Programming with Xlib

Version 11, Release 3

HP 9000 Series 300/800 Computers

HP Part Number 98794-90002

(D it

Hewlett-Packard Company
1000 NE Circle Bivd., Corvallis OR 97330

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be iiable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,
or use of this material.

© Copyright 1989, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior written consent of Hewlett-Packard Company, except as provided
below. The information contained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the Rights in Technical Data and
Software clause in DAR 7-104(g).

Copyright 1985, 1986, 1987, 1988, Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital Equipment Corporation,
Maynard, Massachusetts.

Parts of this software and documentation are based in part on software and documentation developed and distributed by Massachusetts institute
of Technology. Permission to use, copy, modify, and distribute only those parts provided by M.L.T. for any purpose and without fee is hereby
granted, provided that the above copyright notices appear in all copies and that those copyright notices and this permission notice appear in
supporting documentation, and that the names of M.L.T. and Digital not be used in advertising or publicity pertaining to distribution of the software
without specfific, written prior permission.

UNIX is a trademark of AT&T.
OSF/Motif is a trademark of the Open Software Foundation, Inc.

Certification for conformance with OSF/Motif user environment is pending.

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number changes
when extensive technical changes are incorporated.

July 1988... Edition 1
December 1988. .. Edition 2
September 1989... Edition 3

Contents

1

11
1.2
13
14
15

21
22
221
222
223
23
24
25
2.6

31
32
321
322
323
324
325
326
327
328
329
3210
33
34
35
3.6
3.7
38
39

Introduction to XDcienisiniinrnnreenisitsssisnseesersesasesessssasssssesssssesseseans 1-1
Overview of the X Window System 1-2
Errors 1-4
Naming and Argument Conventions within Xlib 1-4
Programming Considerations 1-5
Conventions Used in This Manual 1-6

Display Functions 2-1
Opening the Display 2-1
Obtaining Information about the Display, Image Formats, or Screens 2-3

Display Macros . 2-3
Image Format Macros 2-8
Screen Information Macros 2-10
Generating a NoOperation Protocol Request 2-13
Freeing Client-Created Data 2-13
Closing the Display 2-14
X Server Connection Close Operations .. 2-14

Window FUnctionscnininiinininincsnecnininesiessssssissmessseseenes .31
Visual Types reereseresesenaaesasasasases 32
Window Attributes 3-4

Background Attribute 3-7
BOrder AIDULEcoevreerrererernrensssmseserssssassssssssssenssssasssssssersens 3-8
Gravity ALIIDULES ...occuerveverrrreesiereneessssesensassesessssssstesessesssesssssssisesssesessssnssssesens 39
Backing Store Attribute 3-10
Save Under Flag 3-10
Backing Planes and Backing Pixel Attributes . 311
Event Mask and Do Not Propagate Mask Attributes .31
Override Redirect Flag 3-11
Colormap Attributeeceeuveuveererrerene . 3-12
Cursor Attributeccccveveceevreeneserecssesennns . 312
Creating Windows 312
Destroying Windows ... 3-16
Mapping WINAOWS ...covcrerreeeinrresrnsisessncosesmenssnsssesssessssessssssssssssossssssensossassssssssesssons 3-17
Unmapping Windows 3-19
Configuring Windows 3-20
Changing Window Stacking Order .. 3-25
Changing Window Attributes 3-28

Contents 1

3.10

41
42
43
44

51

511
512
513
52

53

5.4

54.1
542
543
544
545
5.46
5.4.7

6

6.1
6.2
6.3
6.3.1
632
6.3.3
634
6.4
64.1
6.4.2
6.43
6.5
6.5.1
6.52
6.53
6.5.4
6.5.5
6.5.6

Translating Window Coordinates ...

Window Information Functions

Obtaining Window Information

Properties and Atoms

Obtaining and Changing Window Propertics
Selections

..............

Graphics Resource Functions
Colormap Functions

Creating, Copying, and Destroying Colormaps

Allocating, Modifying, and Freeing Color Cells
Reading Entries in a Colormap

Creating and Freeing Pixmaps

.....

Manipulating Graphics Context/State
Using GC Convenience Routines

Setting the Foreground, Background, Function, or Plane Mask

Setting the Line Attributes and Dashes
Setting the Fill Style and Fill Rulec.........

.............

Setting the Fill Tile and Stipple

......

Setting the Current Font
Setting the Clip Region

.............

.....

Setting the Arc Mode, Subwindow Mode, and Graphics Exposure

Graphics Functions

Clearing Areas

..........

Copying Areas
Drawing Points, Lines, Rectangles, and Arcs

............................

Drawing Single and Multiple Points

Drawing Single and Multiple Lines
Drawing Single and Multiple Rectangles

.........

Drawing Single and Multiple Arcs

.......

Filling Areas

............

Filling Single and Multiple Rectanglescoocoeeveveeereeercnerseseseresnessnsaesenns

Filling a Single Polygon
Filling Single and Multiple Arcs ..

FOnt MELTICS .oouevivveriireenenneeresissecnnes

. 6-17

Loading and Freeing Fonts

Obtaining and Freeing Font Names and Information

Setting and Retrieving the Font Search Path
Computing Character String Sizesc.ccccvveereerns
Computing Logical Extents

..............

............................

..................................

. 6-27

........

Querying Character String Sizes

......

...........................

2 Contents

.........

3-32

41
41
4-6
49

4-14

5-1

5-2

5-4

5-6
5-13
5-14
5-15
5-26
5-27
5-28
5-30
5-31
5-34
5-34
5-36

6-1
6-1

6-5
6-6
6-7
6-9
6-10
6-12
6-13
6-14
6-15

6-23
6-25

6-29
6-30

6.6
6.6.1
6.6.2
6.6.3
6.7
6.8
68.1
6.8.2
683

7

71
72
73
74
75
7.6
7.7
711
172
7.8
7.9
7.10
711
7.11.1
7.11.2

8

8.1
82
83
84
841
842
843
8.4.4
845
8.4.6
8.4.7
8.4.8
849
85
8.6

Drawing Text 6-32
Drawing Complex Text 6-33
Drawing Text Characters 6-35
Drawing Image Text ChaTacterSccecveeeecsssesesesesensssesasessecssssssssassssasssssasess 6-36

Transferring Images between Client and Server 6-38

CUTSOTS cuvecrircrecnernnncsenienscesesesisesesssassssnsmssesssssssassessassassssessssenssasessssssssssssassssssasssssens 6-42
Creating @ CUISOT ..coceceecrenneccensninsesssseonassesssasssssssssssssessesssssssssssassssassssssssssessases 6-43
Changing and Destroying CUISOISccccureerercucensensessessosssssssssesesensessescaseases 6-45
Defining the CUTSOTuvveevveeerieceancieisrrmcreasesasesasrcssisssssssssssensecssssecssasessases 6-46

