
XnnSearchList list return;
int list }ength; -

Bool XnnQGetSearchResource(list, name, class, type return, value return)
XnnSearchList list; --

ARGUMENTS
class

XnnName name;
XnnClass class;
XnnRepresentation .type return;
XnnValue ~alue Jeturn; -

Specifies the resource class.

Specifies a list of resource classes.

Specifies the database that is to be used.

Specifies the search list returned by XnnQGetSearchList.

classes

database

list

listJength
list return

Specifies the number of entries (not the byte size) allocated for listJeturn.

Returns a search list for further use.

name

names

quark_class

quark_name

quark_type _return

str class

str name

str _type Jeturn
type_return

value return

Hewlett-Packard Company

Specifies the resource name.

Specifies a list of resource names.

Specifies the fully qualified class of the value being retrieved (as a quark).

Specifies the fully qualified name of the value being retrieved (as a quark).

Returns a pointer to the representation type of the destination (as a quark).

Specifies the fully qualified class of the value being retrieved (as a string).

Specifies the fully qualified name of the value being retrieved (as a string).

Returns a pointer to the representation type of the destination (as a string).

Returns data representation type.

Returns the value in the database.

-1- Jul 12, 1989

XrmGetResource (3X11) XrmGetResource (3X11)
Series 300 and 800 Only

DESCRIPTION
The XrmGetResource and XrmQGetResource functions retrieve a resource from the specified
database. Both take a fully qualified name/class pair, a destination resource representation, and
the address of a value (size/address pair). The value and returned type point into database
memory; therefore, you must not modify the data.

The database only frees or overwrites entries on XrmPutResource, XnnQPutResource, or
XrmMergeDatabases. A client that is not storing new values into the database or is not merging the
database should be safe using the address passed back at any time until it exits. If a resource was
found, both XrmGetResource and XrmQGetResource return 11ue; othetwise, they return False.

The XrmQGetSearchList function takes a list of names and classes and returns a list of database
levels where a match might occur. The returned list is in best-ta-worst order and uses the same
algorithm as XrmGetResource for determining precedence. If listJeturn was large enough for the
search list, XrmQGetSearchList returns 11ue; othetwise, it returns False.

The size of the search list that the caller must allocate is dependent upon the number of levels and
wildcards in the resource specifiers that are stored in the database. The worst case length is 38

,

where n is the number of name or class components in names or classes.

When using XnnQGetSearchList followed by multiple probes for resources with a common name
and class prefix, only the common prefix should be specified in the name and class list to
XrmQGetSearchList.

The XrmQGetSearchResource function searches the specified database levels for the resource that
is fully identified by the specified name and class. The search stops with the first match.
XnnQGetSearchResource returns 11ue if the resource was found; othetwise, it returns False.

A call to XrmQGetSearchList with a name and class list containing aU but the last component of a
resource name followed by a call to XrmQGetSearchResource with the last component name and
class returns the same database entty as XrmGetResource and XrmQGetResource with the fully
qualified name and class.

SEE ALSO
XrmInitialize(3Xl1), XrmMergeDatabases(3X11), XrmPutResource(3X11),
XrrnUniqueQuark(3X11)

Hewlett-Packard Company -2- Jul 12, 1989

Xrmlnitialize (3X11) Xrmlnitialize (3X11)
Series 300 and 800 Only

NAME
Xrmlnitialize, XrmParseCommand - initialize the Resource Manager and parse the command line

SYNOPSIS
void XrmInitialize();

void XrmParseCommand(database, table, table count, name, argc in out, argv in out,)
XrmDatabase .database; - - - - -

ARGUMENTS

XrmOptionDescList table;
int table count;
char ·name;
int ·argc in out;
char .·argv':in _out;

argc _in _out Specifies the number of arguments and returns the number of remaining
arguments.

Specifies a pointer to the command line arguments and returns the
remaining arguments.

database

name

table

table count

DESCRIPTION

Specifies a pointer to the resource database.

Specifies the application name.

Specifies the table of command line arguments to be parsed.

Specifies the number of entries in the table.

The Xrmlnitialize function initialize the resource manager.

The XnnParseCommand function parses an (argc, argv) pair according to the specified option
table, loads recognized options into the specified database with type "String," and modifies the
(argc, argv) pair to remove all recognized options.

The specified table is used to parse the command line. Recognized entries in the table are
removed from argv, and entries are made in the specified resource database. The table entries
contain information on the option string, the option name, the style of option, and a value to
provide if the option kind is XrmoptionNoArg. The argc argument specifies the number of
arguments in argv and is set to the remaining number of arguments that were not parsed. The
name argument should be the name of your application for use in building the database entry.
The name argument is prefixed to the resourceName in the option table before storing the
specification. No separating (binding) character is inserted. The table must contain either a
period (.) or an asterisk (*) as the first character in each resourceName entry. To specify a more
completely qualified resource name, the resourceName entry can contain multiple components.

SEE ALSO
XrmGetResource(3X11), XrmMergeDatabases(3Xl1), XrmPutResource(3Xl1),
XrmUniqueQuark(3Xl1)

Hewlett-Packard Company -1- Ju112,1989

XSaveContext(3X11) XSaveContext(3X11)
Series 300 and 800 Only

NAME
XSaveContext, XFindContext, XDeleteContext, XUniqueContext - associative look-up routines

SYNOPSIS
int XSaveContext(display, w, context, data)

Display .display;
Wmdoww;
XContext context;
caddr _ t data;

int XFindContext(display, w, context, data return)
Display .display; -
Wmdow w;
XContext context;
caddr _ t ·data _return;

int XDeleteContext(display, w, context)
Display ·display;
Window w;
XContext context;

XContext XUniqueContextO

ARGUMENTS
context

data

data return

display

w
DESCRIPTION

Specifies the context type to which the data belongs.

Specifies the data to be associated with the window and type.

Returns a pointer to the data.

Specifies the connection to the X server.

Specifies the window with which the data is associated.

If an entry with the specified window and type already exists, XSaveContext overrides it with the
specified context. The XSaveContext function returns a nonzero error code if an error has
occurred and zero otherwise. Possible errors are XCNOMEM (out of memory).

Because it is a return value, the data is a pointer. The XFindContext function returns a nonzero
error code if an error has occurred and zero otherwise. Possible errors are XCNOENT (context­
not-found).

The XDeleteContext function deletes the entry for the given window and type from the data
structure. This function returns the same error codes thatXFindContext returns if called with the
same arguments. XDeleteContext does not free the data whose address was saved.

The XUniqueContext function creates a unique context type that may be used in subsequent calls
to XSaveContext.

Hewlett-Packard Company -1- Ju112, 1989

XSetFont (3X11)

NAME
XSetFont - GC convience routines

SYNOPSIS
XSetFont(display, gc, font)

Display *display;
GC gc;
Font font;

Series 300 and 800 Only

ARGUMENTS
display

font

Specifies the connection to the X server.

Specifies the font.

gc Specifies the Gc.

DESCRIPTION
The XSetFont function sets the current font in the specified Gc.

XSetFont can generate BadAlloc, BadFont, and BadGC errors.

DIAGNOSTICS

XSetFont(3X11)

BadAlloc

BadFont

BadGC

The server failed to allocate the requested resource or server memory.

A value for a Font or GContext argument does not name a defined Font.

A value for a GContext argument does not name a defined GContext.

SEE ALSO
XCreateGC(3X11), XQueryBestSize(3X11), XSetArcMode(3X11), XSetClipOrigin(3X11),
XSetFillStyle(3X11), XSetLineAttributes(3X11), XSetState(3X11), XSetTile(3X11)

Hewlett-Packard Company - 1- Ju112,1989

XSetFontPath (3X11) XSetFontPath (3X11)
Series 300 and 800 Only

NAME
XSetFontPath, XGetFontPath, XFreeFontPath - set, get, or free the font search path

SYNOPSIS
XSetFontPath(display, directories, ndirs)

Display .display;
(har ··directories;
int ndirs;

char •• XGetFontPath(display, npaths return)
Display ·display; -
int ·npaths Jeturn;

XFreeFontPath(list)
(har •• list;

ARGUMENTS
directories Specifies the directory path used to look for a font. Setting the path to the

empty list restores the default path defined for the X server.

display

list

ndirs

Specifies the connection to the X server.

Specifies the array of strings you want to free.

Specifies the number of directories in the path.

npaths Jetum Returns the number of strings in the font path array.

DESCRIPTION
The XSetFontPath function defines the directory search path for font lookup. There is only one
search path per X server, not one per client. The interpretation of the strings is operating system
dependent, but they are intended to specify directories to be searched in the order listed. Also,
the contents of these strings are operating system dependent and are not intended to be used by
client applications. Usually, the X server is free to cache font information internally rather than
having to read fonts from files. In addition, the X server is guaranteed to flush all cached
information about fonts for which there currently are no explicit resource IDs allocated. The
meaning of an error from this request is operating system dependent.

XSetFontPath can generate a BadValue error.

The XGetFontPath function allocates and returns an array of strings containing the search path.
When it is no longer needed, the data in the font path should be freed by using XFreeFontPalh.

The XFreeFontPath function frees the data allocated by XGetFontPath.

DIAGNOSTICS
BadValue Some numeric value falls outside the range of values accepted by the request.

SEE ALSO

Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XListFont(3X11), XLoadFonts(3X11)

Hewlett-Packard Company -1- Jul14 1989

XSeticonName(3X11) XSeticonName(3X11)
Series 300 and 800 Only

NAME
XSetlconName, XGetlconName - set or get icon names

SYNOPSIS
XSetIconName(display, w, icon name)

Display ·display; -
Wmdoww;
char .icon _name;

Status XGetIconName(display, w, icon name return)
Display .display; --
Wmdow w;
char •• icon _name Jeturn;

ARGUMENTS
display Specifies the connection to the X server.

icon name Specifies the icon name, which should be a null-terminated string.

icon name return Returns a pointer to the window's icon name, which is a null-terminated
string.

w Specifies the window.

DESCRIPfION
The XSetIconName function sets the name to be displayed in a window's icon.

XSetlconName can generate BadAlloc and BadWindow errors.

Th.e XGetlconName function returns the name to be displayed in the specified window's icon. If it
succeeds, it returns nonzero; othetwise, if no icon name has been set for the window, it returns
zero. If you never assigned a name to the window, XGetIconName sets icon name return to
NULL. When finished with it, a client must free the icon name string using'XFree.-

XGetIconName can generate a BadWindow error.

PROPER1Y
WM ICON NAME

DIAGNOSTICS
BadAlloc

BadWindow

The server failed to allocate the requested resource or server memory.

A value for a Window argument does not name a defined Window.

SEE ALSO
XSetClassHint(3X11), XSetCommand(3X11), XSetlconSizeHints(3X11),
XSetNormaIHints(3X11), XSetSizeHints(3X11), XSetStandardProperties(3Xl1),
XSetTransientForHint(3X11), XSetWMHints(3X11), XSetZoomHints(3X11),
XStoreName(3Xll)

Hewlett-Packard Company -1- Jul 12, 1989

XSetIronSizeHints (3X11) XSetIconSizeHints (3X11)
Series 300 and 800 Only

NAME
XSetIconSizes, XGetIconSizes - set or get icon size hints

SYNOPSIS
XSetIconSizes (display, w, size list, count)

Display ·display; -
Wmdoww;
XIconSize ·size list;
int count; -

Status XGetIconSizes(display, w, size list return, count return)
Display ·display; - - -
Wmdoww;
XIconSize ··size list return;
int ·count Jetum; -

ARGUMENTS
display

count

count return

size list

size list return

w

DESCRIPTION

Specifies the connection to the X server.

Specifies the number of items in the size list.

Returns the number of items in the size list.

Specifies a pointer to the size list.

Returns a pointer to the size list.

Specifies the window.

The XSetIconSizes function is used only by window managers to set the supported icon sizes.

XSetIconSizes can generate BadAlloc and BadWindow errors.

The XGetIconSizes function returns zero if a window manager has not set icon sizes or nonzero
otherwise. XGetIconSizes should be called by an application that wants to find out what icon sizes
would be most appreciated by the window manager under which the application is running. The
application should then use XSetWMHints to supply the window manager with an icon pixmap or
window in one of the supported sizes. To free the data allocated in size _list_return, use XFree.

XGetIconSizes can generate a BadWindow error.

PROPERlY
WM ICON SIZE

DIAGNOSTICS
BadAlloc

BadWindow

SEE ALSO

The server failed to allocate the requested resource or server memory.

A value for a Window argument does not name a defined Window.

XSetClassHint(3X11), XSetCommand(3X11), XSetIconName(3X11), XSetNormalHints(3X11),
XSetSizeHints(3X11), XSetStandardProperties(3X11), XSetTransientForHint(3X11),
XSetWMHints(3X11), XSetZoomHints(3X11), XStoreName(3X11)

Hewlett-Packard Company -1- Ju112, 1989

XSetInputFocus (3X1!) XSetInputFocus (3X1!)
Series 300 and 800 Only

NAME
XSetlnputFocus, XGetlnputFocus - control input focus

SYNOPSIS
XSetlnputFocus (display, focus, revert to, time)

Display ·display; -
Wmdow focus;
int revert to;
Time time;

XGetlnputFocus(display, focus return, revert to return)
Display ·display; - - -
Wmdow .focus return;
int ·revert _ to_return;

ARGUMENTS
display Specifies the connection to the X server.

Specifies the window, Pointer Root, or None.

Returns the focus window, Pointer Root, or None.

focus

focusJetum
reven to Specifies where the input focus reverts to if the window becomes not

viewable. You can pass RevenToParent, RevenToPointerRoot, or
RevenToNone.

reven to return Returns the current focus state (RevertToParent, RevenToPointerRoot, or
RevenToNone).

time Specifies the time. You can pass either a timestamp or CurrentTime.

DESCRIPTION
The XSetlnputFocus function changes the input focus and the last-focus-change time. It has no
effect if the specified time is earlier than the current last-focus-change time or is later than the
current X server time. Otherwise, the last-focus-change time is set to the specified time
(CurrentTime is replaced by the current X server time). XSetlnputFocus causes the X server to
generate Focusln and FocusOut events.

Depending on the focus argument, the following occurs:

• If focus is None, all keyboard events are discarded until a new focus window is set, and the
revert_to argument is ignored.

• If focus is a window, it becomes the keyboard's focus window. If a generated keyboard event
would normally be reported to this window or one of its inferiors, the event is reported as
usual. Otherwise, the event is reported relative to the focus window.

• If focus is Pointer Root, the focus window is dynamically taken to be the root window of
whatever screen the pointer is on at each keyboard event. In this case, the revert to
argument is ignored. -

The specified focus window must be viewable at the time XSetlnputFocus is called, or a BadMatch
error results. If the focus window later becomes not viewable, the X server evaluates the revert to
argument to determine the new focus window as follows: -

• If revert to is RevertToParent, the focus reverts to the parent (or the closest viewable
ancestor), and the new revert_to value is taken to be RevertToNone.

• If revert to is RevertToPointerRoot or RevertToNone, the focus reverts to Pointer Root or
None, respectively. When the focus reverts, the X server generates Focusln and FocusOut
events, but the last-focus-change time is not affected.

XSetlnputFocus can generate Bad Match, BadValue, and BadWindow errors.

The XGetlnputFocus function returns the focus window and the current focus state.

DIAGNOSTICS

Hewlett-Packard Company -1- Jul 12, 1989

XSetInputFocus (3X11)

BadValue

BadWindow

XSetlnputFocus (3X11)
Series 300 and 800 Only

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

A value for a Window argument does not name a defined Window.

SEE ALSO
XWarpPointer(3Xll)

Hewlett-Packard Company -2- Jul 12, 1989

XSetLineAttribute (3X11) XSetLineAttribute (3X11)
Series 300 and 800 Only

NAME
XSetLineAttribute, XSetDashes - GC convience routines

SYNOPSIS
XSetLineAttributes(display, ge, line width, line style, cap style, join style)

Display -display; - - - -
GC ge;
unsigned int line width;
int line style; -
wt cap -style;
int join-=-style;

XSetDashes(display, ge, dash oft'set, dash list, n)
Display -display; - -
GC ge;
int dash oft'set;
char daSh. list [] ;
int n; -

ARGUMENTS
cap_style

dash list

dash_offset

display

gc

join_style

line_style

line width

n
DESCRIPTION

Specifies the line-style and cap-style you want to set for the specified Gc.
You can pass CapNotLast, CapButt, CapRound, or CapProjecting.

Specifies the dash-list for the dashed line-style you want to set for the
specified Gc.
Specifies the phase of the pattern for the dashed line-style you want to set for
the specified Gc.
Specifies the connection to the X server.

Specifies the Gc.
Specifies the line join-style you want to set for the specified Gc. You can
pass loinMiter, loinRound, or loinBevel.

Specifies the line-style you want to set for the specified Gc. You can pass
LineSolid, LineOnOjJDash, or LineDoubleDash.

Specifies the line-width you want to set for the specified Gc.
Specifies the number of elements in dash_list.

The XSetLineAttributes function sets the line drawing components in the specified Gc.
XSetLineAttributes can generate BadAlloc, BadGe, and BadValue errors.

The XSetDashes function sets the dash-offset and dash-list attributes for dashed line styles in the
specified GC. There must be at least one element in the specified dash list, or a BadValue error
results. The initial and alternating elements (second, fourth, and so on) of the dash list are the
even dashes, and the others are the odd dashes. Each element specifies a dash length in pixels.
All of the elements must be nonzero, or a BadValue error results. Specifying an odd-length list is
equivalent to specifying the same list concatenated with itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels into the dash-list the
pattern should actually begin in any single graphics request. Dashing is continuous through path
elements combined with a join-style but is reset to the dash-offset each time a cap-style is applied
at a line endpoint.

The unit of measure for dashes is the same for the ordinary coordinate system. Ideally, a dash
length is measured along the slope of the line, but implementations are only required to match
this ideal for horizontal and vertical lines. Failing the ideal semantics, it is suggested that the
length be measured along the major axis of the line. The major axis is defined as the x axis for
lines drawn at an angle of between -45 and +45 degrees or between 315 and 225 degrees from the
x axis. For all other lines, the major axis is the y axis.

Hewlett-Packard Company -1- Jul 12, 1989

XSetLineAttribute (3X11) XSetLineAttribute (3X11)
Series 300 and 800 Only

XSetDashes can generate BadAlloc, BadGe, and BadValue errors.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server memory.

BadGe A value for a GContext argument does not name a defined GContext.

BadValue

SEE ALSO

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XCreateGC(3Xll), XQueryBestSize(3Xll), XSetArcMode(3Xll), XSetClipOrigin(3Xll),
XSetFillStyle(3X11), XSetFont(3X11), XSetState(3X11), XSetTile(3X11)

Hewlett-Packard Company -2- Ju112,1989

XSetNormaJHints (3X11) XSetNormaJHints (3X11)
Series 300 and 800 Only

NAME
XSetNormalHints, XGetNormalHints - set or get normal state hints

SYNOPSIS
XSetNormalHints (display, w, hints)

Display ·display;
Wmdoww;
XSizeHints .hints;

Status XGetNormalHints(display, w, hints return)
Display .display; -
Wmdoww;
XSizeHints ·hints _return;

ARGUMENTS
display Specifies the connection to the X setver.

hints

hints return

w

Specifies a pointer to the size hints for the window in its normal state.

Returns the size hints for the window in its normal state.

Specifies the window.

DESCRIPTION
The XSetNonnalHints function sets the size hints structure for the specified window. Applications
use XSetNonnalHints to inform the window manager of the size or position desirable for that
window. In addition, an application that wants to move or resize itself should call
XSetNonnalHints and specify its new desired location and size as well as making direct Xlib calls
to move or resize. This is because window managers may ignore redirected configure requests, but
they pay attention to property changes.

To set size hints, an application not only must assign values to the appropriate members in the
hints structure but also must set the flags member of the structure to indicate which information is
present and where it came from. A call to XSetNonnalHints is meaningless, unless the flags
member is set to indicate which members of the structure have been assigned values.

XSetNonnalHints can generate BadAlloc and BadWindow errors.

The XGetNonnalHints function returns the size hints for a window in its normal state. It returns a
nonzero status if it succeeds or zero if the application specified no normal size hints for this
window.

XGetNonnalHints can generate a BadWindow error.

PROPERlY
WM _NORMAL_HINTS

DIAGNOSTICS
BadAlloc

BadWindow

SEE ALSO

The setver failed to allocate the requested resource or setver memory.

A value for a Window argument does not name a defined Window.

XSetCommand(3X11), XSetlconName(3X11), XSetIconSizeHints(3X11), XSetSizeHints(3X11),
XSetStandardProperties(3X11), XSetWMHints(3X11), XSetZoomHints(3Xll),
XStoreName(3X11)

Hewlett-Packard Company -1- Ju112,1989

XSetPointerMapping(3Xll) XSetPointerMapping(3Xll)
Series 300 and 800 Only

NAME
XSetPointerMapping, XGetPointerMapping - manipulate pointer settings

SYNOPSIS
int XSetPointerMapping(display, map, nmap)

Display ·display;
unsigned char map [l;
int nmap;

int XGetPointerMapping(display, map return, nmap)
Display .display; -
unsigned char map return [];
int nmap; -

ARGUMENTS
display Specifies the connection to the X setver.

Specifies the mapping list. map

map Jetum Returns the mapping list.

nmap Specifies the number of items in the mapping list.

DESCRIPTION
The XSetPointerMapping function sets the mapping of the pointer. If it succeeds, the X setver
generates a MappingNotify event, and XSetPointerMapping returns MappingSuccess. Elements of
the list are indexed starting from one. The length of the list must be the same as
XGetPointerMapping would return, or a BadValue error results. The index is a core button
number, and the element of the list defines the effective number. A zero element disables a
button, and elements are not restricted in value by the number of physical buttons. However, no
two elements can have the same nonzero value, or a BadValue error results. If any of the buttons
to be altered are logically in the down state, XSetPointerMapping returns MappingBusy, and the
mapping is not changed.

XSetPointerMapping can generate a BadValue error.

The XGetPointerMapping function returns the current mapping of the pointer. Elements of the list
are indexed starting from one. XGetPointerMapping returns the number of physical buttons
actuailyon the pointer. The nominal mapping for a pointer is the identity mapping: rnap[i] = i.
The nmap argument specifies the length of the array where the pointer mapping is returned, and
only the first nmap elements are returned in map Jeturn.

DIAGNOSTiCS
BadValue Some numeric value falls outside the range of values accepted by the request.

SEE ALSO

Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XChangeKeyboardControl(3Xl1), XChangeKeyboardMapping(3X11)

Hewlett-Packard Company - 1- JuI12,1989

XSetScreenSaver(3X11) XSetScreenSaver (3X11)

NAME

Series 300 and 800 Only

XSetScreenSaver, XForceScreenSaver, XActivateScreenSaver, XResetScreenSaver,
XGetScreenSaver - manipulate the screen saver

SYNOPSIS
XSetScreenSaver(display, timeout, interval, prefer blanking, allow exposures)

Display *display; --
int timeout, interval;
int prefer blanking;
int allow_exposures;

XFor(eScreenSaver(display, mode)
Display *display;
int mode;

XAdivateScreenSaver(display)
Display *display;

XResetScreenSaver(display)
Display *display;

XGetScreenSaver(display, timeout return, interval return, prefer blanking return,
allow exposures return) - --

Display *display; -
int *timeout return, *interval return;
int *prefer bianking return; -
int *allow _exposures-:'return;

ARGUMENTS
allow_exposures Specifies the screen save control values. You can pass DontAllowExposures,

AllowExposures, or DefaultExposures.

allow exposures return
- - Returns the current screen save control value (DontAllowExposures,

AllowExposures, or DefaultExposures).

display

interval

interval return

mode

Specifies the connection to the X setver.

Specifies the interval between screen saver alterations.

Returns the interval between screen saver invocations.

Specifies the mode that is to be applied. You can pass ScreenSaverActive or
ScreenSaverReset.

Specifies how to enable screen blanking. You can pass DontPreferBlanking,
PreferBlanking, or DefaultBlanking.

prefer blanking return
- - Returns the current screen blanking preference (DontPreferBlanking,

PreferBlanking, or DefaultBlanking).

timeout

timeout return

DESCRIPTION

Specifies the timeout, in seconds, until the screen saver turns on.

Returns the timeout, in minutes, until the screen saver turns on.

Timeout and interval are specified in seconds. A timeout of 0 disables the screen saver, and a
timeout of -1 restores the default. Other negative values generate a BadValue error. If the
timeout value is nonzero, XSetScreenSaver enables the screen saver. An interval of 0 disables the
random-pattern motion. If no input from devices (keyboard, mouse, and so on) is generated for
the specified number of timeout seconds once the screen saver is enabled, the screen saver is
activated.

For each screen, if blanking is preferred and the hardware supports video blanking, the screen
simply goes blank. Otherwise, if either exposures are allowed or the screen can be regenerated
without sending Expose events to clients, the screen is tiled with the root window background tile

Hewlett-Packard Company -1- Ju112,1989

XSetScreenSaver(3X11) XSetScreenSaver (3X11)
Series 300 and 800 Only

randomly re-origined each interval minutes. Otherwise, the screens' state do not change, and the
screen saver is not activated. The screen saver is deactivated, and all screen states are restored at
the next keyboard or pointer input or at the next call to XForceScreenSaver with mode
ScreenSaverReset.

If the server-dependent screen saver method supports periodic change, the interval argument
serves as a hint about how long the change period should be, and zero hints that no periodic
change should be made. Examples of ways to change the screen include scrambling the colormap
periodically, moving an icon image around the screen periodically, or tiling the screen with the
root window background tile, randomly re-origined periodically.

XSetScreenSaver can generate a BadVaJue error.

If the specified mode is ScreenSaverActive and the screen saver currently is deactivated;
XForceScreenSaver activates the screen saver even if the screen saver had been disabled with a
timeout of zero. If the specified mode is ScreenSaverReset and the screen saver currently is
enabled, XForceScreenSaver deactivates the screen saver if it was activated, and the activation timer
is reset to its initial state (as if device input had been received).

XForceScreenSaver can generate a BadVaJue error.

The XActivateScreenSaver function activates the screen saver.

The XResetScreenSaver function resets the screen saver.

The XGetScreenSaver function gets the current screen saver values.

DIAGNOSTICS
BadVaJue Some numeric value falls outside the range of values accepted by the request.

Hewlett-Packard Company

Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

-2- Ju112, 1989

XSelectInput (3Xl!) XSelectInput (3Xl!)
Series 300 and 800 Only

NAME
XSelectlnput - select input events

SYNOPSIS
XSelectInput(display, w, event mask)

Display -display; -
Wmdoww;
long event_mask;

ARGUMENTS
display

event mask

w

DESCRIPTION

Specifies the connection to the X server.

Specifies the event mask.

Specifies the window whose events you are interested in.

The XSelectlnput function requests that the X server report the events associated with the
specified event mask. Initially, X will not report any of these events. Events are reported relative
to a window. If a window is not interested in a device event, it usually propagates to the closest
ancestor that is interested, unless the do _ notyropagate mask prohibits it.

Setting the event-mask attribute of a window overrides any previous call for the same window but
not for other client. Multiple clients can select for the same events on the same window with the
following restrictions:

• Multiple clients can select events on the same window because their event masks are
disjoint. When the X server generates an event, it reports it to all interested clients.

• Only one client at a time can select CirculateRequest, ConfigureRequest, or MapRequest
events, which are associated with the event mask SubstrnctureRedirectMask.

• Only one client at a time can select a ResizeRequest event, which is associated with the event
mask ResizeRedirectM ask.

• Only one client at a time can select a ButtonPress event, which is associated with the event
mask ButtonPressMask.

The server reports the event to all interested clients.

XSelectlnput can generate a BadWindow error.

DIAGNOSTICS
BadWindow A value for a Window argument does not name a defined Window.

Hewlett-Packard Company -1- Jul 12, 1989

XSetArcMode (3Xll) XSetArcMode (3X11)
Series 300 and 800 Only

NAME
XSetArcMode, XSetSubwindowMode, XSetGraphicsExposure - GC convience routines

SYNOPSIS
XSetArcMode(display, gc, arc mode)

Display ·display; -
GC gc;
int arc_mode;

XSetSubwindowMode(display, gc, subwindow mode)
Display .display; -
GC gc;
int subwindow _mode;

XSetGraphicsExposures (display, gc, graphics exposures)
Display ·display; -
GC gc;
Bool graphics_exposures;

ARGUMENTS
arc mode

display

Specifies the arc mode. You can pass ArcChord or ArcPieSlice.

Specifies the connection to the X server.

Specifies the Gc. gc

graphics_exposures Specifies a Boolean value that indicates whether you want GraphicsExpose
and NoExpose events to be reported when calling XCopyArea and
XCopyPlane with this Gc.

subwindow mode

DESCRIPTION

Specifies the subwindow mode. You can pass ClipByChildren or
Includelnferiors.

The XSetArcMode function sets the arc mode in the specified Gc.

XSetArcMode can generate BadAl/oc, BadGe, and BadValue errors.

The XSetSubwindowMode function sets the subwindow mode in the specified Gc.

XSetSubwindowMode can generate BadAl/oc, BadGe, and BadValue errors.

The XSetGraphicsExposures function sets the graphics-exposures flag in the specified GC.

XSetGraphicsExposures can generate BadAl/oc, BadGe, and BadValue errors.

DIAGNOSTICS
BadAl/oc

BadGC

BadValue

SEE ALSO

The server failed to allocate the requested resource or server memory.

A value for a GContext argument does not name a defined GContext.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XCreateGC(3X11), XQueryBestSize(3X11), XSetClipOrigin(3X11), XSetFillStyle(3X11),
XSetFont(3X11), XSetLineAttributes(3X11), XSetState(3Xll), XSetTile(3X11)

Hewlett-Packard Company -1- Ju112,1989

xSetClassHint(3X11) xSetClassHint (3X11)
Series 300 and 800 Only

NAME
XSetClassHint, XGetClassHint - set or get class hint

SYNOPSIS
XSetClassHint(display, w, class hints)

Display ·display; -
Window W;
XClassHint .class _hints;

Status XGetClassHint(display, w, class hints return)
Display .display; --
Wmdow w;
XClassHint ·class _hints Jeturn;

ARGUMENTS
class hints Specifies a pointer to a XClassHint structure that is to be used.

class hints retum Returns the XClassHint structure.

display Specifies the connection to the X server.

w Specifies the window.

DESCRIPTION
The XSetClassHint function sets the class hint for the specified window.

XSetClassHint can generate BadAl/oc and BadWindow errors.

The XGetClassHint function returns the class of the specified window. To free res_name and
res_class when finished with the strings, use XFree.

XGetClassHint can generate a BadWindow error.

PROPERlY
WM ClASS

DIAGNOSTICS
BadAlloc

BadWindow

The server failed to allocate the requested resource or server memory.

A value for a Window argument does not name a defined Window.

SEE ALSO
XSetCommand(3Xll), XSetlconName(3X11), XSetlconSizeHints(3Xll),
XSetNorrnaIHints(3X11), XSetSizeHints(3X11), XSetStandardProperties(3Xl1),
XSetTransientForHint(3X11), XSetWMHints(3X11), XSetZoomHints(3Xll),
XStoreName(3X11)

Hewlett-Packard Company -1- Jul 12, 1989

xSetClipOrigin (3X11) xSetClipOrigin (3X11)
Series 300 and 800 Only

NAME
XSetClipOrigin, XSetClipMask, XSetClipRectangles - GC convience routines

SYNOPSIS
XSetClipOrigin(display, gc, clip x origin, clip y origin)

Display .display; - - - -
GC gc;
int clip _x_origin, clip _y _origin;

XSetClipMask(display, gc, pixmap)
Display ·display;
GC gc;
Pixmap pixmap;

XSetClipRectangles(display, gc, clip _x_origin, clip y_ origin, rectangles, n, ordering)
Display ·display;
GC gc;
int clip x origin, clip y origin;
XRectaiigfe rectangles11';
int n;
int ordering;

ARGUMENTS
display

clip x origin
clip -Y=origin

gc

Specifies the connection to the X setver.

Specify the x and y coordinates of the clip-mask origin.

Specifies the Gc.

Specifies the number of rectangl,es. n

ordering Specifies the ordering relations on the rectangles. You can pass Unsorted,
YSorted, YXSorted, or YXBanded.

pixmap Specifies the pixmap or None

rectangles Specifies an array of rectangles tllat define the clip-mask.

DESCRIPTION
The XSetClipOrigin function sets the clip origin in the specified Gc. The clip-mask origin is
interpreted relative to the origin of whatever destination o • .'awable is specified in the graphics
request.

XSetClipOrigin can generate BadAlloc and BadGC errors.

The XSetClipMask function sets the clip-mask in the specified GC to the specified pixmap. If the
clip-mask is set to None, the pixels are are always drawn (regardless of the clip-origin).

XSetClipMask can generate BadAlloc, BadGe, Bad Match, and BadValue errors.

The XSetClipRectangles function changes the clip-mask in the specified GC to the specified list of
rectangles and sets the clip origin. The output is clipped to remain contained within the
rectangles. The clip-origin is interpreted relative to the origin of whatever destination drawable is
specified in a graphics request. The rectangle coordinates are interpreted relative to the clip­
origin. The rectangles should be nonintersecting, or the graphics results will be undefined. Note
that the list of rectangles can be empty, which effectively disables output. This is the opposite of
passing None as the clip-mask in XCreateGe, XChangeGe, and XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with the ordering
argument. This may provide faster operation by the setver. If an incorrect ordering is specified,
the X setver may generate a Bad Match error, but it is not required to do so. If no error is
generated, the graphics results are undefined. Unsorted means the rectangles are in arbitrary
order. YSorted means that the rectangles are nondecreasing in their Y origin. YXSorted
additionally constrains YSorted order in that all rectangles with an equal Y origin are
nondecreasing in their X origin. YXBanded additionally constrains YXSorted by requiring that, for

Hewlett-Packard Company -1- Jul 12, 1989

xSetClipOrigin (3Xll) xSetClipOrigin (3X1!)
Series 300 and 800 Only

every possible Y scantine, aU rectangles that include that scantine have an identical Y origins and
Yextents.

XSetClipRectangles can generate BadAlloc, BadGe, BadMatch, and BadValue errors.

DIAGNOSTICS
BadAlloc

BadGC

BadMatch

BadValue

SEE ALSO

The server failed to allocate the requested resource or server memory.

A value for a GContext argument does not name a defined GContext.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

Some numeric value fans outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XCreateGC(3Xll), XQueryBestSize(3Xll), XSetArcMode(3Xll), XSetFillStyle(3Xll),
XSetFont(3Xll), XSetLineAttributes(3Xll), XSetState(3Xll), XSetTite(3Xll)

Hewlett-Packard Company -2- JuI12,1989

XSetCloseDownMode (3X11) XSetCloseDownMode (3X11)
Series 300 and 800 Only

NAME
XSetCloseDownMode, XKillClient - control clients

SYNOPSIS
XSetCloseDownMode(display, close mode)

Display *display; -
int close_mode;

XKiIlClient (display, resource)
Display *display;
XID resource;

ARGUMENTS
close mode

display

Specifies the client close-down mode. You can pass DestroyAll,
RetainPermanent, or RetainTemporary.

Specifies the connection to the X setver.

resource Specifies any resource associated with the client that you want to destroy or
AIITemporary.

DESCRIPTION
The XSetCloseDownMode defines what will happen to the client's resources at connection close.
A connection starts in DestroyAll mode. For information on what happens to the client's
resources when the close_mode argument is RetainPermanent or RetainTemporary, see section 2.6.

XSetCloseDownMode can generate a BadValue error.

The XKillClient function forces a close-down of the client that created the resource if a valid
resource is specified. If the client has already terminated in either RetainPermanent or
RetainTemporary mode, all of the client's resources are destroyed. If AllTemporary is specified, the
resources of all clients that have terminated in RetainTemporary are destroyed (see section 2.6).
This permits implementation of window manager facilities that aid debugging. A client can set its
close-down mode to RetainTemporary. If the client then crashes, its windows would not be
destroyed. The programmer can then inspect the application's window tree and use the window
manager to destroy the zombie windows.

XKillClient can generate a BadValue error.

DIAGNOSTICS
BadValue Some numeric value falls outside the range of values accepted by the request.

Hewlett-Packard Company

Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

-1- Ju112,1989

XSetCommand (3Xll) XSetCommand (3X11)
Series 300 and 800 Only

NAME
XSetCommand - set command atom

SYNOPSIS
XSetCommand (display, w, argv, argc)

Display .display;

ARGUMENTS
argc

Wmdoww;
char .·argv;
int argc;

argv

display

w

DESCRIPTION

Specifies the number of arguments.

Specifies the application's argument list.

Specifies the connection to the X setver.

Specifies the window.

The XSetCommand function sets the command and arguments used to invoke the application.
(Typically, argv is the argv array of your main program.)

XSetCommand can generate BadAlloc and BadWindow errors.

PROPER'IY
WM COMMAND

DIAGNOSTICS
BadAl/oc

BadWindow

The server failed to allocate the requested resource or server memory.

A value for a Window argument does not name a defined Window.

SEE ALSO
XSetClassHint(3X11), XSetlconName(3X11), XSetlconSizeHints(3X11),
XSetNormalHints(3X11), XSetSizeHints(3X11), XSetStandardProperties(3X11),
XSetTransientForHint(3X11), XSetWMHints(3X11), XSetZoomHints(3Xll),
XStoreName(3X11)

Hewlett-Packard Company -1- Jul 12, 1989

XSetErrorHandler (3X11) XSetErrorHandler(3X11)

NAME

Series 300 and 800 Only

XSetErrorHandler, XGetErrorText, XDisplayName, XSetlOErrorHandler,
XGetErrorDatabaseText - default error handlers

SYNOPSIS
XSetErrorHandler(handler)

int (·handler)(Display ., XErrorEvent .)

XGetErrorrext(display, code, buffer return, length)
Display ·display; -
int code;
char ·buffer return;
int length; -

char .XDisplayName(string)
char .string;

XSetIOErrorHandler(handler)
int (.handler)(Display .);

XGetErrorDatabaseText(display, name, message, default string, buffer return, length)
Display·display; --
char .name, ~essage;
char .default string;
char ·buffer return;
int length; -

ARGUMENTS
buffer ...!etum Returns the error description.

code

default_string

display

handler

length

message
name

Specifies the error code for which you want to obtain a description.

Specifies the default error message if none is found in the database.

Specifies the connection to the X server.

Specifies the program's supplied error handler.

Specifies the size of the buffer.

Specifies the type of the error message.

Specifies the name of the application.

string Specifies the character string.

DESCRIPTION
Xlib generally calls the program's supplied error handler whenever an error is received. It is not
called on BadName errors from OpenFont, LookupColor, or AllocNamedColor protocol requests
or on BadFont errors from a QueryFont protocol request. These errors generally are reflected
back to the program through the procedural interface. Because this condition is not assumed to
be fatal, it is acceptable for your error handler to return. However, the error handler should not
call any functions (directly or indirectly) on the display that will generate protocol requests or that
will look for input events.

The XGetEITorText function copies a null-terminated string describing the specified error code
into the specified buffer. It is recommended that you use this function to obtain an error
description because extensions to Xlib may define their own error codes and error strings.

The XDisplayName function returns the name of the display that XOpenDisplay would attempt to
use. If a NULL string is specified, XDisplayName looks in the environment for the display and
returns the display name that XOpenDisplay would attempt to use. This makes it easier to report
to the user precisely which display the program attempted to open when the initial connection
attempt failed.

The XSetIOEITorHandier sets the fatal I/O error handler. Xlib calls the program's supplied error
handler if any sort of system call error occurs (for example, the connection to the server was lost).
This is assumed to be a fatal condition, and the called routine should not return. If the I/O error

Hewlett-Packard Company -1- Ju112, 1989

XSetErrorHandler (3XU) XSetErrorHandler(3X11)
Series 300 and 800 Only

handler does return, the client process exits.

The XGetEnvrDatabaseText function returns a message (or the default message) from the error
message database. Xlib uses this function internally to look up its error messages. On a UNIX­
based system, the error message database is /usr/lib/Xll/XEnvrDB.

The name argument should generally be the name of your application. The message argument
should indicate which type of error message you want. Xlib uses three predefined message types
to report errors (uppercase and lowercase matter):

XProtoError

XlibMessage

XRequest

SEE ALSO
XSynchronize(3X11)

Hewlett-Packard Company

The protocol error number is used as a string for the message argument.

These are the message strings that are used internally by the library.

The major request protocol number is used for the message argument. If no
string is found in the error database, the default string is returned to the
buffer argument. -

-2- Ju112,1989

XSendEvent(3Xll) XSendEvent (3Xll)
Series 300 and 800 Only

NAME
XSendEvent, XDisplayMotionBufferSize, XGetMotionEvents - send events

SYNOPSIS
Status XSendEvent(display, w, propagate, event mask, event send)

Display ·display; --
Window w;
Bool propagate;
long event mask;
XEvent ·eVent_ send;

unsigned long XDisplayMotionBuft'erSize(display)
Display *display;

XTimeCoord *XGetMotionEvents(display, w, start, stop, nevents return)
Display ·display; -
Window w;
Time start, stop;
int *nevents Jeturn;

ARGUMENTS
display

event mask

event send

nevents return

propagate

start

Specifies the connection to the X server.

Specifies the event mask.

Specifies a pointer to the event that is to be sent.

Returns the number of events from the motion history buffer.

Specifies a Boolean value.

stop Specify the time intetval in which the events are returned from the motion
history buffer. You can pass a timestamp or CUlrentTime.

w Specifies the destination window.

DESCRIPTION
The XSendEvent function identifies the destination window, determines which clients should
receive the specified events, and ignores any active grabs. This function requires you to pass an
event mask. For a discussion of the valid event mask names, see section 8.3. This function uses
the w argument to identify the destination window as follows:

• If w is PointerWindow, the destination window is the window that contains the pointer.

• Ifw is InputFocus and if the focus window contains the pointer, the destination window is
the window that contains the pointer; otherwise, the destination window is the focus window.

To determine which clients should receive the specified events, XSendEvent uses the propagate
argument as follows:

• If event_mask is the empty set, the event is sent to the client that created the destination
window. If that client no longer exists, no event is sent.

• If propagate is False, the event is sent to every client selecting on destination any of the event
types in the event_mask argument.

• If propagate is True and no clients have selected on destination any of the event types in
event-mask, the destination is replaced with the closest ancestor of destination for which
some client has selected a type in event-mask and for which no intervening window has that
type in its do-not-propagate-mask. If no such window exists or if the window is an ancestor
of the focus window and InputFocus was originally specified as the destination, the event is
not sent to any clients. Otherwise, the event is reported to every client selecting on the final
destination any of the types specified in event_mask.

The event in the XEvent structure must be one of the core events or one of the events defined by
an extension (or a BadValue error results) so that the X server can correctly byte-swap the
contents as necessary. The contents of the event are otherwise unaltered and unchecked by the X

Hewlett-Packard Company -1- Jul 12, 1989

XSendEvent(3Xll) XSendEvent(3X11)
Series 300 and 800 Only

8etver except to force send event to 'Due in the forwarded event and to set the serial number in
the event correctly. -

XSendEvent returns zero if the conversion to wire protocol format failed and returns nonzero
otherwise. XSendEvent can generate BadValue and BadWindow errors.

The setver may retain the recent history of the pointer motion and do so to a finer granularity
than is reported by MotionNotify events. The XGetMotionEvents function makes this history
available.

The XGetMotionEvents function returns all events in the motion history buffer that fall between
the specified start and stop times, inclusive, and that have coordinates that lie within the specified
window (including its borders) at its present placement. If the start time is later than the stop time
or if the start time is in the future, no events are returned. If the stop time is in the future, it is
equivalent to specifying CurrentTime. XGetMotionEvents can generate a BadWindow error.

DIAGNOSTICS
BadValue Some numeric value falls outside the range of values accepted by the request.

Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

BadWindow A value for a Window argument does not name a defined Window.

SEE ALSO
XIfEvent(3X11), XNextEvent(3X11), XPutBackEvent(3Xll)

Hewlett-Packard Company -2- Jul 12, 1989

XSetFillStyle(3X11) XSetFillStyle(3X11)
Series 300 and 800 Only

NAME
XSetFillStyle, XSetFillRuie - GC convience routines

SYNOPSIS
XSetFiIIStyle(display, gc, fill style)

Display -display; -
GC gc;
int filt style;

XSetFiIIRule(display, gc, fill rule)
Display -display; -
GC gc;
int fill_rule;

ARGUMENTS
display

fill rule

gc
DESCRIPfION

Specifies the connection to the X setver.

Specifies the fill-rule you want to set for the specified Gc. You can pass
EvenOddRule or WindingRule.

Specifies the fill-style you want to set for the specified Gc. You can pass
FillSolid, FillTiled, FillStippled, or FillOpaqueStippled.

Specifies the Gc.

The XSetFillStyle function sets the fill-style in the specified Gc.

XSetFillStyle can generate BadAlloc, BadGe, and BadValue errors.

The XSetFillRule function sets the fill-rule in the specifiedGC.

XSetFillRule can generate BadAlloc, BadGe, and BadValue errors.

DIAGNOSTICS
BadAlloc

BadGe

BadValue

SEE ALSO

The setver failed to allocate the requested resource or setver memory.

A value for a GContext argument does not name a defined GContext.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XCreateGC(3Xll), XQueryBestSize(3Xll), XSetArcMode(3Xll), XSetClipOrigin(3Xll),
XSetFont(3Xll), XSetLineAttributes(3Xll), XSetState(3Xll), XSetTile(3Xll)

Hewlett-Packard Companv -1- Jul 12, 1989

XSetSelectionOwner (3X11) XSetSelectionOwner(3X11)
Series 300 and 800 Only

NAME
XSetSelectionOwner, XGetSelectionOwner, XConvertSelection - manipulate window selection

SYNOPSIS
XSetSelectionOwner(display, selection, owner, time)

Display ·display;
Atom selection;
Window owner;
Time time;

Wmdow XGetSelectionOwner(display, selection)
Display ·display;
Atom selection;

XConvertSelection(display, selection, target, property, requestor, time)
Display .display;
Atom selection, target;
Atom property;
Wmdow requestor;
Time time;

ARGUMENTS
display Specifies the connection to the X server.

owner Specifies the owner of the specified selection atom. You can pass a window
or None.

Specifies the property name. You also can pass None.

Specifies the requestor.

Specifies the selection atom.

Specifies the target atom.

property

requestor

selection

target

time Specifies the time. You can pass either a timestamp or CurrentTime.

DESCRIPTION
The XSetSelectionOwner function changes the owner and last-change time for the specified
selection and has no effect if the specified time is earlier than the current last-change time of the
specified selection or is later than the current X server time. Othetwise, the last-change time is set
to the specified time, with CurrentTime replaced by the current server time. If the owner window
is specified as None, then the owner of the selection becomes None (that is, no owner).
Othetwise, the owner of the selection becomes the client executing the request.

If the new owner (whether a client or None) is not the same as the current owner of the selection
and the current owner is not None, the current owner is sent a Selection Clear event. If the client
that is the owner of a selection is later terminated (that is, its connection is closed) or if the owner
window it has specified in the request is later destroyed, the owner of the selection automatically
reverts to None, but the last-change time is not affected. The selection atom is uninterpreted by
the X server. XGetSelectionOwner returns the owner window, which is reported in
SelectionRequest and Selection Clear events. Selections are global to the X server.