Window Manager Functionsccccocvvvvevenrennecnsssnsesssncsoseececanes 7-1

Changing the Parent of a Window 7-1

Controlling the Lifetime of a Window . 12

Determining Resident Colormapsc.ecoeececneeeeismseenssisiesssiesinenensessaseesssssnse 7-4

Pointer Grabbing 7-5

Keyboard Grabbingcceeeoeeceecnecremsesesmsenseseseeessssescseesessasensens 7-12

Server Grabbing ...t eaasessesnens 7-18

Miscellaneous Control FUNCLONS ...ceerrerecrersrereasesesssesessosessasesaase 7-19
Controlling INPUt FOCUSo.ccceeersneereereresnsssesssesssessessscsesssesnees 7-19
Killing Clientsccoceceueceeecncece . 721

Keyboard and Pointer Settings 7-22

Keyboard Encodingceescreereecscrcsnusssencsssescssescssesescesesessansasens 7-28

Screen SaVer CONLIOLcovvceencriniisinnrenrensnesssasssssissssssorssmosensessensens e 1-34

Controlling Host ACCESS .cvverrererusersere . 737
Adding, Getting, or Removing Hosts . 137
Changing, Enabling, or Disabling Access Control 7-39

Events and Event-Handling Functions 8-1

Event Types 8-2

Event Structures 8-3

EVvent Maskscceeceenicnencerenseecsenscnnesssesseneenns 85

Event Processing 87
Keyboard and Pointer Events 8-9
Window Entry/EXit EVENLScccceveereecirensresiesssesrnsessssssessersssssssssssesssssssasssseses 8-14
Input FOCUS EVENLSciveeurcirnriiiiniiiiisisescsisisesisisnsisssisesssssssnsssasasssseseses 8-18
Key Map State Notification EVENLSccocuceeeeeivecnisiinisnisissiresecensescnsascscesnsenss 8-23
Exposure Events . 824
Window State Change Events 8-26
Structure Control EVentscuiecniecncncescsnvessssnns 8-35
Colormap State Change EVENLSccivcneiiinnineniciniessssessssensisesenss 8-38
Client Communication EVENLSweeceveereemmeisisiiessesnisememmsesescesensesserensessens 8-39

SElectiNg EVENLS ...ccccccveeiiecnrecinesiscneesessmsnssassssssassssssssscsessesssossisesessssssasssssasssssaes 8-43

Handling the Output Buffer ..o . 844

Contents 3

8.7
8.8
88.1
8.8.2
8383
89
8.10
8.11
812
8121
8122

9
9.1
9.1.1
912
913
9.14
9.5
9.1.6
9.1.7
918
9.19
9.2
921
922
923

10
10.1
10.1.1
10.1.2
10.2
103
104
105
10.6
10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.7

Event Queue Management

Manipulating the Event Queue

Returning the Next Event

Selecting Events Using a Predicate Procedure

Selecting Events Using a Window or Event Mask

Putting an Event Back into the Queue

Sending Events to Other Applications

Getting Pointer Motion History

Handling Error Events

Enabling or Disabling Synchronization

Using the Default Error Handlers

Predefined Property Functions

Communicating with Window Managers

Setting Standard Properties
Setting and Getting Window Names

Setting and Getting Icon Names

Setting the Command
Setting and Getting Window Manager Hints

......

Setting and Getting Window Sizing Hints

Setting and Getting Icon Size Hints
Setting and Getting the Class of a Window

Setting and Getting the Transient Propertycceeeeue.

Manipulating Standard Colormaps s
Standard Colormaps

Standard Colormap Properties and Atoms

Getting and Setting an XStandardColormap Structure

Application Utility Functions ..

.....

Keyboard Utility Functions
Keyboard Event Functions

Keysym Classification Macros

Obtaining the X Environment Defaults
Parsing the Window Geometry

Parsing the Color Specifications

Generating Regions
Manipulating Regions

Creating, Copying, or Destroying Regions

Moving or Shrinking Regions
Computing with Regions

Determining if Regions Are Empty or Equal ..

.......

Locating a Point or a Rectangle in a Region

Using the Cut and Paste Buffers

4 Contents

8-45
8-46
8-46
8-47
8-49
8-52
8-53
8-54
8-55
8-56
8-57

9-1
9-1
9-4
9-5
9-6
9-7
9-7
9-9
9-13
9-15
9-16
9-17
9-18

. 9-19

9-21

10-1
10-1
10-2
10-5
10-6
10-7
109
10-10
10-10

.10-11

10-11
10-12
10-13
10-14
10-15

10.8
10.9
10.10
10.11
10.11.1
10.11.2
10.11.3
10.114
10.12

A

B

C
C1
C2
C3
C4
C5
C.6
C.7
C38
C9
C.10
C.11
C12
C13
Cl14
C.15
C.16
C.17
C.18

D
D1
D2

Determining the Appropriate Visual TYpeccocvvverereanne 10-17
Manipulating Images 10-19
Manipulating Bitmaps 10-22
Using the Resource Managercccoveoreeemsrssesessisessmssssssessesssassssssssssesssesssesses 10-26
Resource Manager Matching Rules . 10-27
Basic Resource Manager Definitions ... 10-28
Resource Database ACCESS ..uvcecerereaceneeseerencsensisecnns 10-31
Parsing Command Line Options . 10-38
Using the Context Managercoocoveeveenseecrrennnecne 10-40
Xlib Functions and Protocol Requests A-1
Xlib Font Cursors B-1
Extensions C1
Basic Protocol Support ROULINEScccouvreveeerenseerecninssesenssessmssssssssssssessssressanens C-1
Hooking into Xlib Cc-2
Ho0KS into the LIDIAryc.cccccverieeecrirneercnrasesessisieseesanesessseseasssesesssensssssassses C-3
Hooks onto XIib Data StIUCIUIESccevvrmrererreecrcescrsesnssencasascnseosesesssonsssensas C-9
GC CACKING ettt tsneen s esessasesessespassstassasss C-10
Graphics BatChiNgcccevuereerereniessesesissssrssesssssssessassssssssssssssssssssssssssens C-11
Writing Extension Stubs C-13
Requests, Replies, and Xproto.hecvervennnnesssnsnsnsnsssssssssnsiens C-13
Request Format s s et sebens C-13
Starting to Write a Stub ROULINEeeeevecereucenrnencnscrensncseersanesccseanens C-15
Locking Data Structures C-16
Sending the Protocol Request and Argumentsooeeecveneeccereonns C-16
Variable Length ATGUMENLESoocureoreeereeenreeceecsiteeecnemee et seaensessseseasssenens C-17
REPHES coeveierceerrniisensinessisenessstsessassasssssssssessasessossssasssssssessesssssossasessssses C-18
Synchronous Calling a......cceecreneereemrueureeeneneeeetreseecssisce e scoessesessecsssssssns Cc-21
Allocating and Deallocating MEemOTYcc.vecureecusevemnenctrisceecncmsersenseseecnsesesssscecnes C-21
Portability CONSIAEIAtIONScccveeeierieveressssessesrsrsseresssssssssessssessssssssssssasssessssessssess C-22
Deriving the Correct Extension Opcode C-22
Version 10 Compatibility FURCtiONScccoeevevirerrnnrennnnnrcienneresseennessessesnns D-1
Drawing and Filling Polygons and Curvesococeceevcesercnnenscereercrcmseecenecens D-1
Associating User Data with a Valueccceeeevrveeeennenne D-4