XSetSelectionOwner can generate BadAtom and BadWindow errors.

The XGetSelectionOwner function returns the window ID associated with the window that
currently owns the specified selection. If no selection was specified, the function returns the
constant None. If None is returned, there is no owner for the selection.

XGetSelectionOwner can generate a BadAtom error.

XConvenSelection requests that the specified selection be converted to the specified target type:

• If the specified selection has an owner, the X server sends a SelectionRequest event to that
owner.

• If no owner for the specified selection exists, the X server generates a SelectionNotify event
to the requestor with property None.

Hewlett-Packard Company -1- Ju112, 1989

XSetSelectionOwner (3X11) XSetSelectionOwner (3X11)
Series 300 and 800 Only

In either event, the arguments are passed on unchanged. There are two predefined selection
atoms: PRIMARY and SECONDARY.

XConvenSelection can generate BadAtom and BadWindow errors.

DIAGNOSTICS
BadAtom A value for an Atom argument does not name a defined Atom.

BadWindow A value for a Window argument does not name a defined Window.

Hewlett-Packard Company -2- Ju112, 1989

XSetSizeHints (3Xll) XSetSizeHints (3X1!)
Series 300 and 800 Only

NAME
XSetSizeHints, XGetSizeHints - set or get window size hints

SYNOPSIS
XSetSizeHints(display, w, hints, property)

Display ·display;
Wmdoww;
XSizeHints .hints;
Atom property;

Status XGetSizeHints(display, w, hints return, property)
Display .display; -
Wmdoww;
XSizeHints .hints return;
Atom property; -

ARGUMENTS
display
hints

hints return

property
w

DESCRIPTION

Specifies the connection to the X server.

Specifies a pointer to the size hints.

Returns the size hints.

Specifies the property name.

Specifies the window.

The XSetSizeHints function sets the XSizeHints structure for the named property and the specified
window. This is used by XSetNormalHints and XSetZoomHints, and can be used to set the value
of any property of type WM SIZE HINTS. Thus, it may be useful if other properties of that type
get defined. --

XSetSizeHints can generate BadAlloc, BadAtom, and BadWindow errors.

XGetSizeHints returns the XSizeHints structure for the named property and the specified window.
This is used by XGetNormalHints and XGetZoomHints. It also can be used to retrieve the value of
any property of type WM SIZE HINTS. Thus, it may be useful if other properties of that type
get defined. XGetSizeHints returns a nonzero status if a size hint was defined or zero otherwise.

XGetSizeHints can generate BadAtom and BadWindow errors.

DIAGNOSTICS
BadAl/oc The server failed to allocate the requested resource or server memory.

BadAtom

BadWindow

SEE ALSO

A value for an Atom argument does not name a defined Atom.

A value for a Window argument does not name a defined Window.

XSetClassHint(3X11), XSetCommand(3X11), XSetIconName(3X11), XSetIconSizeHints(3X11),
XSetNonnaIHints(3X11), XSetStandardProperties(3X11), XSetTransientForHint(3X11),
XSetWMHints(3X11), XSetZoomHints(3X11), XStoreName(3X11)

Hewlett-Packard Company -1- Ju112, 1989

XSetStandardColormap (3X11) XSetStandardColormap (3X11)
Series 300 and 800 Only

NAME
XSetStandardColormap, XGetStandardColormap - set or get standard colormaps

SYNOPSIS
XSetStandardColormap(display, w, eolormap, property)

Display ·display;
Wmdoww;
XStandardColormap .eolormap;
Atom property; ,. RGB _ BEST_MAP, ete •• ,

Status XGetStandardColormap(display, w, eolormap return, property)
Display ·display; -
Window w;
XStandardColormap .eolormap return;
Atom property; ,. RGB _BEST_MAP, ete •• ,

ARGUMENTS
colormap

colormap Jetum

display

property

w

Specifies the colormap.

Returns the colormap associated with the specified atom.

Specifies the connection to the X setver.

Specifies the property name.

Specifies the window.

DESCRIPTION 11>
The XSetStandardColormap function usually is only used by window managers. To create a
standard colormap, follow this procedure:

1. Open a new connection to the same setver.

2. Grab the setver.

3. See if the property is on the property list of the root window for the screen.

4. If the desired property is not present:

• Create a colormap (not required for RGB_DEFAULT_MAP)

• Determine the color capabilities of the display.

• Call XAllocColorPlanes or XAllocColorCells to allocate cells in the colormap.

• Call XStoreColors to store appropriate color values in the colormap.

• Fill in the descriptive members in the XStandardColormap structure.

• Attach the property to the root window.

• Use XSetCloseDownMode to make the resource permanent.

S. Ungrab the setver.

XSetStandardColormap can generate BadAlloc, BadAtom, and BadWindow errors.

The XGetStandardColormap function returns the colormap definition associated with the atom
supplied as the property argument. For example, to fetch the standard GrayScale colormap for a
display, you use XGetStandardColormap with the following syntax:

XGetStandardColormap(dpy, DefaultRootWindow(dpy), &cmap, XA _ RGB _GRAY_MAP);

Once you have fetched a standard colormap, you can use it to convert RGB values into pixel
values. For example, given an XStandardColormap structure and floating-point RGB coefficients
in the range 0.0 to 1.0, you can compose pixel values with the following C expression:

pixel = base yixel
+ ((unsigned long) (0.5 + r * red max)) * red mult
+ ((unsigned long) (05 + g * green max)) * green mult
+ ((unsigned long) (05 + b * blue_max)) * blue _ mult;

Hewlett-Packard Company -1- Ju112, 1989

XSetStandardColormap (3Xll) XSetStandardColormap (3Xll)
Series 300 and 800 Only

The use of addition rather than logical OR for composing pixel values permits allocations where
the RGB value is not aligned to bit boundaries.

XGetStandardColonnap can generate BadAtom and BadWindow errors.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server memory.

BadAtom

BadWindow

Hewlett-Packard Company

A value for an Atom argument does not name a defined Atom.

A value for a Window argument does not name a defined Window.

-2- Ju112,1989

XSetStandardProperties (3X11) XSetStandardProperties (3X11)
Series 300 and 800 Only

NAME
XSetStandardProperties - set standard window manager properties

SYNOPSIS
XSetStandardProperties(display, w, window_name, icon_name, iconyixmap, argv, argc, hints)

Display -display;
Window w;
char ~indow name;
char -icon name;
Pixmap icon yixmap;
char **argv;
int argc;
XSizeHints -hints;

ARGUMENTS
argc

argv

display

hints

icon name

icon "'pixmap

w

window name

DESCRIPTION

Specifies the number of arguments.

Specifies the application's argument list.

Specifies the connection to the X server.

Specifies a pointer to the size hints for the window in its normal state.

Specifies the icon name, which should be a null-terminated string.

Specifies the bitmap that is to be used for the icon or None

Specifies the window.

Specifies the window name, which should be a null-terminated string.

The XSetStandardProperties function provides a means by which simple applications set the most
essential properties with a single call. XSetStandardProperties should be used to give a window
manager some information about your program's preferences. It should not be used by
applications that need to communicate more information than is possible with
XSetStandardProperties (Typically, argv is the argv array of your main program.)

XSetStandardProperties can generate BadAlloc and BadWindow errors.

PROPERTIES
WM _NAME, WM }CON _NAME, WM _HINTS, WM _COMMAND, and WM _NORMALHINTS

DIAGNOSTICS
BadAlloc

BadWindow

SEE ALSO

The server failed to allocate the requested resource or server memory.

A value for a Window argument does not name a defined Window.

XSetClassHint(3X11), XSetCommand(3X11), XSetIconName(3X11), XSetIconSizeHints(3X11),
XSetNormaIHints(3X11), XSetSizeHints(3X11), XSetTransientForHint(3X11),
XSetWMHints(3X11), XSetZoomHints(3X11), XStoreName(3X11)

Hewlett-Packard Company -1- Jul 12, 1989

XSetState (3X11) XSetState(3X11)
Series 300 and 800 Only

NAME
XSetState, XSetFunction, XSetPlanemask, XSetForeground, XSetBackground - GC convience
routines

SYNOPSIS
XSetState(display, gc, foreground, background, function, plane mask)

Display -display; -
GC gc;
unsigned long foreground, background;
int function;
unsigned long plane_mask;

XSetFundion(display, gc, function)
Display -display;
GC gc;
int function;

XSetPlaneMask(display, gc, plane mask)
Display -display; -
GC gc;
unsigned long plane_mask;

XSetForeground(display, gc, foreground)
Display -display;
GC gc;
un~igned long foreground;

XSetBackground(display, gc, background)
Display -display;
GC gc;
unsigned long background;

ARGUMENTS
background

display

foreground

function

gc

Specifies the background you want to set for the specified Gc.
Specifies the connection to the X server.

Specifies the foreground you want to set for the specified Gc.
Specifies the function you want to set for the specified Gc.
Specifies the Gc.

plane mask Specifies the plane mask.

DESCRIPTION
The XSetState function sets the foreground, background, plane mask, and function components for
the specified Gc.
XSetState can generate BadAlloc, BadGe, and BadValue errors.

XSetFunction sets a specified value in the specified Gc.
XSetFunction can generate BadAlloc, BadGe, and BadValue errors.

The XSetPlaneMask function sets the plane mask in the specified Gc.
XSetPlaneMask can generate BadAlloc and BadGe errors.

The XSetForeground function sets the foreground in the specified Gc.
XSetForeground can generate BadAlloc and BadGe errors.

The XSetBackground function sets the background in the specified GC.

XSetBackground can generate BadAlloc and BadGe errors.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server memory.

Hewlett-Packard Company -1- Jul 12, 1989

XSetState (3X11)

BadGe

BadValue

SEE ALSO

XSetState (3X11)
Series 300 and 800 Only

A value for a GContext argument does not name a defined GContext.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XCreateGC(3Xll), XQueryBestSize(3Xll), XSetArcMode(3Xll), XSetClipOrigin(3Xll),
XSetFillStyle(3Xll), XSetFont(3Xll), XSetLineAttributes(3Xll), XSetTile(3Xll)

Hewlett-Packard Company -2- Ju112,1989

XSetTlle(3X11) XSetTlle(3X11)
Series 300 and 800 Only

NAME
XSetTile, XSetStipple, XSetTSOrigin - GC convience routines

SYNOPSIS
XSetTile(display, ~, tile)

Display ·display;
GC~;
Pixmap tile;

XSetStipple(display, ~, stipple)
Display ·display;
GC~;
Pixmap stipple;

XSetTSOrigin(display, ~, ts_x_origin, tsy_origin)
Display .display;
GC ~;
int ts _x_origin, ts y _origin;

ARGUMENTS
display

gc

stipple

tile

ts _x_origin

Specifies the connection to the X server.

Specifies the Gc.

Specifies the stipple you want to set for the specified GC.

Specifies the fill tile you want to set for the specified GC.

ts y _origin Specify the x and y coordinates of the tile and stipple origin.

DESCRIPTION
The XSetTile function sets the fill tile in the specified Gc. The tile and GC must have the same
depth, or a BadMatch error results.

XSetTile can generate BadAlloc, BadGe, Bad Match, and BadPixmap errors.

The XSetStipple function sets the stipple in the specified GC. The stipple and GC must have the
same depth, or a BadMatch error results.

XSetStipple can generate BadAlloc, BadGe, BadMatch, and BadPixmap errors.

The XSetTSOrigin function sets the tile/stipple origin in the specified Gc. When graphics
requests call for tiling or stippling, the parent's origin will be interpreted relative to whatever
destination drawable is specified in the graphics request.

XSetTSOrigin can generate BadAlloc and BadGC errors.

DIAGNOSTICS
BadAlloc

BadGC

Bad Match

BadPixmap

SEE ALSO

The server failed to allocate the requested resource or server memory.

A value for a GContext argument does not name a defined GContext.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

A value for a Pixmap argument does not name a defined Pixmap.

XCreateGC(3X11), XQueryBestSize(3X11), XSetArcMode(3Xll), XSetClipOrigin(3X11),
XSetFiIIStyle(3X11), XSetFont(3X11), XSetLineAttributes(3X11), XSetState(3X11)

Hewlett-Packard Company -1- Jul 12, 1989

XSetTransientForHint (3Xll) XSet'IransientForHint (3Xll)
Series 300 and 800 Only

NAME
XSetTransientForHint, XGetTransientForHint - set or get transient for hint

SYNOPSIS
XSetTransientForHint(display, w, prop window)

Display .display; -
Window w;
Window prop_window;

Status XGetTransientForHint(display, w, prop window return)
Display .display; --
Window w;
Wmdow ·prop _window Jeturn;

ARGUMENTS
display

w

Specifies the connection to the X setver.

Specifies the window.

prop _window Specifies the window that the WM TRANSIENT FOR property is to be set
~ --

prop_window..!eturn Returns the WM _TRANSIENT_FOR property of the specified window.

DESCRIPTION
The XSetTransientForHint function sets the WM TRANSIENT FOR property of the specified
window to the specified prop_window. - -

XSetTransientForHint can generate BadAl/oc and BadWindow errors.

The XGetTransientForHint function returns the WM TRANSIENT FOR property for the
specified window. --

XGetTransientForHint can generate a BadWindow error.

PROPER'IY
WM TRANSIENT FOR - -

DIAGNOSTICS
BadAlloc

BadWindow

SEE ALSO

The setver failed to allocate the requested resource or setver memory.

A value for a Window argument does not name a defined Window.

XSetClassHint(3X11), XSetCommand(3X11), XSetIconName(3X11), XSetIconSizeHints(3X11),
XSetNormaIHints(3X11), XSetSizeHints(3X11), XSetStandardProperties(3X11),
XSetWMHints(3X11), XSetZoomHints(3X11), XStoreName(3X11)

Hewlett-Packard Company -1- Ju112,1989

XSetWMHints(3Xll) XSetWMHints (3X11)
Series 300 and 800 Only

NAME
XSetWMHints, XGetWMHints - set or get window manager hints

SYNOPSIS
XSetWMHints(display, w, wmbints)

Display -display;
Window W;
XWMHints *wmhints;

XWMHints .XGetWMHints(display, w)
Display .display;
Wmdoww;

ARGUMENTS
display
w

wmhints

DESCRIPTION

Specifies the connection to the X server.

Specifies the window.

Specifies a pointer to the window manager hints.

The XSetWMHints function sets the window manager hints that include icon information and
location, the initial state of the window, and whether the application relies on the window manager
to get keyboard input.

XSetWMHints can generate BadAlloc and BadWindow errors.

The XGetWMHints function reads the window manager hints and returns NULL if no
WM _ HINfS property was set on the window or a pointer to a XWMHints structure if it succeeds.
When finished with the data, free the space used for it by calling XFree.

XGetWMHints can generate a BadWindow error.

PROPERlY
WM HINfS

DIAGNOSTICS
BadAlloc

BadWindow

SEE ALSO

The server failed to allocate the requested resource or server memory.

A value for a Window argument does not name a defined Window.

XSetOassHint(3X11), XSetCommand(3X11), XSetIconName(3X11), XSetlconSizeHints(3X11),
XSetNormaIHints(3X11), XSetSizeHints(3X11), XSetStandardProperties(3X11),
XSetTransientForHint(3X11), XSetZoomHints(3X11), XStoreName(3X11)

Hewlett-Packard Company - 1- Ju112,1989

XSetZoomHints (3X1l)
Series 300 and 800 Only

NAME
XSetZoomHints, XGetZoomHints - set or get zoom state hints

SYNOPSIS
XSetZoomHints (display, w, zhints)

Display *display;
Wmdoww;
XSizeHints *zhints;

Status XGetZoomHints(display, w, zhints return)
Display *display; -
Window w;
XSizeHints *zhints Jeturn;

ARGUMENTS
display

w

zhints

zhints return

DESCRIPTION

Specifies the connection to the X server.

Specifies the window.

Specifies a pointer to the zoom hints.

Returns the zoom hints.

XSetZoomHints (3X1l)

Many window managers think of windows in one of three states: iconic, normal, or zoomed. The
XSetZoomHints function provides the window manager with information for the window in the
zoomed state.

XSetZoomHints can generate BadAlloc and BadWindow errors.

The XGetZoomHints function returns the size hints for a window in its zoomed state. It returns a
nonzero status if it succeeds or zero if the application specified no zoom size hints for this window.

XGetZoomHints can generate a BadWindow error.

PROPERlY
WM ZOOM HINTS - -

DIAGNOSTICS
BadAlloc

BadWindow

The server failed to allocate the requested resource or setver memory.

A value for a Window argument does not name a defined Window.

SEE ALSO
XSetClassHint(3X11), XSetCommand(3X11), XSetlconName(3X11), XSetlconSizeHints(3X11),
XSetNormalHints(3X11), XSetSizeHints(3X11), XSetStandardProperties(3X11),
XSetTransientForHint(3X11), XSetWMHints(3X11), XStoreName(3X11)
Xlib - C Language X Interface

Hewlett-Packard Company -1- Jul 13, 1989

XStoreBytes (3Xll)
'~ies 300 and 800 Only

XStoreBytes (3Xll)

NAME
XStoreBytes, XStoreBuffer, XFetchBytes, XFetchBuffer, XRotateBuffers - manipulate cut and
paste buffers

SYNOPSIS
XStoreBytes (display, bytes, nbytes)

Display .display;
char ·bytes;
int nbytes;

XStoreBuffer(display, bytes, nbytes, buffer)
Display ·display;
char ·bytes;
int nbytes;
int buffer;

char .XFetchBytes (display, nbytes return)
Display .display; -
int .nbytes _return;

char .XFetchBuffer(display, nbytes return, buffer)
Display ·display; -
int ·nbytes return;
int buffer; -

XRotateBuffers (display, rotate)
Display .display;

ARGUMENTS
buffer

int rotate;

bytes

display

nbytes

nbytes _return

rotate

DESCRIPTION

Specifies the buffer in which you want to store the bytes or from which you
want the stored data returned.

Specifies the bytes, which are not necessarily ASCII or null-terminated.

Specifies the connection to the X setver.

Specifies the number of bytes to be stored.

Returns the number of bytes in the buffer.

Specifies how much to rotate the cut buffers.

Note that the cut buffer's contents need not be text, so zero bytes are not special. The cut buffer's
contents can be retrieved later by any client calling XFetchBytes.

XStoreBytes can generate a BadAl/oc error.

If the property for the buffer has never been created, a BadAtom error results.

XStoreBuffer can generate BadAl/oc and BadAtom errors.

The XFetchBytes function returns the number of bytes in the nbytes return argument, if the buffer
contains data. Otherwise, the function returns NULL and sets nbytes to O. The appropriate
amount of storage is allocated and the pointer returned. The client must free this storage when
finished with it by calling XFree. Note that the cut buffer does not necessarily contain text, so it
may contain embedded zero bytes and may not terminate with a null byte.

The XFetchBuffer function returns zero to the nbytes Jeturn argument if there is no data in the
buffer.

XFetchBuffer can generate a BadValue error.

The XRotateBuffers function rotates the cut buffers, such that buffer 0 becomes buffer n, buffer 1
becomes n + 1 mod 8, and so on. This cut buffer numbering is global to the display. Note that
XRotateBuffers generates BadMatch errors if any of the eight buffers have not been created.

Hewlett-Packard Company -1- Jul 12, 1989

XStoreBytes (3X1!) XStoreBytes (3X1l)
Series 300 and 800 Only

XRotateBuffers can generate a BadMatch error.

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server memory.

BadAtom

Bad Match

BadValue

Hewlett-Packard Company

A value for an Atom argument does not name a defined Atom.

Some argument or pair of arguments has the correct type and range but fails
to match in some other way required by the request.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

-2- Jul12,1989

XStoreColors (3X11) XStoreColors (3X11)
Series 300 and 800 Only

NAME
XStoreColors, XStoreColor, XStoreNamedColor - set colors

SYNOPSIS
XStoreColors (display, colormap, color, llColors)

Display .display;
Colormap colormap;
XColor color[];
int ncolors;

XStoreColor(display, colormap, color)
Display .display;
Colormap colormap;
XColor ·color;

XStoreNamedColor(display, colormap, color, pixel, fDgs)
Display ·display;
Colormap colormap;
char .color;
unsigned long pixel;
int flags;

ARGUMENTS
color Specifies the pixel and RGB values or the color name string (for example,

red).

color

colonnap

display

flags

ncolors

pixel

DESCRIPTION

Specifies an array of color definition structures to be stored.

Specifies the colormap.

Specifies the connection to the X setver.

Specifies which red, green, and blue components are set.

Specifies the number of XColor structures in the color definition array.

Specifies the entry in the colormap.

The XStoreColors function changes the colormap entries of the pixel values specified in the pixel
members of the XColor structures. You specify which color components are to be changed by
setting DoRed, DoGreen, or DoBlue in the flags member of the XColor structures. If the colormap
is an installed map for its screen, the changes are visible immediately. XStoreColors changes the
specified pixels if they are allocated writable in the colormap by any client, even if one or more
pixels generates an error. If a specified pixel is not a valid index into the colormap, a BadValue
error results. If a specified pixel either is unallocated or is allocated read-only, a BadAccess error
results. If more than one pixel is in error, the one that gets reported is arbitrary.

XStoreColors can generate BadAccess, BadColor, and BadValue errors.

The XStoreColor function changes the colormap entry of the pixel value specified in the pixel
member of the XColor structure. You specified this value in the pixel member of the XColor
structure. This pixel value must be a read/write cell and a valid index into the colormap. If a
specified pixel is not a valid index into the colormap, a BadValue error results. XStoreColor also
changes the red, green, and/or blue color components. You specify which color components are
to be changed by setting DoRed, DoGreen, or DoBlue in the flags member of the XColor structure.
If the colormap is an installed map for its screen, the changes are visible immediately.

XStoreColor can generate BadAccess, BadColor, and BadValue errors.

The XStoreNamedColor function looks up the named color with respect to the screen associated
with the colormap and stores the result in the specified colormap. The pixel argument determines
the entry in the coiormap. The flags argument determines which of the red, green, and blue
components are set. You can set this member to the bitwise inclusive OR of the bits DoRed,
DoGreen, and DoBlue. If the specified pixel is not a valid index into the colormap, a BadValue
error results. If the specified pixel either is unallocated or is allocated read-only, a BadAccess

Hewlett-Packard Company - 1- Jul 12, 1989

XStoreColors (3Xll) XStoreColors (3Xll)
Series 300 and 800 Only

error results. You should use the ISO Latin-1 encoding; uppercase and lowercase do not matter.

XStoreNamedColor can generate BadAccess, BadColor, BadName, and BadValue errors.

DIAGNOSTICS
BadAccess A Client attempted to free a color map entry that it did not already allocate.

BadAccess

BadColor

BadName

BadValue

SEE ALSO

A client attempted to store into a read-only color map entry.

A value for a Colormap argument does not name a defined Colormap.

A font or color of the specified name does not exist.

Some numeric value falls outside the range of values accepted by the request.
Unless a specific range is specified for an argument, the full range defined
by the argument's type is accepted. Any argument defined as a set of
alternatives can generate this error.

XA1locColor(3X11), XCreateColormap(3X11), XQueryColor(3Xll)

Hewlett-Packard Company -2- Ju112, 1989

XStoreName(3X11) XStoreName(3X11)
Series 300 and 800 Only

NAME
XStoreName, XFetchName - set or get window names

SYNOPSIS
XStoreName(display, w, window name)

Display -display; -
W"mdow w;
char *window_name;

Status XFetchName(display, w, window name return)
Display .display; --
W"mdow w;
char -*window_name Jeturn;

ARGUMENTS
display
w

Specifies the connection to the X server.

Specifies the window.

window name Specifies the window name, which should be a null-terminated string.

window name return
- - Returns a pointer to the window name, which is a null-terminated string.

DESCRIPfION
The XStoreName function assigns the name passed to window_name to the specified window. A
window manager can display the window name in some prominent place, such as the title bar, to
allow users to identify windows easily. Some window managers may display a window's name in
the window's icon, although they are encouraged to use the window's icon name if one is provided
by the application.

XStoreName can generate BadAlloc and BadWindow errors.

The XFetchName function returns the name of the specified window. If it succeeds, it returns
nonzero; otherwise, if no name has been set for the window, it returns zero. If the WM NAME
property has not been set for this window, XFetchName sets window name return to NULL.
When finished with it, a client must free the window name string using XFree.

XFetchName can generate a BadWindow error.

PROPERlY
WM NAME

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server memory.

BadWindow A value for a Window argument does not name a defined Window.

SEE ALSO
XSetCommand(3X11), XSetlconName(3X11), XSetlconSizeHints(3Xll),
XSetNormalHints(3X11), XSetSizeHints(3Xll), XSetStandardProperties(3X11),
XSetWMHints(3X11), XSetZoomHints(3X11)

Hewlett-Packard Company -1- Jul12, 1989

XStringToKeysym (3Xl!) XStringToKeysym (3Xl!)

NAME

Series 300 and 800 Only

XStringToKeysym, XKeysymToString, XKeycodeToKeysym, XKeysymToKeycode - convert
keysyms

SYNOPSIS
KeySym XStringfoKeysym (string)

char ·string;

char .XKeysymToString(keysym)
KeySym keysym;

KeySym XKeycodeToKeysym (display, keycode, index)
Display .display;
KeyCode keycode;
int index;

KeyCode XKeysymToKeycode(display, keysym)
Display .display;
KeySym keysym;

ARGUMENTS
display

index

keycode

keysym

Specifies the connection to the X setver.

Specifies the element of KeyCode vector.

Specifies the KeyCode.

Specifies the KeySym that is to be searched for or converted.

string Specifies the name of the KeySym that is to be converted.

DESCRIPTION
Valid KeySym names are listed in < Xll/keysymdef.h > by removing the XK _ prefix from each
name. If the specified string does not match a valid KeySym, XStringToKeysym returns NoSymbol.

The returned string is in a static area and must not be modified. If the specified KeySym is not
defined, XKeysymToString returns a NULL.

The XKeycodeToKeysym function uses internal Xlib tables and returns the KeySym defined for the
specified KeyCode and the element of the KeyCode vector. If no symbol is defined,
XKeycodeToKeysym returns NoSymbol.
If the specified KeySym is not defined for any KeyCode, XKeysymToKeycode returns zero.

SEE ALSO
XLookupKeysym(3X11)

Hewlett-Packard Company -1- Jul 12, 1989

XSyncbronize (3Xll)
Series 300 and 800 Only

NAME
XSynchronize, XSetAfterFunction - enable or disable synchronization

SYNOPSIS
int ("'X Synchronize (display, onoft') 0

Display "'display;
Boolono8';

int ("'XSetAfterFunction(display, procedure»O
Display "'display;
int ("'procedure) 0;

ARGUMKNTS
displa;,.; Specifies the connection to the X se1Ver.

XSyncbronize (3X11)

procedure Specifies the function to be called after an Xlib function that generates a
protocol request completes its work.

onoff Specifies a Boolean value that indicates whether to enable or disable
synchronization.

DESCRIPTION
The XSynchronize function returns the previous after function. If onoff is Ttue, XSynchronize turns
on synchronous behavior. If onoff is False, XSynchronize turns off synchronous behavior.

The specified procedure is called with only a display pointer. XSetAfterFunction returns the
previous after function.

SEE ALSO
XSetErrorHandler(3X11)

Hewlett-Packard Company - 1- Jul 12, 1989

XTextExtents (3Xll) XTextExtents (3X11)

NAME

Series 300 and 800 Only

XTextExtents, XTextExtents16, XQueryTextExtents, XQueryTextExtents16 - compute or query text
extents

SYNOPSIS
XTextExtents(font struct, string, nchars, diredion return, font asc:ent return,

font desc:ent return, overall return) - --
XFontStruct .font struct; -
char ·string; -
int nchars;
int .direction return;
int ·font asc:ent return, .font desc:ent return;
XCharStruct ·overallJeturn; - -

XTextExtents16(font struct, string, nchars, direction return, font asc:ent return,
font desc:ent return, overall return) - --

XFontStruct oij'ont struct; -
XChar2b .string;-
int nchars;
int .direction return;
int ·font asc:ent return, ·font descent return;
XCharStruct ·overall Jeturn; - -

XQue..yTextExtents(display, font ID, string, nchars, direction return, font asc:ent return,
font descent return, overall return) - --

Display ·display; - - -
XID font ID;
char .strlng;
int nchars;
int ·direction return;
int ·font ascent return, ·font descent return;
XCharStruct ·overall_return; - -

XQue..yTextExtents16(display, font ID, string, nchars, direction return, font asc:ent return,
font desc:ent return, overall return) - --

Display .display; - - -
XID font ID;
XChar2b -.string;
int nchars;
int .direction return;
int ·font ascent return, ·font desc:ent return;
XCharStruct ·overall Jeturn; - -

ARGUMENTS
direction return Returns the value of the direction hint (FontLeftToRight or

FontRightToLeft)·

display Specifies the connection to the X setver.

font JD Specifies either the font ID or the GContext ID that contains the font.

font_ascent Jetum Returns the font ascent.

font_descent Jetum Returns the font descent.

font _struct Specifies a pointer to the XFontStruct structure.

nchars

string

Hewlett-Packard Company

Specifies the number of characters in the character string.

Specifies the character string.

-1- Jul 12, 1989

XTextExtents (3X11) XTextExtents (3X11)
Series 300 and 800 Only

overall return Returns the overall size in the specified XCharStruct structure.

DESCRIPTION
TheXTextExtents andXTextExtents16 functions perform the size computation locally, and thereby
avoid the round-trip overhead of XQueryTextExtents and XQueryTextExtentsl6. Both functions
return an XCharStruct structure, whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metries of all characters in the string. The
descent member is set to the maximum of the descent metries. The width member is set to the
sum of the character-width metrics of all characters in the string. For each character in the string,
let W be the sum of the character-width metries of all characters preceding it in the string. Let L
be the left-side-bearing metric of the character plus W. Let R be the right-side-bearing metric of
the character plus W. The lbearing member is set to the minimum L of all characters in the string.
The rbearing member is set to the maximum R

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b structure
is interpreted as a 16-bit number with bytel as the most-significant byte. If the font has no
defined default character, undefined characters in the string are taken to have all zero metrics.

The XQueryTextExtents and XQueryTextExtents16 functions return the bounding box of the
specified 8-bit and 16-bit character string in the specified font or the font contained in the
specified Gc. These functions query the X server, and therefore suffer the round-trip overhead
that is avoided by XTextExtents and XTextExtents16. Both functions return a XCharStruct structure,
whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the string. The
descent member is set to the maximum of the descent metrics. The width member is set to the
sum of the character-width metrics of all characters in the string. For each character in the string,
let W be the sum of the character-width metries of all characters preceding it in the string. Let L
be the left-side-bearing metric of the character plus W. Let R be the right-side-bearing metric of
the character plus W. The lbearing member is set to the minimum L of aU characters in the string.
The rbearing member is set to the maximum R
For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b structure
is interpreted as a 16-bit number with byte1 as the most-significant byte. If the font has no
defined default character, undefined characters in the string are taken to have all zero metrics.

XQueryTextExtents and XQueryTextExtents16 can generate Bad Font and BadGe errors.

DIAGNOSTICS
BadFont

BadGC

SEE ALSO
XTextWidth(3X11)

Hewlett-Packard Company

A value for a Font or GContext argument does not name a defined Font.

A value for a GContext argument does not name a defined GContext.

-2- Jul 12, 1989

XTextWidtb(3X11)
Series 300 and 800 Only

NAME
XTextWidth, XTextWidth16 - compute text width

SYNOPSIS
int XTextWidth(font struct, string, count)

XFontStruct .fOnt struct;
char ·string; -
int count;

int XTextWidth16(font struct, string, count)
XFontStruct ·roRt struct;

ARGUMENTS
count

XChar2b ·string;-
int count;

Specifies the character count in the specified string.

font _struct Specifies the font used for the width computation.

string Specifies the character string.

DESCRIPTION

XTextWidth(3Xll)

The XTextWidth and XTextWidth16 functions return the width of the specified 8-bit or 2-byte
character strings.

SEE ALSO
XTextExtents(3X11)

Hewlett-Packard Company -1- Jut 12, 1989

X'franslateCoordinates (3X11) XTranslateCoordinates (3X11)
Series 300 and 800 Only

NAME
XTranslateCoordinates - translate window coordinates

SYNOPSIS
8001 XTranslateCoordinates(display, src w, dest w, src x, src y, dest x return,

dest _Y Jeturn,-child Jeturn) - - - -
Display .display;
Window src w, dest w;
int src _x, src J; -
int ·dest x return, ·dest y return;
Window iiiciiild Jeturn; --

ARGUMENTS
child return

dest w

dest x return
desiy = return
display

src w
src x
srcy

DESCRIPTION

Returns the child if the coordinates are contained in a mapped child of the
destination window.

Specifies the destination window.

Return the x and y coordinates within the destination window.

Specifies the connection to the X server.

Specifies the source window.

Specify the x and y coordinates within the source window.

The XIranslateCoordinates function takes the src _x and src Y coordinates relative to the source
window's origin and returns these coordinates to dest_xJeturn and destYJeturn relative to the
destination window's origin. If XIranslateCoordinates returns zero, src wand dest ware on
different screens, and dest_xJeturn and destYJeturn are zero. If the coordinates-are contained
in a mapped child of dest w, that child is returned to child return. Otherwise, child return is set
to None. - - -

XIranslateCoordinates can generate a BadWindow error.

DIAGNOSTICS
BadWindow A value for a Window argument does not name a defined Window.

Hewlett-Packard Company -1- Jul 12, 1989

XrmUniqueQuark(3X11) XrmUniqueQuark(3X11)

NAME

Series 300 and 800 Only

XnnUniqueQuark, XnnStringfoQuark, XnnQuarkToString, XrmStringToQuarkList,
XnnStringToBindingQuarkList - manipulate resource quarks

SYNOPSIS
XrmQuark XrmUniqueQuarkO

#define XrmStringfoName(string) XrmStringfoQuark(string) #define
XrmStringfoClass(string) XrmStringfoQuark(string) #define
XrmStringfoRepresentation(string) XrmStringfoQuark(string)

XrmQuark XrmStringfoQuark(string)
char ·string;

#define XrmNameToString(name) XrmQuar){foString(name) #der.ne
XrmClassToString(class) XrmQuar){foString(class) #define XrmRepresentationToString(type)
XrmQuar){foString(type)

char ·XrmQuar){foString(quark)
XrmQuark quark;

#define XrmStringfoNameList(str, name) XrmStringfoQuarkList«str), (name» #define
XrmStringfoClassList(str,class) XrmStringfoQuarkList«str), (class»

void XrmStringfoQuarkList(string, quarks return)
char ·string; -
XrmQuarkList quarks Jeturn;

XrmStringfoBindingQuarkList (string, bindings return, quarks return)
char ·string; --
XrmBindingList bindings return;
XrmQuarkList quarks Jei'urn;

ARGUMENTS
bindings ...!etum

quark

quarks ...!etum
string

DESCRIPTION

Returns the binding list.

Specifies the quark for which the equivalent string is desired.

Returns the list of quarks.

Specifies the string for which a quark is to be allocated.

The XrmUniqueQuark function allocates a quark that is guaranteed not to represent any string
that is known to the resource manager.

These functions can be used to convert to and from quark representations. The string pointed to
by the return value must not be modified or freed. If no string exists for that quark,
XrmQuarkToString returns NULL.

The XrmQuarkToString function converts the specified resource quark representation back to a
string.

The XrmStringToQuarkList function converts the null-terminated string (generally a fully qualified
name) to a list of quarks. The components of the string are separated by a period or asterisk
character.

A binding list is a list of type XrmBindingList and indicates if components of name or class lists
are bound tightly or loosely (that is, if wild carding of intermediate components is specified).

typedef enum {XrmBindTightly, XrmBindLoosely} XrmBinding, *XnnBindingList;

XrmBindTightly indicates that a period separates the components, and XrmBindLoosely indicates
that an asterisk separates the components.

The XrmStringToBindingQuarkList function converts the specified string to a binding list and a
quark list. Component names in the list are separated by a period or an asterisk character. If the

Hewlett-Packard Company -1- Jul 12, 1989

XrmUniqueQuark(3Xll) XrmUniqueQuark(3X11)
Series 300 and 800 Only

string does not start with period or asterisk, a period is assumed. For example, "*a.b*c" becomes:

quarks abc
bindings loose tight loose

SEE ALSO
XrmGetResource(3X11), Xrmlnitialize(3Xl1), XrmMergeDatabases(3X11),
XrmPutResource(3X11)

Hewlett-Packard Company -2- Jul 12, 1989

XUnmapWindow(3Xll) XUnmapWindow(3Xll)
Series 300 and 800 Only

NAME
XUnmapWindow, XUnmapSubwindows - unmap windows

SYNOPSIS
XUnmapWmdow(display, w)

Display ·display;
Wmdoww;

XUnmapSubwindows(display, w)
Display·display;
Wmdoww;

ARGUMENTS
display

w
DESCRIPTION

Specifies the connection to the X server.

Specifies the window.

The XUnmapWindow function unmaps the specified window and causes the X server to generate
an UnmapNotify event. If the specified window is already unmapped, XUnmapWindow has no
effect. Normal exposure processing on formerly obscured windows is performed. Any child
window will no longer be visible until another map call is made on the parent. In other words, the
subwindows are still mapped but are not visible until the parent is mapped. Unmapping a window
will generate Expose events on windows that were formerly obscured by it.

XUnmapWindow can generate a BadWindow error.

The XUnmapSubwindows function unmaps all subwindows for the specified window in bottom­
to-top stacking order. It causes the X server to generate an UnmapNotify event on each
subwindow and Expose events on formerly obscured windows. Using this function is much more
efficient than unmapping multiple windows one at a time because the server needs to perform
much of the work only once, for all of the windows, rather than for each window.

XUnmapSubwindows can generate a BadWindow error.

DIAGNOSTICS
BadWindow A value for a Window argument does not name a defined Window.

SEE ALSO
XChangeWindowAttributes(3X11), XConfigureWindow(3X11), XCreateWindow(3X11),
XDestroyWindow(3X11), XMapWindow(3X11) XRaiseWindow(3X11)

Hewlett-Packard Company -1- Ju112, 1989

XWarpPointer(3X11) XWarpPointer(3X11)
Series 300 and 800 Only

NAME
XWarpPointer - move pointer

SYNOPSIS
XWarpPointer(display, src w, dest w, src x, src y, src width, src height, dest x,

desty} - - - - - - -

ARGUMENTS
dest w

dest x
desiy

display

src x
srcy

Display .display;
Wmdow src w, dest W;
int src _x, sic y; -
unsigned int src width, src height;
int dest _ x, dest j; -

Specifies the destination window or None.

Specify the x and y coordinates within the destination window.

Specifies the connection to the X server.

src width
src=height Specify a rectangle in the source window.

Specifies the source window or None src w

DESCRIPTION
If dest_ w is None, XWarpPointer moves the pointer by the offsets (dest_ X, desty) relative to the
current position of the pointer. If dest_ w is a window, XWarpPointer moves the pointer to the
offsets (dest_ X, desty) relative to the origin of dest_ w. However, if src _ w is a window, the move
only takes place if the specified rectangle src _ w contains the pointer.

The src _x and src y coordinates are relative to the origin of src _ w. If src _height is zero, it is
replaced with the current height of src _ w minus src y. If src_ width is zero, it is replaced with the
current width of src w minus src x. - -
There is seldom any reason for calling this function. The pointer should normally be left to the
user. If you do use this function, however, it generates events just as if the user had
instantaneously moved the pointer from one position to another. Note that you cannot use
XWarpPointer to move the pointer outside the confine to window of an active pointer grab. An
attempt to do so will only move the pointer as far as the closest edge of the confine_to window.

XWarpPointer can generate a BadWindow error.

DIAGNOSTICS
BadWindow A value for a Window argument does not name a defined Window.

SEE ALSO
XSetlnputFocus(3Xll)

Hewlett-Packard Company -1- Jul 12, 1989

Glossary J
Access control list

X maintains a list of hosts from which client programs can be run. By default, only
programs on the local host and hosts specified in an initial list read by the server can
use the display. This access control list can be changed by clients on the local host.
Some servers can add or replace this mechanism with other authorization devices.
The action of this mechanism can be conditional based on the authorization protocol
name and data received by the server at connection setup.

Active grab
A grab is active when the pointer or keyboard is actually owned by the single
grabbing client.

Ancestors

Atom

If W is an inferior of A, then A is an ancestor of W.

An atom is a unique ID corresponding to a string name. Atoms are used to identify
properties, types, and selections.

Background
An I npu tOu tpu t window can have a background, which is defined as a pixmap.
When regions of the window have their contents lost or invalidated, the server
automatically tiles those regions with the background.

Backing store
When a server maintains the contents of a window, the pixels saved off-screen are
known as a backing store.

Bit gravity
When a window is resized, the contents of the window are not necessarily discarded.
It is possible to request that the server relocate the previous contents to some region
of the window (though no guarantees are made). This attraction of window contents
for some location of a window is known as bit gravity.

Bit plane
When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called
a bit plane or plane.

Glossary J-l

Bitmap
A bitmap is a pixmap of depth one.

Border
An I npu tOu tpu t window can have a border of equal thickness on all four sides of
the window. The contents of the border are defined by a pixmap, and the server
automatically maintains the contents of the border. Exposure events are never
generated for border regions.

Button grabbing
Buttons on the pointer can be passively grabbed by a client. When the button is
pressed, the pointer is then actively grabbed by the client.

Byte order
For image (pixmap/bitmap) data, the server defines the byte order, and clients with
different native byte ordering must swap bytes as necessary. For all other parts of the
protocol, the client defines the byte order, and the server swaps bytes as necessary.

Children

Class

The children of a window are its first-level subwindows.

Windows can be of different classes or types. See the entries for I npu tOn! y and
I npu tOu tpu t windows for further information about valid window types.

Client
An application program connects to the window system server by some interprocess
communication (IPC) path, such as a TCP connection or a shared memory buffer.
This program is referred to as a client of the window system server. More precisely,
the client is the IPC path itself. A program with multiple paths open to the server is
viewed as multiple clients by the protocol. Resource lifetimes are controlled by
connection lifetimes, not by program lifetimes.

Clipping region
In a graphics context, a bitmap or list of rectangles can be specified to restrict output
to a particular region of the window. The image defined by the bitmap or rectangles
is called a clipping region.

Colormap
A colormap consists of a set of entries defining color values. The colormap
associated with a window is used to display the contents of the window; each pixel
value indexes the colormap to produce RGB values that drive the guns of a monitor.
Depending on hardware limitations, one or more colormaps can be installed at one
time so that windows associated with those maps display with true colors.

J -2 Glossary

Connection
The IPC path between the server and client program is known as a connection. A
client program typically (but not necessarily) has one connection to the server over
which requests and events are sent.

Containment
A window contains the pointer if the window is viewable and the cursor hotspot is
within a visible region of the window or that of one of its inferiors. The window
border is included as part of the window for containment. The pointer is in a
window if the window, but no inferior, contains the pointer.

Coordinate system
The coordinate system has X horizontal and Y vertical, with the origin [0, 0] at the
upper left. Coordinates are discrete and are in terms of pixels. Each window and
pixmap has its own coordinate system. For a window, the origin is inside the border
at the inside upper-left corner.

Cursor
A cursor is the visible shape of the pointer on a screen. It consists of a hotspot, a
source bitmap, a shape bitmap, and a pair of colors. The cursor defined for a
window controls the visible appearance when the pointer is in that window.

Depth
The depth of a window or pixmap is the number of bits per pixel it has. The depth of
a graphics context is the depth of the drawables with which it can be used.

Device
Keyboards, mice, tablets, track-balls, button boxes, and so on are all collectively
known as input devices. Pointers can have one or more buttons (the most common
number is three). The core protocol deals only with the keyboard and the pointer.

DirectColor
DirectColor is a class of colormap in which a pixel value is decomposed into
three separate subfields for indexing. The first subfield indexes an array to produce
red intensity values. The second subfield indexes a second array to produce blue
intensity values. The third subfield indexes a third array to produce green intensity
values. The RGB (red, green, and blue) values in the colormap entry can be
changed dynamically.

Display
A server, together with its screens and input devices, is called a display. The Xlib
Display structure contains all information about the particular display and its
screens as well as the state that Xlib needs to communicate with the display over a
particular connection.

Glossary J-3

Drawable

Event

Both windows and pixmaps can be used as sources and destinations in graphics
operations. These windows and pixmaps are collectively known as drawables.
However, an InputOnly window cannot be used as a source or destination in a
graphics operation.

Clients are informed of information asynchronously by means of events. These
events can be either asynchronously generated from devices or generated as side
effects of client requests. Events are grouped into types. The server never sends an
event to a client unless the client has specifically asked to be informed of that type of
event. However, clients can force events to be sent to other clients. Events are
typically reported relative to a window.

Event mask
Events are requested relative to a window. The set of event types a client requests
relative to a window is described by using an event mask.

Event propagation
Device-related events propagate from the source window to ancestor windows until
some client has expressed interest in handling that type of event or until the event is
discarded explicitly.

Event synchronization
There are certain race conditions possible when demultiplexing device events to
clients (in particular, deciding where pointer and keyboard events should be sent
when in the middle of window management operations). The event synchronization
mechanism allows synchronous processing of device events.

Event source
A device-related event source is the deepest viewable window that the pointer is in.

Exposure event
Servers do not guarantee to preserve the contents of windows when windows are
obscured or reconfigured. Exposure events are sent to clients to inform them when
contents of regions of windows have been lost.

Extension
Named extensions to the core protocol can be defined to extend the system.
Extensions to output requests, resources, and event types are all possible and
expected.

J ·4 Glossary

Font
A font is an array of glyphs (typically characters). The protocol does no translation
or interpretation of character sets. The client simply indicates values used to index
the glyph array. A font contains additional metric information to determine
interglyph and interline spacing.

Frozen events
Clients can freeze event processing during keyboard and pointer grabs.

GC
GC is an abbreviation for graphics context. See Graphics context.

Glyph

Grab

A glyph is an image in a font, typically of a character.

Keyboard keys, the keyboard, pointer buttons, the pointer, and the server can be
grabbed for exclusive use by a client. In general, these facilities are not intended to
be used by normal applications but are intended for various input and window
managers to implement various styles of user interfaces.

Graphics context
Various information for graphics output is stored in a graphics context (GC), such as
foreground pixel, background pixel, line width, clipping region, and so on. A
graphics context can only be used with drawables that have the same root and the
same depth as the graphics context.

Gravity
Windows and window contents have a gravity that determines how the contents
move when a window is resized. See Bit gravity and Window gravity.

GrayScale
GrayScale can be viewed as a degenerate case of PseudoColor, in which the
red, green, and blue values in any given colormap entry are equal and thus, produce
shades of gray. The gray values can be changed dynamically.

Hotspot
A cursor has an associated hotspot, which defines the point in the cursor
corresponding to the coordinates reported for the pointer.

Identifier
An identifier is a unique value associated with a resource that clients use to name
that resource. The identifier can be used over any connection to name the resource.

Glossary J -5

Inferiors
The inferiors of a window are all of the subwindows nested below it: the children,
the children's children, and so on.