Contents 5

E HP Extensions

E.1 Input Device Extensions

El1 Programming with Extended Input

E.12 Listing Available Devices

E.13 Freeing the DeviceList

E14 Enabling Extended Input Devices

E.l5 Getting the Event Select Mask and Event Type

E.16 Selecting Input From Extended Input Devices

E.17 Grabbing Extended Input DeviCesccocovremeeecmsesansescrsmscnsaecnns

E.18 Ungrabbing Extended Input Devices

E.19 Grabbing Extended Input Device Buttons

E.1.10 Ungrabbing Extended Input Device Buttons

E.1.11 Grabbing Extended Input Device Keysccoveemncesincnn

E.1.12 Ungrabbing Extended Input Device Keys

E.1.13 Getting Extended Input Device FOCUS ...ocoviimrcrciniecnnenisianen.

E.114 Setting Extended Input Device FOCUS ...vvvvviccinmenscsssnaresesisesensssssiesessassensanes
E.1.15 Getting Current Extended Input Event Selection Masksccoeecvencuececnne
E.1.16 Getting Extended Device Motion HiStOIY ..cc.ccovvurevrerrisneecsenserersesnesensencerennes
E.1.17 Enabling Auto-Repeat for Extended Input Devices \‘

E.1.18 Disabling Auto-Repeat for Extended Input Devicescccocvceceerecneucmnrscunence
E.1.19 Sending a Prompt to Extended Input Devices

E.1.20 Sending an Acknowledge to Extended Input Devicesccocoevuevncecnes
E.121 Getting Control Attributes of Extended Input Devicescceurerersesveneanes
E.122 Setting Control Attributes of Extended Input Devicesocinivininnincnen
E.1.23 Getting the Key Mapping of Extended Input Devicescouuivienicncnenee.
E.1.24 Changing the Key Mapping of Extended Input Devicesocevevrercecereennne
E.1.25 Setting the Modifier Mapping of Extended Input Devicescoevvveeneenneas
E.1.26 Getting the Modifier Mapping of Extended Input Devicesooeceuvuvcuneane
E.1.27 Getting the Server Mode

E2 Image Input/Output Library FUNCHONScvevuvcmiencmrecnsivecnsusmssnrenssessisens
E21 Saving the Contents of 8 WindOWceeururevceecceremrecencneenecccnscnisenecensasnsesnnns
E22 SaVING @ PIXINAD coerereieeireneceresenccmtiensiecmsisssstesstssssessssssssssessassssacsssosssescss
E23 Displaying a Stored IMAagEccceecrersrsenrccnnmsisissenescsesecssesesssossesssessasesesssescns
E24 Displaying a Stored Pixmap

E25 Getting the Image File Header Structure

E3 National Language I/O SUPPOTtcocrecuriccneniniincsieccssiscsnmsessssineass

E31 Xlib Support

E32 Getting the ASSOCIALE FONL vvevereeeeerererernnictnienenstsecsesmossssssnsassssssasssssessesess
E33 Checking for 16-bit Characterscesevenmesesinsssreceseasinssanens

E34 Conversions Between X11 Keysyms and HP Roman 8 codesocvvuunees
E4 Locking an X DISPlaycccecvveininninnenseniensunmmississsmssimsessssssmsssssssssseses
E4.1 Disabling the Reset Key SEQUENCE. cceuceeceecenerievcmecsnssscsencsseniincns

EA42 Enabling the Reset Key SEqUENCE. ...oivrenmreensinrenerrcernensesnsesenisenees

6 Contents

E-1
E-1
E-2
E-2

E-4

E-+4

E-6

E-7

E-8

E-9
E-10
E-11
E-12
E-13
E-13
E-15
E-15
E-16
E-17
E-17
E-18
E-18
E-19
E-21
E-22
E-23
E-24

. E-25

E-25
E-26
E-27
E-27
E-29
E-29
E-32
E-32
E-34

. E-34

E-34
E-35
E-35
E-36

ES

F.1
F2
F21
F3
F4
F4.1
F42
F43
F44
F45
F4.6

G1
G2
G3

H.1
H2
H21
H.2.2
H.3
HJ3.1
H3.2

L1

12

121
122
123
124
13

131
132
133
134
L35
136

Support for Multiple Error Handlerscococeevreieeerrmnreereerenseseeesensessessnesens E-36

HP Window Manager Programmatic Interface rervesaerenenenes F-1
Window Management Calls rerrres bt sa st tsnates F-1
Creating a Top-Level Windowcccceerveeenees eeeremeasenetaenes .. F-3
Client Propertics ereste ettt sesas e sssesasr et s e s s arseasensstasessanearans F-3
Window Manager Properties . O F-7
Client Responses to Window Manager Actlons SR F-8
Redirection of Operations retssrere ettt e s st s erenne bt sass s e rassaees F-8
Window Configuration st aessaeenans F-8
(DE)ICONILY ..eovrnenrerrencrnrseesersrsencissnsessasssasscassessssssesesses cersreestetsenensnsnes F-9
Colormap Changeccceuuieee. . . F-9
INPULFOCUS ..ottt F9
ClientMessage Eventsccco.... .. F9
Example PrOgramscooicinieiennecenieercsreeeeenestsesssssessasvassssesssessssssnsscasssesse G-1
A SIMPIE EXAMPIE ..ovvreecricncirieecrninsietsssrecsraseiecssstessssssssssssssssssssssessssssesssssssssen G-1
Getting Input From an Extended INPUL DEVICE coueiireemrnecesstsensessteecaeeereane G-5
Using Image and Overlay PIaneso.cceeevernsnisnsnnmsnrerisnensssssssersssessssens G-13
HP OSF/Motif Window Manager Programmatic Interfacecccccoverrernnenn. H-1
MWM Programmatic Interface Standardscooceeeeeeeeeeeeeennresrceseecerenenenens H-1
Inter-Client Communication CONVENLIONSc.ccouuveeeurveeesresrserentrensasessssssansensnes H-1
Programming CHENt ACHONS ...ccveeerereeeresiersisessnsneresessssssssssssssssossssssesssesens H-2
Client Responses to0 MWM ACHONScoueverreeennreereensresenisesssssesnessssssssssesns H-7
MWM Specific INfOrmationceeeceecrncncreieescssemsessresseisesssusssesseasesesssseces H-7
_MOTIF_WM_HINTS ... esssssessessssssssses H-7