Input focus
The input focus is usually a window defining the scope for processing of keyboard
input. If a generated keyboard event usually would be reported to this window or
one of its inferiors, the event is reported as usual. Otherwise, the event is reported
with respect to the focus window. The input focus also can be set such that all
keyboard events are discarded and such that the focus window is dynamically taken
to be the root window of whatever screen the pointer is on at each keyboard event.

Input manager
Control over keyboard input is typically provided by an input manager client, which
usually is part of a window manager.

InputOnly window
An InputOnIy window is a window that cannot be used for graphics requests.
InputOnIy windows are invisible and are used to control such things as cursors,
input event generation, and grabbing. InputOnIy windows cannot have
InputOutput windows as inferiors.

InputOutput window
An InputOutput window is the normal kind of window that is used for both input
and output. InputOutput windows can have both InputOutput and
I npu tOnI y windows as inferiors.

Key grabbing
Keys on the keyboard can be passively grabbed by a client. When the key is pressed,
the keyboard is then actively grabbed by the client.

Keyboard grabbing
A client can actively grab control of the keyboard, and key events will be sent to that
client rather than the client the events would normally have been sent to.

Keysym
An encoding of a symbol on a keycap on a keyboard.

Mapped
A window is said to be mapped if a map call has been performed on it. Unmapped
windows and their inferiors are never viewable or visible.

Modifier keys
Shift, Control, Meta, Super, Hyper, Alt, Compose, Apple, CapsLock, ShiftLock, and
similar keys are called modifier keys.

J -6 Glossary

Monochrome
Monochrome is a special case of StaticGray in which there are only two
colormap entries.

Obscure
A window is obscured if some other window obscures it. A window can be partially
obscured and so still have visible regions. Window A obscures window B if both are
viewable InputOutput windows, if A is higher in the global stacking order, and if
the rectangle defined by the outside edges of A intersects the rectangle defined by
the outside edges of B. Note the distinction between obscures and occludes. Also
note that window borders are included in the calculation.

Occlude
A window is occluded if some other window occludes it. Window A occludes
window B if both are mapped, if A is higher in the global stacking order, and if the
rectangle defined by the outside edges of A intersects the rectangle defined by the
outside edges of B. Note the distinction between occludes and obscures. Also note
that window borders are included in the calculation and that I npu tOnI y windows
never obscure other windows but can occlude other windows.

Padding
Some padding bytes are inserted in the data stream to maintain alignment of the
protocol requests on natural boundaries. This increases ease of portability to some
machine architectures.

Parent window
If C is a child of P, then P is the parent of C.

Passive grab
Grabbing a key or button is a passive grab. The grab activates when the key or
button is actually pressed.

Pixel value
A pixel is an N-bit value, where N is the number of bit planes used in a particular
window or pixmap (that is, is the depth of the window or pixmap). A pixel in a
window indexes a colormap to derive an actual color to be displayed.

Pixmap

A pixmap is a three-dimensional array of bits. A pixmap is normally thought of as a
two-dimensional array of pixels, where each pixel can be a value from 0 to 2N -1, and
where N is the depth (Z axis) of the pixmap. A pixmap can also be thought of as a
stack of N bitmaps. A pixmap can only be used on the screen in which it was
created.

Glossary J-7

Plane
When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called
a plane or bit plane.

Plane mask
Graphics operations can be restricted to only affect a subset of bit planes of a
destination. A plane mask is a bit mask describing which planes are to be modified.
The plane mask is stored in a graphics context.

Pointer
The pointing device currently attached to the cursor and tracked on the screens.

Pointer grabbing
A client can actively grab control of the pointer. Button and motion events are then
sent to that client instead of the original destination client.

Pointing device
A pointing device is typically a mouse, tablet, or some other device with effective
dimensional motion. The core protocol defines only one visible cursor, which tracks
whatever pointing device is attached as the pointer.

Property
Windows can have associated properties that consist of a name, a type, a data
format, and some data. The protocol places no interpretation on properties. They
are intended as a general-purpose naming mechanism for clients. For example,
clients might use properties to share information such as resize hints, program
names, and icon formats with a window manager.

Property list
The property list of a window is the list of properties defined for that window.

PseudoColor
PseudoColor is a class of colormap in which a pixel value indexes the colormap
entry to produce independent RGB values; that is, the colormap is viewed as an
array of triples (RGB values). The RGB values can be changed dynamically.

Rectangle
A rectangle specified by [x,y,w,h] has an infinitely thin outline path with corners at
[x,y), [x+w,y), [x+w,y+ h], and [x, y+ h). When a rectangle is filled, the lower-right
edges are not drawn. For example, ifw=h=O, nothing would be drawn. For
w=h=l, a single pixel would be drawn.

J -8 Glossary

Redirecting control
Window managers (or client programs) may enforce window layout policy in various
ways. When a client attempts to change the size or position of a window, the
operation may be redirected to a specified client rather than the operation actually
being performed.

Reply
Information requested by a client program using the X protocol is sent back to the
client with a reply. Both events and replies are multiplexed on the same connection.
Most requests do not generate replies, but some requests generate multiple replies.

Request
A command to the server is called a request. It is a single block of data sent over a
connection.

Resource
Windows, pixmaps, cursors, fonts, graphics contexts, and colormaps are known as
resources. They all have unique identifiers associated with them for naming
purposes. The lifetime of a resource usually is bounded by the lifetime of the
connection over which the resource was created.

RGB values

Root

RGB values are the red, green, and blue intensity values that are used to define a
color. These values are always represented as 16-bit, unsigned numbers, with 0 the
minimum intensity and 65535 the maximum intensity. The X server scales these
values to match the display hardware.

The root of a pixmap or graphics context is the same as the root of whatever
drawable was used when the pixmap or GC was created. The root of a window is the
root window under which the window was created.

Root window
Each screen has a root window covering it. The root window cannot be reconfigured
or unmapped, but otherwise it acts as a full-fledged window. A root window has no
parent.

Save set
The save set of a client is a list of other clients' windows that, if they are inferiors of
one of the client's windows at connection close, should not be destroyed and that
should be remapped if currently unmapped. Save sets are typically used by window
managers to avoid lost windows if the manager should terminate abnormally.

Glossary J -9

Scanline
A scanline is a list of pixel or bit values viewed as a horizontal row (all values having
the same y coordinate) of an image, with the values ordered by increasing the x
coordinate.

Scanline order
An image represented in scanline order contains scanlines ordered by increasing the
y coordinate.

Screen
A server can provide several independent screens, which typically have physically
independent monitors. This would be the expected configuration when there is only
a single keyboard and pointer shared among the screens. A Screen structure
contains the information about that screen and is linked to the Display structure.

Selection
A selection can be thought of as an indirect property with dynamic type. That is,
rather than having the property stored in the X server, it is maintained by some
client (the owner). A selection is global and is thought of as belonging to the user
and being maintained by clients, rather than being private to a particular window
subhierarchy or a particular set of clients. When a client asks for the contents of a
selection, it specifies a selection target type, which can be used to control the
transmitted representation of the contents. For example, if the selection is "the last
thing the user clicked on," and that is currently an image, then the target type might
specify whether the contents of the image should be sent in XY format or Z format.

The target type can also be used to control the class of contents transmitted; for
example, asking for the "looks" (fonts, line spacing, indentation, and so forth) of a
paragraph selection, rather than the text of the paragraph. The target type can also
be used for other purposes. The protocol does not constrain the semantics.

Server
The server, which is also referred to as the X server, provides the basic windowing
mechanism. It handles IPe connections from clients, demultiplexes graphics requests
onto the screens, and multiplexes input back to the appropriate clients.

Server grabbing
The server can be grabbed by a single client for exclusive use. This prevents
processing of any requests from other client connections until the grab is completed.
This is typically only a transient state for such things as rubber-banding, pop-up
menus, or executing requests indivisibly.

Sibling
Children of the same parent window are known as sibling windows.

J -10 Glossary

Stacking order
Sibling windows, similar to sheets of paper on a desk, can stack on top of each other.
Windows above both obscure and occlude lower windows. The relationship between
sibling windows is known as the stacking order.

StaticColor
StaticColor can be viewed as a degenerate case of PseudoColor in which
the RGB values are predefined and read-only.

StaticGray
StaticGray can be viewed as a degenerate case of GrayScale in which the
gray values are predefined and read-only. The values are typically linear or near­
linear increasing ramps.

Status
Many Xlib functions return a success status. If the function does not succeed,
however, its arguments are not disturbed.

Stipple

Tile

A stipple pattern is a bitmap that is used to tile a region to serve as an additional clip
mask for a fill operation with the foreground color.

A pixmap can be replicated in two dimensions to tile a region. The pixmap itself is
also known as a tile.

Timestamp
A timestamp is a time value expressed in milliseconds. It is typically the time since
the last server reset. Timestamp values wrap around (after about 49.7 days). The
server, given its current time is represented by timestamp T, interprets timestamps
from clients by treating half of the timestamp space as being earlier in time than T
and half of the timestamp space as being later in time than T. One timestamp value,
represented by the constant CurrentTime, is never generated by the server. This
value is reserved for use in requests to represent the current server time.

TrueColor
TrueColor can be viewed as a degenerate case of DirectColor in which the
subfields in the pixel value directly encode the corresponding RGB values. That is,
the colormap has predefined read-only RGB values. The values are typically linear
or near-linear increasing ramps.

Glossary J -11

1YPe
A type is an arbitrary atom used to identify the interpretation of property data. Types
are completely uninterpreted by the server. They are solely for the benefit of clients.
X predefines type atoms for many frequently used types, and clients also can define
new types.

Viewable
A window is viewable if it and all of its ancestors are mapped. This does not imply
that any portion of the window is actually visible. Graphics requests can be
performed on a window when it is not viewable, but output will not be retained
unless the server is maintaining backing store.

Visible
A region of a window is visible if someone looking at the screen can actually see it;
that is, the window is viewable and the region is not occluded by any other window.

Window gravity
When windows are resized, subwindows may be repositioned automatically relative
to some position in the window. This attraction of a subwindow to some part of its
parent is known as window gravity.

Window manager
Manipulation of windows on the screen and much of the user interface (policy) is
typically provided by a window manager client.

XYformat
The data for a pixmap is said to be in XY format if it is organized as a set of bitmaps
representing individual bit planes with the planes appearing from most -significant to
least -significant bit order.

Zformat
The data for a pixmap is said to be in Z format if it is organized as a set of pixel
values in scanline order.

J -12 Glossary

Index

A
~bove,3-21,3-22,8-37
ABSOLUTE, E-2
~ccess control list, 7-37

Defined, 1-1
~CKNOWLEDGE 1 E-18 -'
~CKNOWLEDGE 2 E-18 - ,
~CKNOWLEDGE 3 E-18 -'
~CKNOWLEDGE 4 E-18 - ,
~CKNOWLEDGE 5 E-18 - ,
~CKNOWLEDGE 6 E-18 -'
~CKNOWLEDGE 7 E-18 - ,
~ctive grab

Defined, 7-6, J-1
~llHints, 9-7
Nlo~, 5-3, 5-4, 5-5
Nlocation

colormap, 5-7
read-only colormap cells, 5-6, 5-7
read/write colormap cells, 5-8

~llocNamedColor, 8-57
~llocNone, 5-3, 5-4
~llowExposures, 7-35, 7-36
NIPlanes, 5-19

Defined, 2-3
~llTemporary, 7-22
~LLWINDOWS, E-16
~lreadyGrabbed, 7-8, 7-13
~lways, 2-11, 3-10, 3-29, 4-3, 8-24
~cestors, Defined, J-1
~yButton, 7-10, 7-11, 7-12, E-9, E-10
~nyKey, 7-14, 7-15, E-11, E-12
~nyModifier, 7-10, 7-11, 7-12, 7-14, 7-15,

E-9, E-10, E-11, E-12
~yPropertyrype, 4-10, 4-11
~rcChord, 5-24, 5-36, 6-16
~rcPieSlice, 5-17, 5-24, 5-36, 6-16

kcs
drawing, 6-10
filling, 6-15

keas
clearing, 6-1
copying, 6-3

~SSOC~TE FONT, E-33
~syncBoth, 7:J.6
~syncKeyboard, 7-16,7-17
~syncPointer, 7-16, 7-17
~tom, 4-6, C-14, C-17

Defined, J-1
getting name, 4-9
interning, 4-8
predefined, 4-6, 9-2

~uthentication, 7-37
~utoRepeatModeDefault, 7-23, E-21
~utoRepeatModeOff, 7-23, 7-25, E-19,

E-21
~utoRepeatModeOn, 7-23, 7-25, E-19,

E-21
axes, E-2

B
B16, C-14
B32, C-14
Background, Defined, J-1
Backing store, Defined, J-1
BaMccess, 3-29, 5-10, 5-11 5-12 7-11 , , ,

7-15, 7-38, 7-39, 7-40,8-57, E-10,
E-12, E-36

Defined, 8-57
BadMloc, 3-14, 3-15, 4-9,4-13,5-5,5-14,

5-25,5-26,5-27,5-28,5-29,5-30,
5-31, 5-33, 5-34, 5-35, 5-36, 5-37,
6-23, 6-24, 6-43, 6-44, 6-45, 7-32,
7-34,8-57,9-5,9-6,9-7,9-9,9-11,

Index 1

9-12,9-13,9-14,9-15,9-16,9-22,
10-15, 10-23, 10-25

Defined, 8-57
BadAtom, 4-9, 4-11, 4-13, 4-14, 4-15, 4-16,

8-57,8-59,9-13,9-21,9-22, 10-15
Defined, 8-57

'BadColor, 3-14, 3-29, 5-5, 5-6, 5-7, 5-9,
5-10,5-11,5-12,5-13, 7-4, 7-5, 8-57,
8-59, 10-10

Defined, 8-57
BadCursor, 3-14,3-29,6-45,6-46,6-47,

7-9, 7-10, 7-11, 8-57, 8-59
Defined, 8-57

BadDevice, E-3, E-4, E-7, E-9, E-10, E-11,
E-12, E-13, E-15, E-16, E-17, E-18,
E-22, E-24

BadDrawable, 4-4, 5-14, 5-25, 5-31, 5-32,
5-33,6-4,6-5,6-7,6-9,6-10,6-12,
6-14,6-15,6-16,6-34,6-36,6-38,
6-40,6-41,6-42,6-46,8-57,8-59,
10-23, 10-24

Defined, 8-57
BadFont, 5-25, 5-26, 5-34, 6-24, 6-25, 6-32,

6-34, 6-45, 8-57, 8-59
Defined, 8-57

BadGC, 2-14,5-25,5-26,5-27,5-28,5-29,
5-30, 5-31, 5-33, 5-34, 5-35, 5-36,
5-37,6-4,6-5,6-7,6-9,6-10,6-12,
6-14,6-15,6-16,6-32,6-34,6-36,
6-38, 6-40, 6-42, 8-57, 8-59

Defined, 8-57
BadIDChoice, 8-57

Defined, 8-57
BadImplementation, 8-57

Defined, 8-59
BadLength, 7-33, 8-57, C-13, E-22, E-23,

E-24
Defined, 8-59

BadMatch, 3-4, 3-7, 3-8, 3-11, 3-12, 3-14,
3-15,3-21,3-22,3-23,3-28,3-29,
3-30,3-31,4-13,4-14,5-3,5-4,5-5,
5-6, 5-22, 5-23, 5-25, 5-26, 5-31, 5-32,
5-33, 5-35, 5-36, 6-2, 6-3, 6-4, 6-5,

2 Index

6-7,6-9,6-10,6-12,6-14,6-15,6-16,
6-34, 6-36, 6-38, 6-39, 6-40, 6-41,
6-42, 6-44, 7-2, 7-3, 7-21, 7-23, 7-24,
8-57, 10-16, 10-24, 10-25, E-14, E-15,
E-20, E-21

Defined, 8-59
BadMode, E-4
BadName, 5-12, 6-23, 8-57

Defined, 8-59
BadPixmap, 3-14, 3-29, 3-30, 3-31, 5-15,

5-25, 5-26, 5-33, 6-44, 8-57, 8-59
Defined, 8-59

BadRequest, 8-57
Defined, 8-59

BadType, E-6
BadValue, 3-13, 3-14, 3-15, 3-20, 3-23,

3-24,3-25,3-27,3-29,4-9,4-11,4-13,
5-5,5-8,5-9,5-10,5-11,5-12,5-13,
5-14,5-23,5-25,5-26,5-27,5-28,
5-29, 5-30, 5-31, 5-35, 5-36, 5-37, 6-2,
6-4,6-5,6-7,6-9,6-15,6-27,6-40,
6-41, 6-42,6-43,6-45, 7-3, 7-9, 7-10,
7-11, 7-12, 7-13, 7-15, 7-18, 7-21,
7-22, 7-23, 7-24, 7-25, 7-26, 7-27,
7-28, 7-30, 7-31, 7-32, 7-33, 7-34,
7-35, 7-36, 7-38, 7-39, 7-40, 8-54,
8-57,10-16, E-8, E-10, E-12, E-15,
E-17, E-18, E-19, E-20, E-21, E-22,
E-23, E-24

Defined, 8-59
BadWindow, 3-14, 3-15, 3-16, 3-18, 3-19,

3-20,3-23,3-24,3-25,3-26,3-27,
3-28, 3-29, 3-30, 3-31, 3-32, 4-4, 4-6,
4-11,4-12,4-13,4-14,4-15,4-16,5-5,
5-6, 6-2, 6-47, 7-2, 7-3, 7-5, 7-9, 7-11,
7-12, 7-13, 7-15, 7-20, 7-21, 8-44,
8-54, 8-55, 8-57, 8-59, 9-5, 9-6, 9-7,
9-9,9-11,9-12,9-13,9-14,9-15,9-16,
9-17,9-21,9-22, E-7, E-8, E-10,
E-11, E-12, E-13, E-15, E-16

Defined, 8-59
Below, 3-21, 3-22
Bit

Gravity, J-l
Plane, J-l

Bitmap, 1-2
Defined, J-l

BitmapBitOrder, Defined, 2-9
BitmapFilelnvalid, 10-23
BitmapNoMemory, 10-23, 10-24
BitmapOpenFailed, 10-23, 10-24
BitmapPad, Defined, 2-9
BitmapSuccess, 10-23, 10-24
BitmapUnit, Defined, 2-8
BlackPixel, 2-4

Defined, 2-4
BlackPixelOfScreen, Defined, 2-10
Bool, 8-5, 8-50, 8-51
Border, Defined, J-2
BottomIf, 3-21, 3-22
Butt, 5-21
Button

grabbing, 7-10
Grabbing, J-2
ungrabbing, 7-11

Buttonl, 8-13
ButtonlMask, 8-13, 8-15
ButtonlMotionMask, 7-7, 8-5
ButtonlMotionMaskxButtonSMotionMask,

8-10
Button2, 8-13
Button2Mask, 8-13, 8-15
Button2MotionMask, 7-7, 8-5
Button3, 8-13
Button3Mask, 8-13, 8-15
Button3MotionMask, 7-7, 8-5
Button4, 8-13
Button4Mask, 8-13, 8-15
Button4MotionMask, 7-7, 8-5
ButtonS, 8-13
ButtonSMask, 8-13, 8-15
ButtonSMotionMask, 7-7, 8-5
ButtonMotionMask, 7-7, 8-5, 8-7, 8-11
ButtonPress, 7-10, 7-16, 8-2, 8-6, 8-10,

8-17,8-44
Defined, 8-10

ButtonPressMask, 3-29, 7-7, 8-5, 8-6, 8-10,
8-44

ButtonRelease, 7-16,8-2,8-10,8-17
Defined, 8-10

ButtonReleaseMask, 7-7, 8-5, 8-10
Byte, Order, J -2

c
CapButt, 5-17, 5-20, 5-21, 5-29
CapNotLast, 5-20,5-21,5-29
CapProjecting, 5-21,5-29
CapRound, 5-21, 5-29
CellsOfScreen, Defined, 2-10
CenterGravity, 3-9, 4-3
Changing, pointer grab, 7-9
Child window, 1-2
Child Window, 4-1
Children, Defined, J-2
CirculateNotify, 3-26,8-2,8-6,8-13,8-26,

8-27,8-34
Defined, 8-27

CirculateRequest, 3-26,8-2,8-35,8-44
Defined, 8-35

CirculateWindow., H-7
Class, Defined, J-2
Clearing

areas, 6-1
windows, 6-2

Client, Defined, J -2
clientDecoration, H -10
clientFunctions, H -10
ClientMessage, 4-7, 8-2, 8-5, 8-39, H-7

Defined, 8-39
ClipByChildren, 5-17, 5-23, 5-36, 6-2
Clipping region, Defined, J-2
Color, 5-2

allocation, 5-7, 5-8, 5-9
database, 5-6
getting values, 5-13
naming, 5-7
parsing command lines, 10-9
setting cells, 5-10

Index 3

Color map, 5-2, 5-7
Colormap, 1-3,2-14,2-15, C-14

Defined, J-2
ColormapChangeMask, 8-5, 8-39
Colormaplnstalled, 8-39
ColormapNotify, 3-29, 5-6, 7-4, 7-5, 8-2,

8-38,8-39
ColormapNotify., H-7
ColormapNotify, Defined, 8-38
Colormap U ninstalled, 8-39
Complex, 6-14, 6-15
ConfigureNotify, 3-21, 8-2, 8-6, 8-13, 8-26,

8-27, 8-28, 8-34, H-7
Defined, 8-27

ConfigureRequest, 1-3,3-21,3-23,3-24,
3-25, 3-26, 3-28, 8-2, 8-35, 8-36, 8-44

Defined, 8-36
ConfigureWindow, 8-36, 8-37
ConfigureWindow" H-7
Connection, Defined, J-2
ConnectionNumber, Defined, 2-4
Containment, Defined, J-3
Control, 7-33, E-23
ControlMask, 7-7, 7-12, 8-13, 8-15, E-9,

E-10, E-11, E-12
ConvertS election, 8-42, 8-43
Convex, 6-14, 6-15
Coordinate system, Defined, J-3
CoordModeOrigin, 6-6, 6-8, 6-14
CoordModePrevious, 6-6, 6-8, 6-14
CopyArea, 6-4
CopyFromParent, 3-6, 3-8, 3-11, 3-12,

3-14,3-29,3-31
Copying

areas, 6-3
planes, 6-4

CreateNotify, 3-14, 3-15, 8-2, 8-6, 8-26,
8-29

Defined, 8-29
CurrentTime, 4-15, 4-16, 7-6, 7-7, 7-8, 7-9,

7-12, 7-13, 7-16, 7-20, 8-6, 8-42, 8-43,
8-55, E-8, E-14, E-16, J-11

Defined, 7-6

4 Index

Cursor, 1-3,2-14,2-15, C-14
Defined, J-3
Initial State, 3-14
limitations, 6-46

CursorShape, 5-31
Cut Buffers, 10-14
CWBackingPixel, 3-5
CWBackingPlanes, 3-5
CWBackingStore, 3-5
CWBackPixe~ 3-5
CWBackPixmap, 3-5
CWBitGravity, 3-5
CWBorderPixel, 3-5
CWBorderPixmap, 3-5
CWBorderWidth, 3-20
CWColormap, 3-5
CWCursor, 3-5
CWDontPropagate, 3-5
CWEventMask, 3-5
CWHeight, 3-20
CWOverrideRedirect, 3-5
CWSaveUnder, 3-5
CWSibling, 3-20
CWStackMode, 3-20
CWWidth, 3-20
CWWinGravity, 3-5
Cwx, 3-20
CWY,3-20

o
Data, C-18
data, E-16
Data16, C-18
Data32, C-18
Debugging

error event, 8-57
error handlers, 8-56
error message strings, 8-59
error numbers, 8-57
synchronous mode, 8-56

Default Protection, 7-37
DefaultBlanking, 7-34, 7-36

DefaultColormap,5-2
Defined, 2-4

DefaultColormapOfScreen, Defined, 2-10
DefaultDepth, Defined, 2-5
DefaultDepthOfScreen, Defined, 2-10
DefaultExposures, 7-35, 7-36
DefaultGC, Defined, 2-5
DefaultGCOfScreen, Defined, 2-10
DefaultRootWindow, Defined, 2-5
DefaultScreen, 2-2

Defined, 2-5
DefaultScreenOfDisplay, Defined, 2-5
DefaultVisual, 5-2

Defined, 2-6
Default VisualOfScreen, Defined, 2-11
#define, 4-6
Depth, Defined, J-3
depth.c, G-l
Destination, Defined, 5-18
DestroyAll, 2-14, 2-15, 7-21
DestroyNotify, 3-16, 8-2, 8-6, 8-26, 8-29,

8-30
Defined, 8-29

Device, Defined, J-3
DeviceButtonPressMask, E-9, E-ll
DeviceButtonReleaseMask, E-9, E-ll
DEVICE EVENTS, E-4
deviceid, B-7
DeviceKeymapStateMask, E-9, E-ll
DeviceMappingNotify, E-24
DevicePointerMotionMask, E-9, E-l1
DirectColor, 3-2, 3-3, 5-2
DirectColor" 5-3
DirectColor, 5-4, 5-8, 5-9, 5-10, 9-20, J-3,

J-ll
Defined, J-3

DisableAccess, 7-40
Display, 2-2, 2-3, 2-14, 7-33, C-8, C-I0,

C-16, C-18, E-21, E-23, J-3, J-I0
data structure, 2-3
Defined, J-3
structure, J-3, J-I0

Display Functions, Defined, 5-18

DisplayCells, Defined, 2-6
DisplayHeight, Defined, 2-9
DisplayHeightMM, Defined, 2-9
DisplayOfScreen, Defined, 2-11
DisplayPlanes, Defined, 2-6
DisplayString, Defined, 2-6
DisplayWidth, Defined, 2-9
DisplayWidthMM, Defined, 2-9
DoBlue, 5-2, 5-10, 5-11, 5-13, 10-9
DoesBackingStore, Defined, 2-11
DoesSaveUnders, Defined, 2-11
DoGreen, 5-2, 5-10, 5-11, 5-13, 10-9
DontAllowExposures, 7-35, 7-36
DontCareState, 9-8
DontPreferBlanking, 7-34, 7-36
DoRed, 5-2, 5-10,5-11,5-13, 10-9
Drawable, 1-2, C-14, C-17

Defined, J -3
Drawing

E

arcs, 6-10
image text, 6-36
lines, 6-7
points, 6-6
polygons, 6-7
rectangles, 6-9
strings, 6-34
text items, 6-33

EastGravity, 3-9, 4-3
EnableAccess, 7-40
EnterNotify, 7-8, 7-9, 8-2,8-13,8-14,8-15,

8-16,8-17,8-19,8-23,8-34
Defined, 8-13

EnterWindowMask, 7-7, 8-5, 8-14
Environment, DISPLAY, 2-1
Error

codes, 8-57
handlers, 8-56
handling, 1-3

/etc/ttys, 7-22
EvenOddRule, 5-17, 5-24, 5-31,10-10

Index 5

Event, 1-3,8-2
categories, 8-2
Defined, J-4
Exposure, J-4
Mask,J-4
propagation, 8-44
Propagation, J-4
Source, J-4
Synchronization, J-4
types, 8-2

Event mask, Defined, 8-5
EventMaskOfScreen, Defined, 2-11
Events

ButtonPress, 8-10
ButtonRelease, 8-10
CirculateNotify,8-27
CirculateRequest, 8-35
ClientMessage, 8-39
ColormapNotify, 8-38
ConfigureNotify,8-27
ConfigureRequest, 8-36
CreateNotify,8-29
DestroyNotify,8-29
EnterNotify,8-13
Expose, 8-24
Focusln, 8-18
FocusOut, 8-18
GraphicsExpose, 8-25
GravityNotify, 8-30
KeymapNotify, 8-23
KeyPress, 8-10
KeyRelease, 8-10
LeaveNotify,8-13
MapNotify, 8-31
MappingNotify, 8-31
MapRequest, 8-37
MotionNotify, 8-10
NoExpose, 8-25
PropertyNotify, 8-40
ReparentNotify,8-32
ResizeRequest, 8-38
Selection Clear , 8-41
SelectionNotify, 8-42

6 Index

SelectionRequest, 8-41
UnmapNotify, 8-33
VisibilityNotify,8-34

Expose, 1-2, 1-3,3-4,3-7,3-9,3-10,3-16,
3-17,3-18,3-19,3-20,3-23,3-24,
3-25,3-26,6-2, 7-2, 7-35, 8-2,8-13,
8-19,8-23,8-24,8-34

Defined, 8-24
ExposureMask, 8-5, 8-24
Extension, Defined, J-4

F
False, 1-6,2-11,3-6,3-10,3-11,3-18,3-21,

3-23,3-24,3-25,3-26,3-28,4-3,4-4,
4-5, 4-8, 6-2, 6-25, 7-7, 7-13, 8-5, 8-9,
8-13,8-15,8-36,8-37,8-39,8-45,
8-47, 8-48, 8-50, 8-51, 8-52, 8-53,
8-56,9-8, 10-35, 10-36, C-1, C-6,
C-19, E-8, E-9, E-11

FamilyChaos, 7-37
FamilyDECnet, 7-37
Familylnternet, 7-37
Files

/etc/ttys, 7-22
/etc/X?hosts, 7-37
$HOME/.Xdefaults, 10-6
< sys/socket.h> , 7-38
/usr/lib/X11/XErrorDB, 8-60
< X11/Xlib.h > , C-2, C-9, C-10
< X11/Xlibint.h >, C-1, C-12, C-13,

C-16
< X11/Xproto.h > , C-13, C-14, C-15,

C-16
< Xproto.h >, C-15

Filling
arcs, 6-15
polygon, 6-14
rectangles, 6-12

FillOpaqueStippled, 5-22, 5-23, 5-30, 6-4
FillPolygon, 6-13
FillSolid, 5-17, 5-22, 5-23, 5-30, 6-37
FillStippled, 5 .. 22, 5-23, 5-30

FillTiled, 5-22, 5-23, 5-30
f.kill, H-6
FlushGC, C-I0, C-12

Defined, C-I0
FocusChangeMask, 8-5, 8-18
Focusln, 7-13, 7-14, 7-20, 7-21, 8-2, 8-18,

8-19,8-20,8-21,8-22,8-23
Defined, 8-18

FocusOut, 7-13, 7-14, 7-20, 7-21, 8-2, 8-13,
8-18,8-19,8-20,8-21,8-22,8-23,
8-34

Defined, 8-18
Font, 1-3, 2-14, 2-15, 6-16, C-14

Defined, J-4
FontLeftToRight, 6-18, 6-29, 6-30, 6-31
FontRightToLeft, 6-18, 6-29, 6-30, 6-31
Fonts, D-3

freeing font information, 6-23
getting information, 6-23
unloading, 6-23

ForgetGravity, 3-6, 3-8,3-9,4-3
fork, 2-6
Fortran

parameters, 1-1
structures, 1-1

Fortran Bindings, 1-1
pointers, 1-2
program examples, 1-12
structures, 1-2
xfErrno, 1-1

Freeing
colors, 5-12
resources, 3-4, 3-30, 3-31

Frozen events, Defined, J-5
f.send _ msg, H -6, H -11

G
GC, C-8

Defined, J-5
GCArcMode, 5-16
GCBackground, 5-16
GCCapStyle, 5-16

GCClipMask, 5-16
GCClipXOrigin, 5-16
GCClip YOrigin, 5-16
GCDashList, 5-16
GCDashOffset, 5-16
GCFillRule, 5-16
GCFillStyle, 5-16
GCFont, 5-16
GCForeground, 5-16
GCFunction, 5-16
GCGraphicsExposures, 5-16
GCJ oinStyle, 5-16
GCLineStyle, 5-16
GCLine Width, 5-16
GContext, 1-3,2-14,2-15,5-26,6-23,6-31,

8-57, C-14
GCPlaneMask, 5-16
GCStipple, 5-16
GCSubwindowMode, 5-16
GCTile, 5-16
GCTileStipXOrigin, 5-16
GCTileStipYOrigin, 5-16
GENERAL_ACKNOWLEDGE, E-18
GENERAL_PROMPT,E-17, E-18
GetEmptyReq, C-16
GetKeyboardControl, C-15, C-19
GetReq, C-16, C-17
GetReqExtra, C-16, C-17
GetResReq, C-16, C-17
GetWindowAttributes, C-15, C-19
Glyph, Defined, J-5
Grab, Defined, J-5
Grabbing

buttons, 7-10
keyboard, 7-12
keys, 7-14
pointer, 7-7
server, 7-18

GrabFrozen, 7-8, 7-13
GrablnvalidTime, 7-8, 7-13
GrabModeAsync, 7-7, 7-8, 7-10, 7-12, 7-13,

7-14,8-9, E-8, E-9, E-I0, E-12
GrabModeSync, 7-7, 7-8, 7-10, 7-12, 7-13,

Index 7

7-14
GrabNotViewable, 7-8, 7-13
GrabSuccess, 7-7
Graphics context, 5-1

Defined, J-5
initializing, 5-24
path, 5-21

GraphicsExpose, 5-24, 5-37, 6-3, 8-2, 8-3,
8-5, 8-25, 8-26

Defined, 8-25
Gravity, Defined, J-5
GravityNotify, 3-9, 3-21, 8-2, 8-6, 8-13,

8-26, 8-30, 8-34
Defined, 8-30

GrayScale, 3-2, 5-2
GrayScale" 5-3
GrayScale, 5-4, 5-8, 6-44, 9-19, 9-20, 9-21,

J-5, J-ll
Defined, J-5

GXand, 5-18
GXandInverted, 5-18
GXandReverse, 5-18
GXclear, 5-18
GXcopy, 5-17, 5-18, 6-2, 6-3, 6-37
GXcopyInverted, 5-18
GXequiv, 5-18
GXinvert, 5-18
GXnand, 5-18
GXnoop, 5-18
GXnor, 5-18
GXor, 5-18
GXorInverted, 5-18
GXorReverse, 5-18
GXset, 5-18
GXxor, 5-18

H
Hash Lookup, D-3
HeightMMOfScreen, Defined, 2-12
HeightOfScreen, Defined, 2-12
HeightValue, 10-7
$HOMEj.Xdefaults, 10-6

8 Index

$HOME/.Xdefaults-name, 10-6
Hotspot, Defined, J -5
HPDeviceButtonPress, E-5
HPDeviceButtonPressreq, E-5
HPDeviceButtonRelease, E-5
HPDeviceButtonReleasereq, E-5
HPDeviceFocusIn, E-5, E-8, E-15
HPDeviceFocusInreq, E-5
HPDeviceFocusOut, E-5, E-8, E-15
HPDeviceFocusOutreq, E-5
HPDeviceKeymapNotify, E-5
HPDeviceKeymapNotifyreq, E-5
HPDeviceKeyPress, E-5, E-8
HPDeviceKeyPressreq, E-5
HPDeviceKeyRelease, E-5, E-8
HPDeviceKeyReleasereq, E-5
HPDeviceList, E-2
HPDeviceMapping, E-5
HPDeviceMappingNotifyreq, E-5
HPDeviceMotionNotify, E-5
HPDeviceMotionNotifyreq, E-5
HPProximityIn, E-5
HPProximityInreq, E-5
HPProximityOut, E-5
HPProximityOutreq, E-5

IconicState, 9-8
iconImage, H-7
iconImageMaximum, F-5, F-8
iconImageMinimum, F-5, F-8, H-7
IconMaskHint, 9-7
IconPixmapHint, 9-7
IconPositionHint, 9-7
Icon WindowHint, 9-7
Identifier, Defined, J-5
Image text, drawing, 6-36
ImageByteOrder, Defined, 2-8
InactiveState, 9-8
Inc1udeInferiors, 5-23, 5-36
Inferiors, Defined, J-5
Input

Focus, J-6
Manager, J-6

Input Control, 8-2
input.c, G-l, G-3
InputFocus, 8-53, 8-54
InputHint, 9-7
InputOnly, 3-4,3-6,3-8,3-11,3-12,3-13,

3-14,3-15,3-21,3-30,3-31,4-2,4-5,
5-14,5-31,5-32,6-2,8-24,8-34,8-57,
J-2, J-3, J-6, J-7

InputOutput, 3-3, 3-4, 3-6, 3-8, 3-10, 3-11,
3-12,3-13,3-14,3-15,3-18,4-2,5-23,
J-l, J-2, J-6, J-7

interactivePlacement, H-3
IsCursorKey, Defined, 10-5
IsFunctionKey, Defined, 10-5
IsKeypadKey, Defined, 10-5
IsMiscFunctionKey, Defined, 10-5
IsModiferKey, Defined, 10-6
IsPFKey, Defined, 10-6
IsUnmapped, 4-3
IsUnviewable, 4-3
IsViewable, 4-3

J
JoinBevel, 5-21, 5-29
JoinMiter, 5-17, 5-21, 5-29
JoinRound, 5-21, 5-29

K
KBAutoRepeatMode, 7-22
KBBellDuration, 7-22
KBBellPercent, 7-22
KBBellPitch, 7-22
KBKey, 7-22
KBKeyClickPercent, 7-22
KBLed, 7-22
KBLedMode, 7-22
Key

grabbing, 7-14
Grabbing, J-6

ungrabbing, 7-15
Keyboard

bell volume, 7-22
bit vector, 7-22
grabbing, 7-12
Grabbing, J-6
keyclick volume, 7-22
ungrabbing, 7-13

keyboardFocusPolicy, H-7
KeymapNotify, 8-2, 8-23

Defined, 8-23
KeyMapStateMask, 7-7
KeymapStateMask, 8-5, 8-23
KeyPress, 7-13, 7-14, 7-16, 7-23, 8-2, 8-10,

8-22,10-2
Defined, 8-10

KeyPressMask, 8-5, 8-10
KeyRelease, 7-13, 7-16, 7-23, 8-2, 8-10,

8-23,10-2
Defined, 8-10

KeyReleaseMask, 8-5, 8-10
Keysym, Defined, J-6

L
LANG,E-33
LANGUAGE, E-33
LastKnownRequestProcessed, Defined,

2-6
LeaveNotify, 7-8, 7-9, 8-2,8-13,8-14,8-15,

8-16,8-17,8-19,8-34
Defined, 8-13

LeaveWindowMask, 7-7,8-5,8-14
LedModeOff, 7-23, E-20
LedModeOn, 7-23, E-20
LineDoubleDash, 5-20, 5-22,5-23,5-29
LineOnOffDash, 5-20, 5-22, 5-29
Lines, drawing, 6-7
LineSolid, 5-17, 5-20, 5-22, 5-29
Lock, 7-33, E-23
LockDisplay, Defined, C-16
LockMask, 7-7, 7-12, 8-13, 8-15, E-9, E-I0,

E-ll, E-12

Index 9

LookupColor, 8-57
LowerHighest, 3-26, 3-27
LSBFirst, 2-8, 2-9

M
MapNotify, 3-18, 8-2, 8-6, 8-13, 8-26, 8-31,

8-34
Defined, 8-31

Mapped window, Defined, J-6
MappingBusy, 7-26, 7-34, E-24
MappingFailed, 7-34, E-24
MappingKeyboard, 8-32, 10-3
MappingModifier, 8-32, 10-3
MappingNotify, 7-26, 7-32, 7-33, 8-2, 8-5,

8-26, 8-31, 10-3, E-23
Defined, 8-31

MappingPointer, 8-32
MappingSuccess, 7-26, 7-33, E-24
MapRequest, 3-17, 3-18, 8-2, 8-35, 8-37,

8-44
Defined, 8-37

MapWindow, 2-15, 7-2
MapWindow" H-7
MaxCmapsOfScreen, Defined, 2-12
Maximum, H-7
maximumClientSize, F-4, H-3
maximumMaximum, F-4, H-3
max_val, E-2
Menus, 7-18
MinCmapsOfScreen, Defined, 2-12
min val, E-2
Mod,E-23
Mod1, 7-33, E-23
Mod1Mask, 7-7, 7-12, 8-13, 8-15, E-9,

E-10, E-11, E-12
Mod2, 7-33, E-23
Mod2Mask, 7-7, 7-12, 8-13, 8-15, E-9,

E-10, E-11, E-12
Mod3, 7-33, E-23
Mod3Mask, 7-7, 7-12, 8-13, 8-15, E-9,

E-10, E-11, E-12
Mod4, 7-33, E-23

10 Index

Mod4Mask, 7-7, 7-12, 8-13, 8-15, E-9,
E-10, E-11, E-12

ModS, 7-33
ModSMask, 7-7, 7-12, 8-13, 8-15, E-9,

E-10, E-11, E-12
Modifier keys, Defined, J-6
Monochrome, Defined, J-6
MotionNotify, 8-2, 8-7, 8-10, 8-11,8-14,

8-54
Defined, 8-10

MOllse, programming, 7-22
MSBFirst, 2-8, 2-9

N
n, H-11
ndevices, E-2
NextRequest, 8-57

Defined, 2-7
NoEventMask, 3-11, 8-5
NoExpose, 5-37, 6-3, 8-2, 8-5, 8-25

Defined, 8-25
Nonconvex, 6-14, 6-15
None, 3-6, 3-7, 3-12, 3-29, 3-30, 3-32, 4-3,

4-5,4-8,4-10,4-15,4-16,5-6,5-17,
5-23, 5-35, 6-2, 6-3, 6-33, 6-34, 6-43,
6-44,6-47, 7-7, 7-8, 7-9, 7-10, 7-19,
7-20, 7-21, 8-9, 8-13, 8-15, 8-21, 8-22,
8-28, 8-37, 8-39, 8-42, 8-43, 9-4,
10-25, E-13, E-14, E-15

NoOperation, 2-13
NormalState, 9-8
NorthEastGravity, 3-9, 4-3
NorthGravity, 3-9, 4-3
NorthWestGravity, 3-6, 3-8, 3-9, 3-10, 4-3
NoSymbol, 7-31, 7-32, 10-2, 10-4, 10-5,

E-22, E-23
NotifyAncestor, 8-15, 8-16, 8-19, 8-20
NotifyDetailNone, 8-19, 8-21, 8-22
NotifyGrab, 8-15, 8-17, 8-18, 8-22, 8-23
NotifyHint, 8-11, 8-13
Notifylnferior, 8-15, 8-16, 8-19
NotifyNonlinear, 8-15, 8-16, 8-17, 8-19,

8-20, 8-21, 8-22
NotifyNonlinearVirtual, 8-15, 8-16, 8-17,

8-19, 8-20, 8-21, 8-22
NotifyNormal, 8-13, 8-15, 8-18, 8-19
NotifyPointer, 8-19, 8-20, 8-21, 8-22
NotifyPointerRoot, 8-19, 8-21, 8-22
NotifyUngrab, 8-15, 8-17, 8-18, 8-22, 8-23
NotifyVirtual, 8-15, 8-16, 8-19, 8-20
NotifyWhileGrabbed, 8-18, 8-19
NotUseful, 2-11, 3-6, 3-10, 4-3
NULL, E-2, E-34
num_axes, E-2, E-16

o
Obscure, Defined, J-7
Occlude, Defined, J-7
OFF,E-4
ON I DEVICE_EVENTS, E-4
ONISYSTEM EVENTS, E-4
OpenFont, 8-57
Opposite, 3-21, 3-22
Output Control, 8-2
OwnerGrabButtonMask, 8-5, 8-9

p
PackData, C-22
Padding, Defined, J-7
P AIIHints, 9-10
Parent Window, 1-2,4-1
ParentRelative, 3-4, 3-7, 3-29,3-30, 7-2
P Aspect, 9-10
Passive grab, 7-6

Defined, J-7
Paste Buffers, 10-14
pcltrans, E-26
Pixel value, 5-19

Defined, J-7
Pixmap, 1-2, 1-3,2-14,2-15, C-14, C-17

Defined, J-7
Pixmaps, D-3
PlaceOnBottom, 8-27, 8-36

PlaceOnTop, 8-27, 8-36
Plane _~

copying, 6-4
Defined, J-7
mask, 5-19
Mask,J-8

PlanesOfScreen, Defined, 2-13
PMaxSize, 9-10
PMinSize, 9-10
Pointer

Defined, J-8
grabbing, 7-7, 7-9
Grabbing, J-8
ungrabbing, 7-9

PointerMotionHint, 8-11
PointerMotionHintMask, 7-7, 8-5, 8-11
PointerMotionMask, 7-7,8-5,8-7,8-11
PointerRoot, 2-15, 7-20, 7-21, 8-21, 8-22,

9-8, E-13, E-14, E-15
PointerWindow, 8-53
Pointing device, Defined, J-8
Points, drawing, 6-6
Polygons

drawing, 6-7
filling, 6-14

PolyLine, 6-8, 6-10
positionIsFrame, F-3
positionOnScreen, F-3
PPosition, 9-10
Prefer Blanking, 7-34, 7-36
PResizelnc, 9-10
PROMPT _1, E-17
PROMPT _2, E-17
PROMPT _3, E-17
PROMPT_4, E-17
PROMPT _5, E-17
PROMPT_6, E-17
PROMPT _7, E-17
Property

appending, 4-12
changing, 4-12
Defined, J-8
deleting, 4-14

Index 11

format, 4-12
getting, 4-9
listing, 4-11
prepending, 4-12
replacing, 4-12
type, 4-12

Property list, Defined, J-8
PropertyChangeMask, 8-5, 8-40
PropertyDe1ete, 8-41
PropertyDe1eted, 8-41
PropertyNewValue, 8-41
PropertyNotify, 4-11, 4-12, 4-13, 4-14, 8-2,

8-39,8-40
Defined, 8-40

PropModeAppend, 4-12, 4-13
PropModePrepend, 4-12, 4-13
PropModeReplace, 4-12
Protocol, TCP, 2-2
ProtocolRevision, Defined, 2-7
ProtocolVersion, Defined, 2-7
PseudoColor, 3-2, 3-3, 5-2, 5-3, 5-4, 5-8,

5-10,9-20, G-8, J-5, J-8, J-11
Defined, J-8

PSize, 9-10

Q

QLength, Defined, 2-7
QueryFont, 8-57, C-15, C-19
QueryKeymap, C-15, C-19
QueuedAfterFlush, 8-45, 8-46
QueuedAfterReading, 8-45
QueuedAlready, 8-45, 8-46
quitTimeout, H-6

R
RaiseLowest, 3-26, 3-27
read-only colormap cells, 5-7

allocating, 5-6, 5-7
read/write colormap cells, 5-6

allocating, 5-8
Rectangle

12 Index

Defined, J-8
filling, 6-12

RectangleIn, 10-14
RectangleOut, 10-14
RectanglePart, 10-14
Rectangles, drawing, 6-9
Redirecting control, Defined, J-8
Region, 10-10
ReparentNotify, 7-2, 8-2, 8-6, 8-26, 8-32

Defined, 8-32
REPEAT _30, E-17
REPEAT 60, E-17
ReplaYKeyboard, 7-16, 7-17
ReplayPointer, 7-16, 7-17
Reply, Defined, J-9
Request, Defined, J-9
Requests, Defined, 7-1
ResizeRedirect, 8-38
ResizeRedirectMask, 3-17,3-21,3-29,8-5,

8-44
ResizeRequest, 3-17, 3-21, 8-2, 8-35, 8-38,

8-44
Defined, 8-38

res name, H-2
resolution, E-2
Resource, Defined, J-9
Resource IDs, 1-3,2-14, D-3

Cursor, 1-3
Font, 1-3
freeing, 3-4, 3-30, 3-31
GContext, 1-3
Pixmap, 1-3
Window, 1-3