Window Management CallS ittt eas H-12

Fortran BinNdiNESsccoiviiiiiiiieenticneriineeseteeessesesesnssesesessesssessssesesssssssssssessons I-1
Translating C types t0 FOTIANccvcvceereermeuceseiecrensennmseeressessesessenseessseasescsne I-1
Creating an X11 ODJECEccovuinrcrsrieencrieiecscreneeecssseanastsaesessssenssessesesssesccssssssses I-2

XICIEALE ceovvererecnerereeeeiereee e isseasesasessensessensessasssessss e st ssesessssosssnsssussnssase I-2

HIPACK ecvveeecnernrcrresetseeneeaetssnsecsssasestassssas s sasiesansssesinsassesesasssssessssssessssassssessans I-2

KEUDPACK curertriirnceriencrieiei e ssaetssisasesssesessisssesesssssssnssesesssamessssesssssesansssssssasssses I-2

EXAMPIES covverreerrereiriesenieiesieseneescseesasssenensssessansssees v L2
Managing ODJECES .c.cuvrevereeerreiernrensrenseriserensasssasessssssesasesesessasssasesssersssessessssseses I-2

KIINSEIL ceverecucreeecncesireesersrsnncesissesesseseasessasesessencesensaseocsstscssresasmsssssensasssssecsessancn I-2

DGl 25 (1 : T (ORI e s e r bbb ben I-2

KEVAIUE ..ttt a e essaeessssasesesserensassoesenssasananes I-2

XEATACK ettt ens b res et eeens e bensrasenases 12

XfDetach ..oveeeorvereeeecennnnns eeeerattes e araat sttt st a e e e e b er st se et r st s s s rrtan I-2

KESYNC ottt st tsssssssstassssssssssssstasssasssesssssesssssesssssncssassetscssssenes I-2

Contents 7

14 Releasing an Object

141 Example

LS Extending the Fortran Bindings
L6 FORTRAN/X Program Examples
J Glossary

8 Contents

I-7
1-7
I-8
I-12

J-1

Introduction to Xlib 1

The X Window System is a network-transparent window system that was designed at MIT.
It runs under 4.3BSD UNIX, ULTRIX-32, many other UNIX variants, VAX/VMS,
MS/DOS, as well as several other operating systems.

X display servers run on computers with either monochrome or color bitmap display
hardware. The server distributes user input to and accepts output requests from various
client programs located either on the same machine or elsewhere in the network. Xlib is a
C subroutine library that application programs (clients) use to interface with the window
system by means of a stream connection. Although a client usually runs on the same
machine as the X server it is talking to, this need not be the case.

This manual is a reference guide to the low-level C language interface to the X Window
System protocol. It is neither a tutorial nor a user’s guide to programming the X Window
System. Rather, it provides a detailed description of each function in the library as well as
a discussion of the related background information. This manual assumes a basic
understanding of a graphics window system and of the C programming language. Other
higher-level abstractions (for example, those provided by the toolkits for X) are built on
top of the Xlib library. For further information about these higher-level libraries, see the
appropriate toolkit documentation. The X Window System Protocol provides the definitive
word on the behavior of X. Although additional information appears here, the protocol
document is the ruling document.

To provide an introduction to X programming, this chapter discusses:
¢ Overview of the X Window System
¢ Errors
o Naming and argument conventions
e Programming considerations

o Conventions used in this document

Introduction to Xlib 1-1

1.1 Overview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are common to
other window systems have different meanings in X. You may find it helpful to refer to the
glossary, which is located at the end of the book.

The X Window System supports one or more screens containing overlapping windows or
subwindows. A screen is a physical monitor and hardware, which can be either color or
black and white. There can be multiple screens for each display or workstation. A single
X server can provide display services for any number of screens. A set of screens for a
single user with one keyboard and one pointer (usually a mouse) is called a display.

All the windows in an X server are arranged in strict hierarchies. At the top of each
hierarchy is a root window, which covers each of the display screens. Each root window is
partially or completely covered by child windows. All windows, except for root windows,
have parents. There is usually at least one window for each application program. Child
windows-may in turn have their own children. In this way, an application program can
create an arbitrarily deep tree on each screen. X provides graphics, text, and raster
operations for windows.

A child window can be larger than its parent. That is, part or all of the child window can
extend beyond the boundaries of the parent, but all output to a window is clipped by its
parent. If several children of a window have overlapping locations, one of the children is
considered to be on top of or raised over the others thus obscuring them. Output to areas
covered by other windows is suppressed by the window system unless the window has
backing store. If a window is obscured by a second window, the second window obscures
only those ancestors of the second window, which are also ancestors of the first window.

A window has a border zero or more pixels in width, which can be any pattern (pixmap) or
solid color you like. A window usually but not always has a background pattern, which will
be repainted by the window system when uncovered. Each window has its own coordinate
system. Child windows obscure their parents unless the child windows (of the same depth)

have no background, and graphic operations in the parent window usually are clipped by
the children.

X does not guarantee to preserve the contents of windows. When part or all of a window is
hidden and then brought back onto the screen, its contents may be lost. The server then
sends the client program an Expose event to notify it that part or all of the window needs
to be repainted. Programs must be prepared to regenerate the contents of windows on
demand.

1-2 Introduction to Xlib

X also provides off-screen storage of graphics objects, called pixmaps. Single plane (depth
1) pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most graphics
functions interchangeably with windows and are used in various graphics operations to
define patterns or tiles. Windows and pixmaps together are referred to as drawables.

Most of the functions in Xlib just add requests to an output buffer. These requests later
execute asynchronously on the X server. Functions that return values of information
stored in the server do not return (that is, they block) until an explicit reply is received or
an error occurs. You can provide an error handler, which will be called when the error is
reported.

If a client does not want a request to execute asynchronously, it can follow the request with
a call to XSync, which blocks until all previously buffered asynchronous events have been
sent and acted on. As an important side effect, the output buffer in Xlib is always flushed
by a call to any function that returns a value from the server or waits for input.

Many Xlib functions will return an integer resource ID, which allows you to refer to
objects stored on the X server. These can be of type Window, Font, Pixmap,
Colormap, Cursor, and GContext, as defined in the file < X11/X.h >.* These
resources are created by requests and are destroyed (or freed) by requests or when
connections are closed. Most of these resources are potentially sharable between
applications, and in fact, windows are manipulated explicitly by window manager
programs. Fonts and cursors are shared automatically across multiple screens. Fonts are
loaded and unloaded as needed and are shared by multiple clients. Fonts are often cached
in the server. Xlib provides no support for sharing graphics contexts between applications.

Client programs are informed of events. Events may either be side effects of a request (for
example, restacking windows generates Expose events) or completely asynchronous (for
example, from the keyboard). A client program asks to be informed of events. Because
other applications can send events to your application, programs must be prepared to
handle (or ignore) events of all types.

Input events (for example, a key pressed or the pointer moved) arrive asynchronously from
the server and are queued until they are requested by an explicit call (for example,
XNextEvent or XWindowEvent). In addition, some library functions (for example,
XRaiseWindow) generate Expose and ConfigureRequest events. These events
also arrive asynchronously, but the client may wish to explicitly wait for them by calling
XSync after calling a function that can cause the server to generate events.

* The < > has the meaning defined by the # include statement of the C compiler and is a file relative to a
well-known directory. On UNIX-based systems, this is /usr/include.

Introduction to Xlib 1-3

1.2 Errors

Some functions return Status, an integer error indication. If the function fails, it returns
a zero. If the function returns a status of zero, it has not updated the return arguments.
Because C does not provide multiple return values, many functions must return their
results by writing into client-passed storage. By default, errors are handled either by a
standard library function or by one that you provide. Functions that return pointers to
strings return NULL pointers if the string does not exist.

The X server reports protocol errors at the time that it detects them. If more than one
error could be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is, it
buffers them), errors can be reported much later than they actually occur. For debugging
purposes, however, Xlib provides a mechanism for forcing synchronous behavior (see
section 8.12.1). When synchronization is enabled, errors are reported as they are
generated.

When Xlib detects an error, it calls an error handler, which your program can provide. If
you do not provide an error handler, the error is printed, and your program terminates.

1.3 Naming and Argument Conventions within Xlib

Xlib follows a number of conventions for the naming and syntax of the functions. Given
that you remember what information the function requires, these conventions are intended
to make the syntax of the functions more predictable.

The major naming conventions are:

o To differentiate the X symbols from the other symbols, the library uses mixed case
for external symbols. It leaves lowercase for variables and all uppercase for user
macros, as per existing convention.

¢ All Xlib functions begin with a capital X.
 The beginnings of all function names and symbols are capitalized.

o All user-visible data structures begin with a capital X. More generally, anything that
a user might dereference begins with a capital X.

e Macros and other symbols do not begin with a capital X. To distinguish them from
all user symbols, each word in the macro is capitalized.

1-4 Introduction to Xlib

o All elements of or variables in a data structure are in lowercase. Compound words,
where needed, are constructed with underscores ().

e The display argument, where used, is always first in the argument list.

o All resource objects, where used, occur at the beginning of the argument list
immediately after the display argument.

e When a graphics context is present together with another type of resource (most
commonly, a drawable), the graphics context occurs in the argument list after the
other resource. Drawables outrank all other resources.

o Source arguments always precede the destination arguments in the argument list.
o The x argument always precedes the y argument in the argument list.
o The width argument always precedes the height argument in the argument list.

o Where the x, y, width, and height arguments are used together, the xand y
arguments always precede the width and height arguments.

o Where a mask is accompanied with a structure, the mask always precedes the
pointer to the structure in the argument list.

1.4 Programming Considerations

The major programming considerations are:

« Keyboards are the greatest variable between different manufacturer’s workstations.
If you want your program to be portable, you should be particularly conservative
here.

» Many display systems have limited amounts of off-screen memory. If you can, you
should minimize use of pixmaps and backing store.

o The user should have control of his screen real estate. Therefore, you should write
your applications to react to window management rather than presume control of
the entire screen. What you do inside of your top-level window, however, is up to
your application. For further information, see chapter 9.

« Coordinates and sizes in X are actually 16-bit quantities. They usually are declared
as an “int” in the interface (int is 16 bits on some machines). Values larger than 16
bits are truncated silently. Sizes (width and height) are unsigned quantities. This
decision was taken to minimize the bandwidth required for a given level of
performance.

Introduction to Xlib 1-5

1.5 Conventions Used in This Manual

This document uses the following conventions:

1-6

« Global symbols in this manual are printed in this special font. These can

be either function names, symbols defined in include files, or structure names.
Arguments are printed in italics.

o Each function is introduced by a general discussion that distinguishes it from other

functions. The function declaration itself follows, and each argument is specifically
explained. General discussion of the function, if any is required, follows the
arguments. Where applicable, the last paragraph of the explanation lists the possible
Xlib error codes that the function can generate. For a complete discussion of the
Xlib error codes, see section 8.12.2.

To eliminate any ambiguity between those arguments that you pass and those that a
function returns to you, the explanations for all arguments that you pass start with
the word specifies or, in the case of multiple arguments, the word specify. The
explanations for all arguments that are returned to you start with the word returns or,
in the case of multiple arguments, the word refurn. The explanations for all
arguments that you can pass and are returned start with the words specifies and
returns.

Any pointer to a structure that is used to return a value is designated as such by the
_return suffix as part of its name. All other pointers passed to these functions are
used for reading only. A few arguments use pointers to structures that are used for
both input and output and are indicated by using the _in_out suffix.

o Xlib defines the Boolean values of True and False.

Introduction to Xlib

Display Functions 2

Before your program can use a display, you must establish a connection to the X server.

Once you have established a connection, you then can use the Xlib macros and functions
discussed in this chapter to return information about the display. This chapter discusses
how to:

o Open (connect to) the display

« Obtain information about the display, image format, and screen
¢ Free client-created data

o Close (disconnect from) a display

The chapter concludes with a general discussion of what occurs when the connection to the
X server is closed.

2.1 Opening the Display
To open a connection to the X server that controls a display, use XOpenDisplay.

Display *XOpenDisplay (display name)
char *display_name ;

display name Specifies the hardware display name, which determines the display and
communications domain to be used. On a UNIX-based system, if the
display_name is NULL, it defaults to the value of the DISPLAY
environment variable.

On UNIX-based systems, the display name or DISPLAY environment variable is a string
in the format:

hostname : number . screen_number

hostname Specifies the name of the host machine on which the display is
physically attached. You follow the hostname with either a single colon
(:) or a double colon (:3).

Display Functions 2-1

number Specifies the number of the display server on that host machine. You
may optionally follow this display number with a period (.). A single
CPU can have more than one display. Multiple displays are usually
numbered starting with zero.

screen_number Specifies the screen to be used on that server. Multiple screens can be
controlled by a single X server. The screen_number sets an internal
variable that can be accessed by using the Defaul tScreen macro or
the XDefaultScreen function if you are using languages other than
C (see section 2.2.1).