RetainPermanent, 2-14, 2-15, 7-21, 7-22,
9-18

RetainTemporary, 2-14, 2-15, 7-21, 7-22
RevertToNone, 7-20, 7-21, E-13, E-14,

E-15
RevertToParent, 7-20, 7-21, E-13, E-14
RevertToPointerRoot, 7-20, 7-21, E-13,

E-14, E-15
RGB values, Defined, J-9
Root, 5-1

Defined, J-9
RootWindow, Defined, 2-7
RootWindowOfScreen, Defined, 2-13

s
Save set, Defined, J-9
Save U nders, 3-10
saveUnder, H-7
Scanline

Defined, J-9
Order, J-I0

Screen, 1-2,2-1,2-2,2-3, C-8, J-I0
Defined, J -10
structure, J -10

ScreenCount, Defined, 2-7
ScreenFormat, C-8
ScreenOfDisplay, Defined, 2-5
ScreenSaverActive, 7-35
ScreenSaverReset, 7-35
Selection, 4-14

converting, 4-16
Defined, J -10
getting the owner, 4-15
setting the owner, 4-15

SelectionClear, 4-15, 8-2, 8-5,8-39,8-41
Defined, 8-41

SelectionNotify, 4-16, 8-2, 8-5, 8-39, 8-42,
8-43,8-53

Defined, 8-42
SelectionRequest, 4-15, 4-16, 8-2, 8-5,

8-39,8-41
Defined, 8-41

SendEvent, 8-3
Serial Number, 8-57
Server

Defined, J -10
grabbing, 7-18
Grabbing, J -10

ServerVendor, Defined, 2-8
SetModeDelete, 7-3
SetModelnsert, 7-3
Shift, 7-33, E-23

ShiftMask, 7-7, 7-12, 8-13, 8-15, E-9, E-I0,
E-ll, E-12

Sibling, Defined, J -10
simple.c, G-l
Source, Defined, 5-18
SouthEastGravity, 3-9, 4-3
SouthGravity, 3-9, 4-3
SouthWestGravity, 3-9,4-3
Stacking order, 1-2

Defined, J -10
StateHint, 9-7
StaticColor, 3-2, 3-3, 5-2
StaticColor" 5-3
StaticColor, 5-4, J -11

Defined, J-ll
StaticGravity, 3-9, 4-3
StaticGray, 3-2, 3-3, 5-2
StaticGray" 5-3
StaticGray, 5-4, 6-44, J -6, J -11

Defined, J -11
Status, 1-3

Defined, J -11
stdio.h, C-22
Stipple, Defined, J -11
StippleShape, 5-31
Strings, drawing, 6-34
strlen, 10-33
StructureNotify, 8-27, 8-28, 8-30, 8-31, 8-33
StructureNotifyMask, 8-5, 8-27, 8-28, 8-30,

8-31, 8-32, 8-33
SubstructureNotify, 8-27, 8-28, 8-30, 8-31,

8-33
SubstructureNotifyMask, 8-5, 8-6, 8-27,

8-28, 8-29, 8-30, 8-31, 8-32, 8-33
SubstructureRedirectMask, 3-11, 3-17,

3-18,3-21,3-23,3-24,3-25,3-26,
3-28,3-29,8-5,8-35,8-36,8-37,8-44

Success, 4-11
SyncBoth, 7-16
SyncHandle, C-20
SyncKeyboard, 7-16, 7-17
SyncPointer, 7-16, 7-17
SYSTEM_EVENTS, E-4

Index 13

T
Text, drawing, 6-33
Tile, 1-2

Defined, J-ll
mode, 3-4
pixmaps, 3-4

TileShape, 5-31
Time, Defined, 7-6
Timestamp, Defined, J-ll
TopIf, 3-21,3-22
transientDecoration, F-7
transientWindow, H-5
True, 1-6,2-11,3-10,3-11,3-17,4-3,4-4,

4-5,4-11,5-8,5-10,5-17,6-2,6-3,
6-19,6-25, 7-2, 7-7, 7-13, 7-28, 8-3,
8-5,8-9,8-13,8-15,8-25,8-28,8-29,
8-31, 8-33, 8-39, 8-41, 8-45, 8-47,
8-48,8-49,8-50,8-51,8-52,8-54,
8-56,9-8, 10-5, 10-6, 10-13, 10-14,
10-35,10-36, C-6, C-19 E-8 E-9 , , ,
E-ll, E-34

TrueColor, 3-2, 3-3, 5-2
TrueColor" 5-3
TrueColor, 5-4, J-ll

Defined, J-ll
Type, Defined, J -11

u
Ungrabbing

buttons, 7-11
keyboard, 7-13
keys, 7-15
pointer, 7-9

UngrabKeyboard, 7-14
UngrabPointer, 7-9
Unix System Call, fork, 2-6
UnlockDisplay, Defined, C-16
UnmapGravity, 3-10, 4-3, 8-33
UnmapNotify, 3-10, 3-19,3-20,8-2,8-6,

~-13, 8-19, 8-27, 8-33, 8-34
Defmed, 8-33

14 Index

UnmapNotify Event, 3-19, 3-20
UnmapWindow, 7-2
Unsorted, 5-35, 5-36
USPosition, 9-10, F-3
/usr/lib/XII/XErrorDB, 8-60
USSize, 9-10, F-3

v
VendorRelease, Defined, 2-8
Vertex, D-l

Defined, D-2
VertexCurved, D-2

Defined, D-2
VertexDontDraw, D-2

Defined, D-2
VertexDrawLastPoint, D-l
VertexEndClosed, D-l, D-2

Defined, D-2
VertexRelative, D-2

Defined, D-2
VertexStartClosed, D-l, D-2

Defined, D-2
Viewable, Defined, J-12
VisibilityChangeMask, 8-5, 8-34
VisibilityFullyObscured, 8-34, 8-35
VisibilityNotify, 3-13, 8-2, 8-13, 8-19, 8-27,

8-34
Defined, 8-34

VisibilityPartiallyObscured, 8-34
VisibilityU nobscured, 8-34
Visible, Defined, J-12
Visual, 3-2, 3-3, 4-2, 5-3, 10-20, C-8

Defined, 3-2
Visual Classes

GrayScale, 3-2
PseudoColor, 3-2
StaticColor, 3-2
StaticGray, 3-2
TrueColor, 3-2

Visual Type, Defined, 3-1
VisualAllMask, 10-17
VisualBitsPerRGBMask, 10-17

VisualBlueMaskMask, 10-17
VisualClassMask, 10-17
VisualColormapSizeMask, 10-17
VisualDepthMask, 10-17
VisualGreenMaskMask, 10-17
VisualID, C-14
VisualID Mask, 10-17
VisualNoMask, 10-17
VisualRedMaskMask, 10-17
VisualScreenMask, 10-17

w
West Gravity, 3-9, 4-3
WhenMapped, 2-11, 3-10, 3-29, 4-3, 8-24
WhitePixel, 2-4

Defined, 2-4
WhitePixelOfScreen, Defined, 2-10
WidthMMOfScreen, Defined, 2-12
WidthOfScreen, Defined, 2-12
Width Value, 10-7
WindingRule, 5-24, 5-31, 10-10
Window, 1-3,2-14,3-3, C-14, C-17

attributes, 3-3
background, 3-30
clearing, 6-2
Defined, 1-2
defining the cursor, 6-46
determining location, 10-7, 10-8
Gravity, J-12
icon name, 9-6
IDs, D-3
InputOnly, 3-13, J-6
InputOutput, J-6
Manager, J -12
managers, 7-18
mapping, 3-4
name, 9-5
Parent, J-7
Root, J-9
RootWindow, 2-7
undefining the cursor, 6-47
XRootWindow, 2-7

WindowGroupHint, 9-7
Windows, D-3

x
X10 compatibility

XDraw,D-1
XDrawDashed, D-1
XDrawFilled, D-1, 0-3
XDrawPatterned, D-1
XDraWfiled, D-1, D-3

X11/keysymdef.h, 7-29, 10-4
X11/keysym.h, 7-29
Xll/X10.h, D-2
Xll/Xatom.h, 4-6, 6-21, 6-25, 8-1, 9-3,

9-19
Xll/X.h, 5-18, 8-2,8-5
< Xll/XHPImageIO,h > , E-25
Xll/XHPlib,h, E-2, E-3
< Xll/XHPproto,h > , E-25
Xll/Xlib.h, 2-2, 8-3, 10-18, C-2, C-9, C-I0
Xll/Xlibint.h, C-1, C-12, C-13, C-16
Xll/Xproto.h, 8-26, 8-57, C-13, C-14,

C-15, C-16
Xll/Xresource,h, 10-28
Xll/Xutil.h, 9-7, 9-9, 9-13, 9-14, 10-7,

10-10,10-17,10-20,10-40
< Xll/XWDFile,h > , E-3O
XActivateScreenSaver, 7-36

Defined, 7-36
XAddExtension, C-3

Defined, C-3
XAddHost, 7-38

Defined, 7-38
XAddHosts, 7-38

Defined, 7-38
XAddPixel, 10-21, 10-22

Defined, 10-21
XAddToExtensionList, C-9

Defined, C-9
XAddToS aveS et, 7-3

Defined, 7-3
XAllocColor, 5-5, 5-6,5-7,5-12, 10-9

Index 15

Defined, 5-6
XAllocColorCells, 5-3, 5-4, 5-5, 5-8, 5-9,

5-12,9-22
Defined, 5-8

XAllocColorPlanes, 5-3, 5-4, 5-5, 5-9, 5-10,
5-12,9-19,9-22

Defined, 5-9
XAllocID, C-10, C-17

Defined, C-10
XAllocNamedColor, 5-5, 5-7, 5-12, 10-9

Defined, 5-7
_ XAllocScratch, Defined, C-21
XAllowEvents, 7-6, 7-8, 7-13, 7-16, 7-18

Defined, 7-16
XAllPlanes, Defined, 2-3
XAnyEvent, Defined, 8-3
XAppendVertex, 0-1
XArc, Defined, 6-5
XASSOCFONT, E-33
XAssocTable, D-3, D-4, D-5
XAutoRepeatOff, 7-25, E-17

Defined, 7-25
XAutoRepeatOn, 7-25, E-17

Defined, 7-25
XBell, 7-25, 7-26

Defined, 7-25
XBitmapBitOrder, Defined, 2-9
XBitmapPad, Defined, 2-9
XBitmapUnit, Defined, 2-8
XBlackPixel, Defined, 2-4
XBlackPixelOfScreen, Defined, 2-10
XButtonEvent, Defined, 8-11
XButtonPressedEvent, 8-13

Defined, 8-11
XButtonReleasedEvent, 8-13

Defined, 8-11
XCellsOfScreen, Defined, 2-10
XChangeActivePointerGrab, 7-9, 7-10,

8-10
Defined, 7-9

XChangeGC, 5-25, 5-26, 5-35, C-17
Defined, 5-25

XChangeKeyboardControl, 7-22, 7-24,

16 Index

7-26
Defined, 7-24

XChangeKeyboardMapping, 7-31, 7-32,
8-32

Defined, 7-31
XChangePointerControl, 7-27, 7-28

Defined, 7-27
XChangeProperty, 4-12, 4-13, 8-41, 9-3

Defined, 4-12
XChangeSaveSet, 7-2, 7-3

Defined, 7-2
XChangeWindowAttributes, 3-5, 3-28,

3-29,5-6, 7-4, 8-38, 8-43
Defined, 3-28

XChar2b, 6-30, 6-32, 6-34
Defined, 6-18

XCharStruct, 6-17, 6-18, 6-19, 6-20, 6-29,
6-30,6-31

Defined, 6-17
XChecklfEvent, 8-47, 8-48

Defined, 8-48
XCheckMaskEvent, 8-51

Defined, 8-51
XCheckTypedEvent, 8-51

Defined, 8-51
XCheckTypedWindowEvent, 8-52

Defined, 8-52
XCheckWindowEvent, 8-50

Defined, 8-50
XCirculateEvent, Defined, 8-27
XCirculateRequestEvent, Defined, 8-35
XCirculateSubwindows, 3-26, 3-27, 8-27,

8-35
Defined, 3-26

XCirculateSubwindowsDown, 3-27, 8-27,
8-35

Defined, 3-27
XCirculateSubwindowsUpi 3-27, 8-:-27,

8-35
Defined, 3-27

XClassHint, 9-14, 9-15
Defined, 9-15

XClearArea, 6-1, 6-2

Defined, 6-1
XClearVertexFlag, 0-1
XClearWindow, 3-29, 6-2

Defined, 6-2
XClientMessageEvent, Defined, 8-40
XClipBox, 10-10

Defined, 10-10
XCloseDisplay, 2-13, 2-14, C-3

Defined, 2-13
XCNOENT, 10-41
XCNOMEM, 10-40
XColor, 5-2, 5-7, 5-10, 5-11, 5-12, 5-13

Defined, 5-2
XColormapEvent, Defined, 8-39
XComposeStatus, 10-3
XConfigureEvent, Defined, 8-28
XConfigureRequestEvent, Defined, 8-36
XConfigureWindow, 3-20, 3-22, 3-23, 8-27,

8-30, 8-36, 8-38
Defined, 3-22

XConnectionNumber, Defined, 2-4
XConvertSelection, 4-16, 8-41

Defined, 4-16
XCopyArea, 5-24, 5-37, 6-3, 6-4, 8-5, 8-25
X _ CopyArea, 8-26
XCopyArea, Defined, 6-3
XCopyColormapAndFree, 5-5

Defined, 5-5
XCopyGC, 5-25

Defined, 5-25
XCopyPlane, 5-14, 5-24, 5-37, 6-4, 6-5, 8-5,

8-25,8-26
Defined, 6-4

XCreateAssocTable, D-4
Defined, D-4

XCreateBitmapFromData, 10-25
Defined, 10-25

XCreateColormap, 5-3, 5-4, 5-5, 9-18
Defined, 5-4

XCreateFontCursor, 6-43, A-1
Defined, 6-43

XCreateGC, 5-15, 5-24, 5-25, 5-26, 5-35,
8-25, 10-10, C-17

Defined, 5-24
XCreateGlyphCursor, 6-44, 6-45

Defined, 6-44
XCreatelmage, 10-19, 10-20, 10-22

Defined, 10-19
XCreatePixmap, 5-14, C-17

Defined, 5-14
XCreatePixmapCursor, 6-43, 6-44, 6-45

Defined, 6-43
XCreatePixmapFromBitmapData, 10-24,

10-25
Defined, 10-24

XCreateRegion, 10-11
Defined, 10-11

XCreateSimpleWindow, 3-13, 3-15, 7-4,
8-29

XCreateSimpleWindowO, F-2
XCreateSimpleWindowO., H-2
XCreateSimpleWindow, Defined, 3-15
XCreateWindow, 3-5, 3-13, 3-14, 3-28, 5-6,

7-4, 8-29, 8-43
Defined, 3-13

XCreateWindowEvent, Defined, 8-29
XCrossingEvent, Defined, 8-14
Xdebug, 8-55

XDefaultColormap, Defined, 2-4
XDefaultColormapOfScreen, Defined,

2-10
XDefaultDepth, Defined, 2-5
XDefaultDepthOfScreen, Defined, 2-10
XDefaultGC, Defined, 2-5
XDefaultGCOfScreen, Defined, 2-10
XDefaultRootWindow, Defined, 2-5
XDefaultScreen, 2-2

Defined, 2-5
XDefaultScreenOfDisplay, Defined, 2-5
XDefaultVisual, Defined, 2-6
XDefault VisualOfScreen, Defined, 2-11
XDefineCursor, 3-14, 6-46, 6-47

Defined, 6-46
XDeleteAssoc, D-5

Defined, D J

XDeleteContext, 10-41

Index 17

Defined, 10-41
XDeleteModifiermapEntry, 7-32, 7-33

Defined, 7-32
XDeleteProperty, 4-14, 8-41

Defined, 4-14
XDestroyAssocTable, D-5

Defined, D-5
XDestroylmage, 10-20, 10-22

Defined, 10-22
XDestroyRegion, 10-11

Defined, 10-11
XDestroySubwindows, 3-16, 8-29

Defined, 3-16
XDestroyWindow, 3-16, 8-29

Defined, 3-16
XDestroyWindowEvent, Defined, 8-30
XDisableAccessControl, 7-40

Defined, 7-40
XDisplayCells, 2-3

Defined, 2-6
XDisplayHeight, 2-3

Defined, 2-9
XDisplayHeightMM, 2-3

Defined, 2-9
XDisplayKeycodes, 7-29, 7-30, 7-31

Defined, 7-29
XDisplayMotionBufferSize, 8-54

Defined, 8-54
XDisplayName, 8-61

Defined, 8-61
XDisplayOfScreen, Defined, 2-11
XDisplayPlanes, 2-3

Defined, 2-6
XDisplayString, Defined, 2-6
XDisplayWidth, 2-3

Defined, 2-9
XDisplayWidthMM, 2-3

Defined, 2-9
XDoesBackingStore, Defined, 2-11
XDoesSaveU nders, Defined, 2-11
XDoSomethingReply, Defined, C-15
xDoSomethingReq, C-17
XDoSomethingReq, Defined, C-14

18 Index

XDraw, D-1, D-2
Defined, D-1

XDrawArc, 5-22, 6-10, 6-11, 6-12, 6-21
Defined, 6-10

XDrawArcs, 6-10, 6-11, 6-12
Defined, 6-11

XDrawDashed, D-1
XDrawFilled, D-1, D-3

Defined, D-3
XDrawlmageString, 6-33, 6-36, 6-37, 6-38,

E-32, E-33
Defined, 6-36

XDrawlmageString16, 6-36, 6-37, 6-38
Defined, 6-36

XDrawLine, 5-22, 6-1, 6-7, 6-8, 6-9
Defined, 6-7

XDrawLines, 6-7, 6-8, 6-9, D-1
Defined, 6-7

XDrawPatterned., D-1
XDrawPoint, 6-1, 6-6, 6-7, C-10

Defined, 6-6
XDrawPoints, 6-6, 6-7

Defined, 6-6
XDrawRectangle, 5-22, 6-1, 6-9, 6-10

Defined, 6-9
XDrawRectangles, 6-9, 6-10

Defined, 6-9
XDrawSegments, 5-22, 6-7, 6-8, 6-9, D-1

Defined, 6-8
XDrawString, 6-34, 6-36, E-32, E-33

Defined, 6-34
XDrawString16, 6-35, 6-36

Defined, 6-35
XDraWfext, 5-22, 6-32, 6-33, 6-34, E-32,

E-33
Defined, 6-33

XDraWfext16, 5-22, 6-32, 6-33, 6-34
Defined, 6-33

XDraWfiled, D-1, D-3
XEDataObject, C-9
XEHeadOfExtensionList, C-9

Defined, C-9
XEmptyRegion, 10-13

Defined, 10-13
XEnableAccessControl, 7-40

Defined, 7-40
XEnterWindowEvent, 8-15, 8-16, 8-17

Defined, 8-14
XEqualRegion, 10-13, 10-14

Defined, 10-13
XErrorEvent, 8-57, E-36

Defined, 8-57
XESetCloseDisplay, Defined, C-3
XESetCopyGC, C-8

Defined, C-4
XESetCreateFont, Defined, C-5
XESetCreateGC, Defined, C-4
XESetError, Defined, C-7
XESetErrorString, C-8

Defined, C-8
XESetEventToWire, Defined, C-6
XESetFlushGC, C-8

Defined, C-8
XESetFreeFont, Defined, C-5
XESetFreeGC, Defined, C-4
XESetWireToEvent, Defined, C-6
XEvent, 8-4, 8-5, 8-47, 8-48, 8-49, 8-50,

8-51, 8-52, 8-54, C-6, C-7
Defined, 8-4

XEventMaskOfScreen, Defined, 2-11
XEventsQueued, 2-7, 8-45, 8-46

Defined, 8-45
XExposeEvent, Defined, 8-24
XExtCodes, C-2, C-3, C-22, C-23

Defined, C-2
XExtData, Defined, C-9
XfAddTypeO, 1-2
XfAddType, 1-8
XfAttachO, 1-2
XfCreateO., 1-2
XfCreate, 1-7, 1-8
XfDestroy, 1-7
XfDetach, 1-2
xfErrno, 1-2
XFetchBuffer, 10-16

Defined, 10-16

XFetchBytes, 10-15, 10-16
Defined, 10-16

XFetchName, 9-5, 9-6
Defined, 9-5

XfExtractO., 1-2
XFillArc, 5-22, 6-1, 6-15, 6-16

Defined, 6-15
XFillArcs, 5-24, 6-16

Defined, 6-16
XFillPolygon, 5-22, 5-24,6-14,6-15

Defined, 6-14
XFillRectangle, 5-22, 6-1, 6-12, 6-13, 6-14

Defined, 6-13
XFillRectangles, 6-12, 6-13, 6-14

Defined, 6-13
XFindContext, 10-40, 10-41

Defined, 10-40
XFindOnExtensionList, C-I0

Defined, C-9
XfInsertO., 1-2
XFlush, 8-44

Defined, 8-44
XFlushGCCache, C-10

- Defined, C-I0
XFocusChangeEvent, Defined, 8-18
XFocuslnEvent, 8-19, 8-20,8-21,8-22,

8-23
Defined, 8-18

XFocusOutEvent, 8-19, 8-20, 8-21, 8-22,
8-23

Defined, 8-18
XFontProp, 6-17

Defined, 6-17
XFontStruct, 6-17, 6-18,6-23,6-24,6-29,

6-33, C-8, E-33, E-34
Defined, 6-18

XForceScreenSaver, 7-35, 7-36
Defined, 7-35

XfPackO" 1-2
XfPack, 1-7, 1-8
XFree, 2-13, 4-2, 4-9, 4-11, 4-12, 7-5, 7-31,

7-39,8-55,9-6,9-9, 9-14, 9-15, 10-16,
10-18, E-16

Index 19

Defined, 2-13
XFreeColormap, 5-6, 8-38, 8-39

Defined, 5-6
XFreeColors, 5-3, 5-4, 5-12

Defined, 5-12
XFreeCursor, 3-12, 6-45, 6-46

Defined, 6-45
XFreeExtensionList, C-2

Defined, C-2
XFreeFont, 6-24, 6-45, C-5, E-32

Defined, 6-24
XFreeFontInfo, 6-23, 6-26

Defined, 6-26
XFreeFontNames, 6-25, 6-26

Defined, 6-26
XFreeFontPath, 6-28

Defined, 6-28
XFreeGC, 5-26

Defined, 5-26
XFreeModifiermap, 7-33, 7-34, E-24

Defined, 7-33
XFreePixmap, 5-14, 5-15, 10-23, 10-25

Defined, 5-14
XfReplaceTypeO., 1-2
XfReplaceType, 1-8
XfSyncO,I-2
XfUnpack, 1-2
XfValueO" 1-2
XGContextFromGC, 5-26, 6-23

Defined, 5-26
XGCValues, 5-15

Defined, 5-16
xGenericReply, C-15
XGeometry, 10-8

Defined, 10-8
XGetAtomName, 4-9

Defined, 4-9
XGetClassHint, 9-15, 9-16

Defined, 9-15
XGetDefault, 10-6, 10-9

Defined, 10-6
XGetErrorDatabaseText, 8-60

Defined, 8-60

20 Index

XGetErrorText, 8-59,8-60, C-8
Defined, 8-59

XGetFontPath, 6-27, 6-28
Defined, 6-27

XGetFontProperty, 6-24, 6-25
Defined, 6-24

XGetGeometry, 4-4, 4-5
Defined, 4-4

XGetIconName, 9-6
Defined, 9-6

XGetIconSizes, 9-14
XGetIconSizesO, F-2
XGetIconSizes, Defined, 9-14
XGetImage, 6-40, 6-41, 6-42,10-19,10-20,