For example, the following would specify screen 2 of display 0 on the machine named mit-
athena:

mit-athena:0.2

The XOpenDisplay function returns a Display structure that serves as the
connection to the X server and that contains all the information about that X server.
XOpenDisplay connects your application to the X server through TCP or UNIX
domain communications protocols. If the hostname is a host machine name and a single
colon () separates the hostname and display number, XOpenDisplay connects using
TCP streams, or UNIX domain IPC streams, if possible. If the environment variable
XFORCE_INTERNET is set, TCP streams are used. If the hostname is local and a single
colon (3) separates it from the display number, XOpenDisplay connects using UNIX
domain IPC streams. If the hostname is not specified, Xlib uses whatever it believes is the
fastest transport. A single X server can support any or all of these transport mechanisms
simultaneously. A particular Xlib implementation can support many more of these
transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is
defined in <X11/X1ib.h>. If XOpenDisplay does not succeed, it returns NULL.
After a successful call to XOpenDisplay, all of the screens in the display can be used by
the client. The screen number specified in the display_name argument is returned by the
DefaultScreen macro (or the XDefaultScreen function). You can access
elements of the Display and Screen structures only by using the information macros
or functions. For information about using macros and functions to obtain information
from the Display structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section 7.11).

2-2 Display Functions

2.2 Obtaining Information about the Display, Image
Formats, or Screens

The XIib library provides a number of useful macros and corresponding functions that
return data from the Display structure. The macros are used for C programming, and
their corresponding function equivalents are for other language bindings. This section
discusses the:

o Display macros
e Image format macros
¢ Screen macros

All other members of the Display structure (that is, those for which no macros are
defined) are private to Xlib and must not be used. Applications must never directly
modify or inspect these private members of the Display structure.

NOTE

The XDisplayWidth, XDisplayHeight, XDisplayCells,
XDisplayPlanes, XDisplayWidthMM, and
XDisplayHeightMM functions in the next sections are not named
in the conventional manner. Where these functions are mentioned,
the terms should be interpreted as screen functions instead of
display functions. For example, the XDisplayWidth function actually
deals with screen width, not display width.

2.2.1 Display Macros

Applications should not directly modify any part of the Display and Screen
structures. The members should be considered read-only, although they may change as
the result of other operations on the display.

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both can return.

AllPlanes()

unsigned long XAllPlanes()

Display Functions 2-3

Both return a value with all bits set to 1 suitable for use in a plane argument to a
procedure.

Both BlackPixel and WhitePixel can be used in implementing a monochrome
application. These pixel values are for permanently allocated entries in the default
colormap. The actual RGB (red, green, and blue) values are settable on some screens
and, in any case, may not actually be black or white. The names are intended to convey the
expected relative intensity of the colors.

BlackPixel (display, screen_number)
unsigned long XBlackPixel(display, screen_number)

Display *display ;
int screen_number;

Both return the black pixel value for the specified screen.

WhitePixel (display, screen_number)
unsigned long XWhitePixel (display, screen_number)

Display *display;
int screen_number;

Both return the white pixel value for the specified screen.

ConnectionNumber (display)
int XConnectionNumber (display)
Display *display;

Both return a connection number for the specified display. On a UNIX-based system, this
is the file descriptor of the connection.

DefaultColormap(display, screen_number)

Colormap XDefaultColormap (display, screen_number)

Display *display ;
int screen_number ;

Both return the default colormap ID for allocation on the specified screen. Most routine
allocations of color should be made out of this colormap.

DefaultDepth (display, screen_number)

int XDefaultDepth (display, screen_number)

Display *display;
int screen_number;

2-4 Display Functions

Both return the depth (number of planes) of the default root window for the specified
screen. Other depths may also be supported on this screen (see XMatchVisualInfo).
DefaultGC (display, screen_number)

GC XDefaultGC(display, screen_number)

Display *display;
int screen_number;

Both return the default graphics context for the root window of the specified screen. This
GC is created for the convenience of simple applications and contains the default GC
components with the foreground and background pixel values initialized to the black and
white pixels for the screen, respectively. You can modify its contents freely because it is
not used in any Xlib function. This GC should never be freed.
DefaultRootWindow (display)
Window XDefaultRootWindow (display)

Display *display ;

Both return the root window for the default screen.

DefaultScreenOfDisplay (display)
Screen *XDefaultScreenOfDisplay (display)
Display *display;

Both return a pointer to the default screen.

ScreenOfDisplay (display, screen_number)
Screen *XScreenOfDisplay (display, screen_number)

Display *display ;
int screen_number;

Both return a pointer to the indicated screen.

DefaultScreen (display)
int XDefaultScreen (display)
Display *display ;

Both return the default screen number referenced by the XOpenDisplay function. This
macro or function should be used to retrieve the screen number in applications that will
use only a single screen.

Display Functions 2-5

DefaultVisual (display, screen_number)

Visual *XDefaultVisual(display, screen_number)
Display *display ;
int screen_number ;

Both return the default visual type for the specified screen. For further information about
visual types, see section 3.1.

DisplayCells (display, screen_number)
int XDisplayCells (display, screen_number)

Display *display ;
int screen_number;

Both return the number of entries in the default colormap.

DisplayPlanes (display, screen_number)

int XDisplayPlanes (display, screen_number)
Display *display ;
int screen_number ;

Both return the depth of the root window of the specified screen. For an explanation of
depth, see the glossary.

DisplayString (display)

char *XDisplayString (display)
Display *display ;

Both return the string that was passed to XOpenDisplay when the current display was
opened. On UNIX-based systems, if the passed string was NULL, these return the value of
the DISPLAY environment variable when the current display was opened. These are
useful to applications that invoke the fork system call and want to open a new connection
to the same display from the child process as well as for printing error messages.

LastKnownRequestProcessed (display)

unsigned long XLastKnownRequestProcessed (display)
Display *display;

Both extract the full serial number of the last request known by Xlib to have been
processed by the X server. Xlib automatically sets this number when replies, events, and
errors are received.

2-6 Display Functions

NextRequest (display)

unsigned long XNextRequest (display)
Display *display;

Both extract the full serial number that is to be used for the next request. Serial numbers
are maintained separately for each display connection.

ProtocolVersion (display)

int XProtocolVersion (display)

Display *display ;

Both return the major version number (11) of the X protocol associated with the
connected display.
ProtocolRevision (display)
int XProtocolRevision(display)
Display *display;

Both return the minor protocol revision number of the X server.

QLength (display)
int XQLength (display)
Display *display;

Both return the length of the event queue for the connected display. Note that there may
be more events that have not been read into the queue yet (see XEventsQueued).
RootWindow (display, screen_number)

Window XRootWindow(display, screen_number)

Display *display ;
int screen_number ;

Both return the root window. These are useful with functions that need a drawable of a
particular screen and for creating top-level windows.

ScreenCount (display)
int XScreenCount (display)
Display *display;

Both return the number of available screens.

Display Functions 2-7

ServerVendor (display)
char *XServerVendor (display)
Display *display ;

Both return a pointer to a null-terminated string that provides some identification of the
owner of the X server implementation.
VendorRelease (display)
int XVendorRelease (display)
Display *display;

Both return a number related to a vendor’s release of the X server.

2.2.2 Image Format Macros

Applications are required to present data to the X server in a format that the server
demands. To help simplify applications, most of the work required to convert the data is
provided by Xlib (see sections 6.7 and 10.9).

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both return for the specified server
and screen. These are often used by toolkits as well as by simple applications.
ImageByteOrder (display)
int XImageByteOrder (display)

Display *display ;

Both specify the required byte order for images for each scanline unit in XY format
(bitmap) or for each pixel value in Z format. The macro or function can return either
LSBFirst or MSBFirst.
BitmapUnit (display)
int XBitmapUnit (display)

Display *display ;

Both return the size of a bitmap’s scanline unit in bits. The scanline is calculated in
multiples of this value.

BitmapBitOrder (display)

int XBitmapBitOrder (display)
Display *display;

2-8 Display Functions

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is either
the least-significant or most-significant bit in the unit. This macro or function can return
LSBFirst or MSBFirst.
BitmapPad (display)
int XBitmapPad (display)

Display *display ;

Each scanline must be padded to a multiple of bits returned by this macro or function.

DisplayHeight (display, screen_number)
int XDisplayHeight (display, screen_number)

Display *display;
int screen_number;

Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM(display, screen_number)
int XDisplayHeightMM(display, screen_number)

Display *display;
int screen_number ;

Both return the height of the specified screen in millimeters.

DisplayWidth (display, screen_number)
int XDisplayWidth (display, screen_number)

Display *display ;
int screen_number;

Both return the width of the screen in pixels.

DisplayWidthMM(display, screen_number)

int XDisplayWidthMM(display, screen_number)
Display *display;
int screen_number;

Both return the width of the specified screen in millimeters.

Display Functions 2-9

2.2.3 Screen Information Macros

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both can return. These macros or
functions all take a pointer to the appropriate screen structure.

BlackPixelOfScreen (screen)

unsigned long XBlackPixelOfScreen (screen)

Screen *screen ;

Both return the black pixel value of the specified screen.

WhitePixelOfScreen (screen)

unsigned long XWhitePixelOfScreen (screen)
Screen *screen ;

Both return the white pixel value of the specified screen.

CellsOfScreen (screen)

int XCellsOfScreen(screen)
Screen *screen ;

Both return the number of colormap cells in the default colormap of the specified screen.

DefaultColormapOfScreen (screen)

Colormap XDefaultColormapOfScreen (screen)
Screen *screen ;

Both return the default colormap of the specified screen.

DefaultDepthOfScreen (screern)

int XDefaultDepthOfScreen (screen)
Screen *screen ;

Both return the depth of the root window.

DefaultGCOfScreen (screen)

GC XDefaultGCOfScreen (screen)
Screen *screen;

2-10 Display Functions

Both return a default graphics context (GC) of the specified screen, which has the same
depth as the root window of the screen. The GC must never be freed.
DefaultVisualOfScreen (screen)

Visual *XDefaultVisualOfScreen (screen)

Screen *screen;

Both return the default visual of the specified screen. For information on visual types, see
section 3.1.

DoesBackingStore (screen)

int XDoesBackingStore (screen)

Screen *screen;

Both return a value indicating whether the screen supports backing stores. The value
returned can be one of WhenMapped, NotUseful, or Always (see section 3.2.4).
DoesSaveUnders (screen)

Bool XDoesSaveUnders (screen)

Screen *screen;

Both return a Boolean value indicating whether the screen supports save unders. If True,
the screen supports save unders. If False, the screen does not support save unders (see
section 3.2.5).

DisplayOfScreen (screen)

Display *XDisplayOfScreen (Screen)

Screen *screen ;

Both return the display of the specified screen.

EventMaskOfScreen (screen)

long XEventMaskOfScreen (screen)
Screen *screen ;

Both return the event mask of the root window for the specified screen at connection setup
time.

Display Functions 2-11

WidthCfScreen (screen)
int XWidthOfScreen (screen)

Screen *screen ;

Both return the width of the specified screen in pixels.

HeightOfScreen (screen)
int XHeightOfScreen (screen)

Screen *screen ;

Both return the height of the specified screen in pixels.

WidthMMOfScreen (screen)
int XWidthMMOfScreen (screen)

Screen *screen ;

Both return the width of the specified screen in millimeters.

HeightMMOfScreen (screen)
int XHeightMMOfScreen (screen)

Screen *screen;

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreen (screen)
int XMaxCmapsOfScreen (screen)

Screen *screen;

Both return the maximum number of installed colormaps supported by the specified
screen (see section 7.3).

MinCmapsOfScreen (screen)

int XMinCmapsOfScreen (screen)
Screen ¥*screen;

Both return the minimum number of installed colormaps supported by the specified screen
(see section 7.3).

2-12 Display Functions

PlanesOfScreen (screen)

int XPlanesOfScreen (screen)
Screen *screen;

Both return the depth of the root window.

RootWindowOfScreen (screen)

Window XRootWindowOfScreen (screen)
Screen *screen;

Both return the root window of the specified screen.

2.3 Generating a NoOperation Protocol Request

To execute a NoOperation protocol request, use XNoOp.
XNoOp (display)

Display *display;
display Specifies the connection to the X server.

The XNoOp function sends a NoOperation protocol request to the X server, thereby
exercising the connection.

2.4 Freeing Client-Created Data

To free any in-memory data that was created by an Xlib function, use XFree.
XFree (data)

char *data;
data Specifies a pointer to the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified data. You
must use it to free any objects that were allocated by Xlib.

Display Functions 2-13

2.5 Closing the Display

To close a display or disconnect from the X server, use XCloseDisplay.

XCloseDisplay (display)
Display *display ;

display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the display
specified in the Display structure and destroys all windows, resource IDs (Window,
Font, Pixmap, Colormap, Cursor, and GContext), or other resources that the
client has created on this display, unless the close-down mode of the resource has been
changed (see XSetCloseDownMode). Therefore, these windows, resource IDs, and
other resources should never be referenced again or an error will be generated. Before
exiting, you should call XCloseDisplay explicitly so that any pending errors are
reported as XCloseDisplay performs a final XSync operation.

XCloseDisplay can generate a BadGC error.