10-22
Defined, 6-40

XGetInputFocus, 7-21
Defined, 7-21

XGetKeyboardControl, 7-24, 7-25
Defined, 7-24

XGetKeyboardMapping, 7-30, 7-31
Defined, 7-30

XGetModifierMapping, 7-34
Defined, 7-34

XGetMotionEvents, 8-11, 8-54, 8-55
Defined, 8-54

XGetNormalHints, 9-11, 9-13
Defined, 9-11

XGetPixel, 10-20, 10-21
Defined, 10-20

XGetPointerControl, 7-28
Defined, 7-28

XGetPointerMapping, 7-26, 7-27
Defined, 7-27

XGetScreenSaver, 7-36
Defined, 7-36

XGetSelectionOwner, 4-15, 4-16
Defined, 4-15

XGetSizeHints, 9-13
Defined, 9-13

XGetStandardColormap, 9-20, 9-21
XGetStandardColormapO, F-2
XGetStandardColormap, Defined, 9-20

XGetSublmage, 6-41, 6-42
Defined, 6-41

XGetTransientForHint, 9-16, 9-17
Defined, 9-16

XGetVisualInfo, 10-17, 10-18
Defined, 10-17

XGetWindowAttributes, 4-2, 4-4, E-15
Defined, 4-2

xGetWindowAttributesReply, C-19
XGetWindowProperty, 4-9, 4-10, 4-11,

4-12, 8-41, 9-3
Defined, 4-9

XGetWMHints, 9-9
Defined, 9-9

XGetZoomHints, 9-12, 9-13
Defined, 9-12

XGrabButton, 7-9, 7-10, 7-11, 7-16, 8-9,
E-10

Defined, 7-10
XGrabKey, 7-14, 7-15, 7-16, E-12

Defined, 7-14
XGrabKeyboard, 7-6, 7-12, 7-13, 7-14,

7-15, 7-16, 8-22, E-8
Defined, 7-12

XGrabPointer, 7-6, 7-7, 7-8, 7-9, 7-10,
7-11, 7-16, 8-14, 8-17, E-8

Defined, 7-7
XGrabServer, 7-18

Defined, 7-18
XGraphicsExposeEvent, 8-3, 8-26

Defined, 8-25
XGravityEvent, Defined, 8-30
XHeightMMOfScreen, Defined, 2-12
XHeightOfScreen, Defined, 2-12
XHostAddress, 7-37

Defined, 7-37
XHPAcknowledge, E-18
XHPaxis _info, E-2
XHPChangeDeviceControl, E-19, E-20
XHPChangeDeviceKeyMapping, E-22,

E-23
XHPCOMBINED MODE, E-25
XHPDeviceAttribUtes, E-20

XHPDeviceAutoRepeatOff, E-17
XHPDeviceAutoRepeatOn, E-16, E-17
XHPDeviceControl, E-20
XHPDeviceFocusln, E-14
XHPDeviceFocusOut, E-14
XHPDeviceList, E-2, E-3, E-4, E-16, E-18
XHPDeviceState, E-19, E-22
XHPDisableReset, E-35, E-36

Defined, E-35
XHPEnableReset,· E-36

Defined, E-36
XHPFileToPixmap, E-26, E-28, E-29
XHPFileToWindow, E-26, E-27, E-28,

E-29
Defined, E-27

XHPFreeDeviceList, E-3
Defined, E-3

XHPGet16bitMixedFontStruct, E-33, E-34
Defined, E-33

XHPGetCurrentDeviceMask, E-15
Defined, E-15

XHPGetDeviceControl, E-18, E-19
XHPGetDeviceFocus, E-13

Defined, E-13
XHPGetDeviceKeyMapping, E-21, E-22
XHPGetDeviceModifierMapping, E-24
XHPGetDeviceMotionEvents, E-15, E-16

Defined, E-15
XHPGetExtEventMask, E-4, E-7

Defined, E-4
XHPGetExtMask, E-6
XHPGetServerMode, E-24, E-25
XHPGrabDevice, E-7, E-8

Defined, E-7
XHPGrabDeviceButton, E-9, E-10, E-11
XHPGrabDeviceKey, E-12
XHPlMAGE MDOE, E-25
XHPIs16bitCharacter, E-34

Defined, E-34
XHPKeysymToRoman8, E-34, E-35

Defined, E-34
XHPListInputDevice, E-7
XHPListInputDevices, E-2, E-3, E-18

Index 21

Defined, E-2
XHPOVERLAY MODE, E-25
XHPPixmapToFlle, E-26, E-27

Defined, E-26
XHPPrompt, E-17, E-18
XHPQuerylmageFile, E-29, E-30

Defined, E-29
XHPRoman8ToKeysym, E-35

Defined, E-35
XHPSe1ectExtensionEvent, E-6, E-7

Defined, E-6
XHPSetDeviceFocus, E-13, E-14, E-15

Defined, E-13
XHPSetDeviceModifierMapping, E-23,

E-24
XHPSetErrorHandler, E-36, E-37

Defined, E-36
XHPSetInputDevice, E-4, E-10, E-11,

E-12, E-13, E-19, E-20, E-21, E-22,
E-23

Defined, E-4
XHPSTACKED _SCREENS_MODE,

E-25
XHPTimeCoord, Defined, E-16
XHPUngrabDevice, E-8, E-9

Defined, E-8
XHPUngrabDeviceButton, E-10, E-11
XHPUngrabDeviceKey, E-12, E-13
XHPWindoWfoFile, E-25, E-26, E-27

Defined, E-25
XIconSize, 9-2, 9-13

Defined, 9-13
XIflEvent, 8-47, 8-48

Defined, 8-48
Xlmage, 6-38, 6-39, 6-40, 6-42,10-18,

10-19, 10-20, 10-21, 10-22
Defined, 6-38

XlmageByteOrder, Defined, 2-8
XlnitExtension, C-2, C-3, C-23

Defined, C-3
XlnsertModifiermapEntry, 7-32

Defined, 7-32
XlnstallColormap, 3-11, 3-29, 5-2, 7-4,

22 Index

8-38
Defined, 7-4

XInternAtom, 4-6, 4-8, 4-9
Defined, 4-8

XIntersectRegion, 10-12
Defined, 10-12

XKeyboardControl, 7-22, 7-24
Defined, 7-23

XKeyboardState, 7-24
Defined, 7-25

XKeycodeToKeysym, 10-4, 10-5
Defined, 10-4

XKeyEvent, Defined, 8-12
XKeymapEvent, Defined, 8-23
XKeyPressedEvent, 8-13, 10-2, 10-3

Defined, 8-12
XKeyReleasedEvent, 8-13, 10-2, 10-3

Defined, 8-12
XKeysymToKeycode, 10-5

Defined, 10-5
XKeysymToString, 10-4

Defined, 10-4
XKillClient, 7-22

Defined, 7-22
XLastKnownRequestProcessed, Defined,

2-6
XLeaveWindowEvent, 8-15, 8-16, 8-17

Defined, 8-14
XListExtensions, C-1, C-2

Defined, C-2
XListFonts, 6-25, 6-26

Defined, 6-25
XListFontsWithlnfo, 6-26, 6-27

Defined, 6-26
XListHosts, 7-38, 7-39

Defined, 7-38
XListInstailedColormaps, 7-5

Defined, 7-5
XListProperties, 4-11, 4-12

Defined, 4-11
XLoadFont, 6-23, 6-24, 6-25, E-32, E-33

Defined, 6-23
XLoadQueryFont, 6-17, 6-24, 6-26, C-5,

E-32, E-33
Defined, 6-24

XLookUpAssoc, D-5
Defined, D-5

XLookupColor, 5-7, 5-8
Defined, 5-7

XLookupKeysym, 10-2
Defined, 10-2

XLookupString, 7-28,10-3,10-4
Defined, 10-3

XLowerWindow, 3-26, 8-27, 8-36
Defined, 3··26

XMakeAssoc, D-4, D-5
Defined, D-4

XMapEvent, Defined, 8-31
XMappingEvent, Defined, 8-32
XMapRaised, 3-18, 8-28, 8-31, 8-36, 8-37

Defined, 3-18
XMapRequestEvent, Defined, 8-37
XMapSuhwindows, 3-18, 3-19,8-31,8-37

Defined, 3-18 \
XMapWindow, 3-4, 3-14, 3-17, 3-18, 8-31,

8-37
X MapWindow, C-17
xMapWindow, Defined, 3-17
XMaskEvent, 8-50, 8-51

Defined, 8-50
XMatchVisualInfo, 2-5, 3-1,10-18

Defined, 10-18
XMaxCmapsOfScreen, Defined, 2-12
XMaxRequestSize, C-13

Defined, C-13
xmh,10-26
XMinCmapsOfScreen, Defined, 2-12
XModifierKeymap, 7-32, 7-33, 7-34, E-23,

E-24
Defined, 7-32

XMotionEvent, Defined, 8-12
XMoveResizeWindow, 3-24,3-25, 8-28,

8-30,8-36,8-38, C-17
Defined, 3-24

XMoveWindow, 3-23, 8-28, 8-36, C-17
Defined, 3-23

XNegative, 10-7
XNewModifiermap, 7-32

Defined, 7-32
XNextEvent, 1-3,8-44,8-46,8-47

Defined, 8-46
XNextRequest, Defined, 2-7
XNoExposeEvent, Defined, 8-25
XNoOp, 2-13

Defined, 2-13
XOffsetRegion, 10-11

Defined, 10-11
XOpenDisplay, 2-1, 2-2,2-5,2-6,4-1, 7-1,

8-61, 10-7, E-36
Defined, 2-1

XParseColor, 10-9, 10-10
Defined, 10-9

XParseCJeometry, 10-7, 10-8
Defined, 10-7

XPeekEvent, 8-47
Defined, 8-47

XPeekIfEvent, 8-47, 8-49
Defined, 8-49

XPending, 8-44, 8-46
Defined, 8-46

Xpermalloc, 10-29
Defined, 10-29

XPlanesOfScreen, Defined, 2-13
XPoint, 6-8

Defined, 6-5
XPointerMovedEvent, 8-11,8-13

Defined, 8-12
XPointInRegion, 10-14

Defined, 10-14
XPolygonRegion, 10-10

Defined, 10-10
xpr, E-26
XPropertyEvent, Defined, 8-40
XProtocolRevision, Defined, 2-7
XProtocolVersion, Defined, 2-7
XPutBackEvent, 8-52

Defined, 8-52
XPutImage, 6-38, 6-39,6-40,10-19,10-25

Defined, 6-39

Index 23

XPutPixel, 10-21
Defined, 10-21

XQLength, 8-46
Defined, 2-7

XQueryBestCursor, 6-42, 6-46
Defined, 6-46

XQueryBestSize, 5-31
Defined, 5-31

XQueryBestStipple, 5-32, 5-33
Defined, 5-32

XQueryBestTile, 5-32
Defined, 5-32

XQueryColor, 5-12, 5-13
Defined, 5-13

XQueryColors, 5-12, 5-13
Defined, 5-13

XQueryExtension, C-1
Defined, C-1

XQueryFont, 6-23, 6-24, C-5, E-32, E-33
Defined, 6-23

XQueryKeymap, 7-26
Defined, 7-26

XQueryPointer, 4-5, 4-6, 8-11
Defined, 4-5

XQueryrextExtents, 6-30, 6-31, 6-32, 6-37,
E-32, E-33

Defined, 6-30
XQueryrextExtents16, 6-30, 6-31, 6-32

Defined, 6-31
XQueryrree, 4-1, 4-2

Defined, 4-1
XRaiseWindow, 1-3,3-25,3-26,8-27,8-36

Defined, 3-25
XRead, C-19, C-20

- XRead16, C-20
-)DRead16Pad,C-20
- XRead32, C-20
XReadBitmapFile, 10-23, 10-24

Defined, 10-23
)DReadPad, C-20

XRebindKeysym, 10-3, 10-4
Defined, 10-3

XRecolorCursor, 6-43, 6-45

24 Index

Defined, 6-45
)DRectangle, Defined, 6-5
)DRectlnRegion, 10-14

Defined, 10-14
)DRefreshKeyboardMapping, 8-32,10-2,

10-3
Defined, 10-2

)DRemoveFromSaveSet, 7-3
Defined, 7-3

)DRemoveHost, 7-39
Defined, 7-39

)DRemoveHosts, 7-39
Defined, 7-39

)DReparentEvent, Defined, 8-32
)DReparentWindow, 7-1, 7-2, 8-31, 8-32

Defined, 7-1
XReply, C-7, C-8, C-18, C-19

- Defined, C-18
xReq, C-10, C-15
XResetScreenSaver, 7-36

Defined, 7-36
XResizeRequestEvent, Defined, 8-38
)DResizeWindow, 3-23, 3-24, 8-28, 8-30,

8-36,8-38
Defined, 3-23

XResourceManagerString, 10-6, 10-7
Defined, 10-6

xResourceReq, C-14
XResourceReq, Defined, C-14
XRestackWindows, 3-27, 3-28, 8-27, 8-36

Defined, 3-27
XrmBindingList, 10-31
XrmBindLoosely, 10-31
XrmBindTightly, 10-31
XrmGetFileDatabase, 10-37, 10-38

Defined, 10-37
XrmGetResource, 10-34, 10-35, 10-36

Defined, 10-34
XrmGetStringDatabase, 10-37, 10-38

Defined, 10-37
XrmInitialize, 10-29

Defined, 10-29
XrmMergeDatabases, 10-35, 10-36, 10-37

Defined, 10-36
XrmOptionDescRec, Defined, 10-38
XrmOptionKind, Defined, 10-38
XrmoptionNoArg, 10-39
XrmParseCommand, 10-38, 10-39

Defined, 10-38
XrmPutFileDatabase, 10-37

Defined, 10-37
XrmPutLineResource, 10-33, 10-34, 10-37,

10-38
Defined, 10-33

XrmPutResource, 10-32, 10-35
Defined, 10-32

XrmPutStringResource, 10-33
Defined, 10-33

XrmQGetResource, 10-34, 10-35, 10-36
Defined, 10-34

XrmQGetSearchList, 10-35, 10-36
Defined, 10-35

XrmQGetSearchResource, 10-36
Defined, 10-36

XrmQPutResource, 10-32, 10-33, 10-35
Defined, 10-32

XrmQPutStringResource, 10-33
Defined, 10-33

XrmQuark, 10-29
XrmQuarkToString, 10-30

Defined, 10-30
XrmStringToBindingQuarkList, 10-31,

10-32
Defined, 10-31

XrmStringToQuark, 10-30
Defined, 10-30

XrmStringToQuarkList, 10-30, 10-31
Defined, 10-30

XrmUniqueQuark, 10-29
Defined, 10-29

XrmValue, 10-28, 10-33
Defined, 10~ 29

XRootWindow, Defined, 2-7
XRootWindowOfScreen, Defined, 2-13
XRotateBuffers, 10-16

Defined, 10-16

XRotate WindowProperties, 4-13, 4-14,
8-41

Defined, 4-13
XSaveContext, 10-40, 10-41

Defined, 10-40
XScreenCount, Defined, 2-7
XScreenOfDisplay, Defined, 2-5
XSegment, 6-8

Defined, 6-5
XSelectInput, 8-43, 8-44, E-7

Defined, 8-43
XSelectionClearEvent, Defined, 8-41
XSelectionEvent, Defined, 8-43
XSelectionRequestEvent, Defined, 8-41
XSend, C-18

XSendEvent, 8-39,8-42,8-53,8-54
XSendEventO, F-l
XSendEvent, Defined, 8-53
XServerVendor, Defined, 2-8
XSet*, H-2
XSetAccessControl, 7-39, 7-40

Defined, 7-39
XSetAfter Function, 8-56

Defined, 8-56
XSetArc~ode,5-36

Defined, 5-36
XSetBackground, 5-27,5-28, C-17

Defined, 5-27
XSetClassHint, 9-15
XSetClassHintO, F-2
XSetClassHint, Defined, 9-15
XSetClip~ask, 5-34, 5-35

Defined, 5-34
XSetClipOrigin, 5-34

Defined, 5-34
XSetClipRectangles, 5-23, 5-26, 5-35, 5-36

Defined, 5-35
XSetCloseDown~ode, 2-14, 7-21, 7-22,

9-22
Defined, 7-21

XSetCommand, 9-7
XSetCommandO, F-2
XSetCommand, Defined, 9-7

Index 25

XSetDashes, 5-23, 5-26, 5-29, 5-30
Defined, 5-29

XSetErrorHandler, 8-57
Defined, 8-57

XSetFillRule, 5-30, 5-31
Defined, 5-30

XSetFillStyle, 5-30
Defined, 5-30

XSetFont, 5-34
Defined, 5-34

XSetFontPath, 6-25, 6-27
Defined, 6-27

XSetForeground, 5-15, 5-27
Defined, 5-27

XSetFunction, 5-28
Defined, 5-28

XSetGraphicsExposures, 5-37, 8-25
Defined, 5-37

XSetlconName, 9-6
XSetlconNameO, F-2
XSetlconName, Defined, 9-6
XSetlconSizes, 9-14

Defined, 9-14
XSetlnputFocus, 7-20, 7-21

Defined, 7-20
XSetlOErrorHandler, 8-61

Defined, 8-61
XSetLineAttributes, 5-15, 5-28,5-29

Defined, 5-28
XSetModifierMapping, 7-33, 7-34, 8-32

Defined, 7-33
XSetNormalHints, 9-10, 9-11, 9-12
XSetNormalHintsO, F-2
XSetNormalHints, Defined, 9-10
XSetPlaneMask, 5-28

Defined, 5-28
XSetPointerMapping, 7-26, 7-27, 8-32

Defined, 7-26
XSetRegion, 5-23, 10-11

Defined, 10-11
XSetScreenSaver, 7-34, 7-35

Defined, 7-34
XSetSelectionOwner, 2-14, 4-15, 8-41, 8-42

26 Index

Defined, 4-15
XSetSizeHints, 9-12, 9-13

Defined, 9-12
XSetStandardColormap, 9-21, 9-22

Defined, 9-21
XSetStandardProperties, 9-1, 9-4, 9-5
XSetStandardPropertiesO, F-l, F-2
XSetStandardProperties, Defined, 9-4
XSetState, 5-27

Defined, 5-27
XSetStipple, 5-33

Defined, 5-33
XSetSubwindowMode, 5-36, 5-37

Defined, 5-36
XSetTile, 5-33

Defined, 5-33
XSetTransientForHint, 9-16
XSetTransientForHintO, F-2
XSetTransientFor Hint, Defined, 9-16
XSetTSOrigin, 5-33, 5-34

Defined, 5-33
XSetWindowAttributes, 3-5, 3-28, 3-29,

8-38,8-43
Defined, 3-5

XSetWindowBackground, 3-29, 3-30
Defined, 3-29

XSetWindowBackgroundPixmap, 3-30
Defined, 3-30

XSetWindowBorder, 3-30, 3-31
Defined, 3-30

XSetWindowBorderPixmap, 3-31
Defined, 3-31

XSetWindowBorderWidth, 3-25, 8-28,
8-36

Defined, 3-25
XSetWindowColormap, 5-5, 5-6, 7-4, 8-38

Defined, 5-5
XSetWMHints, 9-9, 9-14
XSetWMHintsO, F-l, F-2
XSetWMHints, Defined, 9-9
XSetZoomHints, 9-11, 9-12

Defined, 9-11
XShrinkRegion, 10-12

Defined, 10-12
XSizeHints, 9-2, 9-9, 9-12, 9-13

Defined, 9-10
XStandardColormap, 9-18, 9-19, 9-20,

9-21,9-22
Defined, 9-18

XStoreBuffer, 10-15
Defined, 10-15

XStoreBytes, 10-15
Defined, 10-15

XStoreColor, 5-6, 5-10, 5-11,10-9
Defined, 5-11

XStoreColors, 5-6, 5-10, 9-22
Defined, 5-10

}(Store~ame,9-5

}(Store~ameO, F-1, F-2
}(Store~ame,H-2

Defined, 9-5
}(Store~amedColor, 5-10, 5-11, 5-12

Defined, 5-11
}(StringToKeysym, 10-4

Defined, 10-4
}(SubImage, 10-20, 10-21, 10-22

Defined, 10-21
}(SubtractRegion, 10-13

Defined, 10-13
}(Sync, 1-3,2-14,8-45

Defined, 8-45
}(Synchronize, 8-56, C-20

Defined, 8-56
}(tCreateApplicationShellO, F-2
XtCreateWindowO., H-2
XTextExtents, 6-29, 6-30, 6-31, E-32, E-33

Defined, 6-29
XTextExtents16, 6-29, 6-30, 6-31

Defined, 6-29
XTextItem, Defined, 6-32
XTextItem16, Defined, 6-32
XTextWidth, 6-28, E-32, E-33

Defined, 6-28
XTextWidth16, 6-28

Defined, 6-28
XTimeCoord, Defined, 8-55

}(tInitialize, 10-39
XtInitializeO, F-1, F-2
XtMainLoopO, F-1, F-2
}(TranslateCoordinates, 3-31, 3-32, H-7

Defined, 3-31
}(UndefineCursor, 6-47

Defined, 6-47
XUngrabButton, 7-11, 7-12, E-11

Defined, 7-11
XUngrabKey, 7-15

Defined, 7-15
XUngrabKeyboard, 2-14, 7-13, 7-14

Defined, 7-13
}(UngrabPointer, 2-14, 7-9, 8-10, 8-14

Defined, 7-9
XUngrabServer, 2-14,7-18

Defined, 7-18
}(UninstallColormap, 5-6, 7-4, 7-5, 8-38

Defined, 7-4
}(UnionRectWithRegion, 10-12, 10-13

Defined, 10-12
XUnionRegion, 10-12

Defined, 10-12
}(UniqueContext, 10-41

Defined, 10-41
XUnloadFont, 6-23,6-25, E-32

Defined, 6-25
}(UnmapEvent, Defined, 8-33
XUnmapSubwindows, 3-19,3-20

Defined, 3-19
}(UnmapWindow, 3-19

Defined, 3-19
/}(util.h, H-3
}(Value, 10-7, 10-8
}(VendorRelease, Defined, 2-8
XVisibilityEvent, 8-34,8-35

Defined, 8-34
XVisualIDFrom Visual, 3-3

Defined, 3-3
XVisualInfo, 10-17

Defined, 10-17
XWarpPointer, 7-19, 7-20

Defined, 7-19

Index 27

xwd, E-26, E-28
xwd2sb, E-26
XWhitePixel, Defined, 2-4
XWhitePixelOfScreen, Defined, 2-10
XWidthMMOfScreen, Defined, 2-12
XWidthOfScreen, Defined, 2-12
XWindowAttributes, 4-2

Defined, 4-2
XWindo~hanges,3-20,3-22

Defined, 3-20
XWindowEvent, 1-3,8-44,8-49,8-50

Defined, 8-49
XWMHints, 9-2, 9-7, 9-9

Defined, 9-7
XWriteBitmapFile, 10-23, 10-24, 10-25

Defined, 10-23
xwud, E-26
XXorRegion, 10-13

Defined, 10-13
XY format, Defined, J -12
XYBitmap, 6-39, 6-40, 6-41,10-19
XYPixmap, 6-39, 6-40, 6-41, 6-42, 10-19,

E-26

v
YNegative, 10-7
YSorted, 5-35, 5-36
YValue, 10-7, 10-8
YXBanded, 5-35, 5-36
YXSorted, 5-35, 5-36

z
Z format, Defined, J -12
ZoomS tate, 9-8
ZPixmap, 6-39, 6-40, 6-41,6-42,10-19

28 Index

HP Part Number
98794-90002
Microfiche No. 98794-99002
Printed in U.S.A. E0989

Flin- HEWLETT
a:~ PACKARD

I ~
98794-90605
For Internal Use Only