2.6 X Server Connection Close Operations

When the X server’s connection to a client is closed either by an explicit call to
XCloseDisplay or by a process that exits, the X server performs the following
automatic operations:

o It disowns all selections owned by the client (sce XSetSelectionOwner).

o It performs an XUngrabPointer and XUngrabKeyboard if the client has
actively grabbed the pointer or the keyboard.

o It performs an XUngrabServer if the client has grabbed the server.
o It releases all passive grabs made by the client.

o It marks all resources (including colormap entries) allocated by the client either as
permanent or temporary, depending on whether the close-down mode is
RetainPermanent or RetainTemporary. However, this does not prevent
other client applications from explicitly destroying the resources (see
XSetCloseDownMode).

When the close-down mode is DestroyAll, the X server destroys all of a client’s
resources as follows:

2-14 Display Functions

o It examines each window in the client’s save-set to determine if it is an inferior
(subwindow) of a window created by the client. (The save-set is a list of other
clients’ windows, which are referred to as save-set windows.) If so, the X server
reparents the save-set window to the closest ancestor so that the save-set window is -
not an inferior of a window created by the client. The reparenting leaves unchanged
the absolute coordinates (with respect to the root window) of the upper-left outer
corner of the save-set window.

o It performs a MapWindow request on the save-set window if the save-set window is
unmapped. The X server does this even if the save-set window was not an inferior of
a window created by the client.

o It destroys all windows created by the client.

« It performs the appropriate free request on each nonwindow resource created by the
client in the server (for example, Font, Pixmap, Cursor, Colormap, and
GContext).

o It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X server
goes through a cycle of having no connections and having some connections. When the
last connection to the X server closes as a result of a connection closing with the
close_mode of DestroyAll, the X server does the following:

o It resets its state as if it had just been started. The X server begins by destroying all
lingering resources from clients that have terminated in RetainPermanent or
RetainTemporary mode.

o It deletes all but the predefined atom identifiers.
o It deletes all properties on all root windows (see chapter 4).

o It resets all device maps and attributes (for example, key click, bell volume, and
acceleration) as well as the access control list.

o It restores the standard root tiles and cursors.
o It restores the default font path.
o It restores the input focus to state PointerRoot.

However, the X server does not reset if you close a connection with a close-down mode set
to RetainPermanent or RetainTemporary.

Display Functions 2-15

Window Functions 3

In the X Window System, a window is a rectangular area on the screen that lets you view
graphic output. Client applications can display overlapping and nested windows on one or
more screens that are driven by X servers on one or more machines. Clients who want to
create windows must first connect their program to the X server by calling
XOpenDisplay. This chapter begins with a discussion of visual types and window
attributes. The chapter continues with a discussion of the Xlib functions you can use to:

e Create windows
¢ Destroy windows
¢ Map windows
¢ Unmap windows
e Configure windows
o Change the stacking order
o Change window attributes
« Translate window coordinates
This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established conventions for
communicating with window managers for it to work well with the various window
managers in use (see section 9.1). Toolkits generally adhere to these conventions for you,
relieving you of the burden. Toolkits also often supersede many functions in this chapter
with versions of their own. Refer to the documentation for the toolkit you are using for
more information.

Window Functions 3-1

3.1 Visual Types

On some display hardware, it may be possible to deal with color resources in more than
one way. For example, you may be able to deal with a screen of either 12-bit depth with
arbitrary mapping of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the pixel
dedicated to each of red, green, and blue. These different ways of dealing with the visual
aspects of the screen are called visuals. For each screen of the display, there may be a list
of valid visual types supported at different depths of the screen. Because default windows
and visual types are defined for each screen, most simple applications need not deal with
this complexity. Xlib provides macros and functions that return the default root window,
the default depth of the default root window, and the default visual type (see section 2.2.1
and XMatchVisualInfo).

Xlib uses a Visual structure that contains information about the possible color mapping.
The members of this structure pertinent to this discussion are class, red_mask,
green_mask, blue_mask, bits_per_rgb, and map_entries. The class member specifies one
of the possible visual classes of the screen and can be Stat icGray, StaticColor,
TrueColor, GrayScale, PseudoColor, or DirectColor.

The following concepts may serve to make the explanation of visual types clearer. The
screen can be color or grayscale, can have a colormap that is writable or read-only, and can
also have a colormap whose indices are decomposed into separate RGB pieces, provided
one is not on a grayscale screen. This leads to the following diagram:

Color GrayScale
R/0 R/W R/0 R/W
e +
Undecomposed |static |Pseudo |Static |Gray |
Colormap IColor |Coloxr |Gray |Scale |
——————————————————————————————— +
Decomposed |True | Direct |
Colormap |Color |Color |
Fommmmmmmme e +

Conceptually, as each pixel is read out of video memory for display on the screen, it goes
through a look-up stage by indexing into a colormap. Colormaps can be manipulated
arbitrarily on some hardware, in limited ways on other hardware, and not at all on other
hardware. The visual types affect the colormap and the RGB values in the following ways:

o For PseudoColor, a pixel value indexes a colormap to produce independent RGB
values, and the RGB values can be changed dynamically.

3-2 Window Functions

* GrayScale is treated the same way as PseudoColor except that the primary
that drives the screen is undefined. Thus, the client should always store the same
value for red, green, and blue in the colormaps.

« For DirectColor, a pixel value is decomposed into separate RGB subfields, and
each subfield separately indexes the colormap for the corresponding value. The
RGB values can be changed dynamically.

+ TrueColor is treated the same way as DirectColor except that the colormap
has predefined, read-only RGB values. These RGB values are server-dependent but
provide linear or near-linear ramps in each primary.

¢ StaticColor is treated the same way as PseudoColor except that the
colormap has predefined, read-only, server-dependent RGB values.

e StaticGray is treated the same way as StaticColor except that the RGB
values are equal for any single pixel value, thus resulting in shades of gray.
StaticGray with a two-entry colormap can be thought of as monochrome.

The red_mask, green_mask, and blue_mask members are only defined for
DirectColor and TrueColor. Each has one contiguous set of bits with no
intersections. The bits_per_rgb member specifies the log base 2 of the number of distinct
color values (individually) of red, green, and blue. Actual RGB values are unsigned 16-bit
numbers. The map_entries member defines the number of available colormap entries in a
newly created colormap. For DirectColor and TrueColor, this is the size of an
individual pixel subfield.

To obtain the visual ID from a Visual, use XVisualIDFromVisual.
VisualID XVisualIDFromVisual (visual)

Visual *visual;
visual Specifies the visual type.

The XVisualIDFromVisual function returns the visual ID for the specified visual

type.

Window Functions 3-3

3.2 Window Attributes

All InputOutput windows have a border width of zero or more pixels, an optional
background, an event suppression mask (which suppresses propagation of events from
children), and a property list (see section 4.2). The window border and background can be
a solid color or a pattern, called a tile. All windows except the root have a parent and are
clipped by their parent. If a window is stacked on top of another window, it obscures that
other window for the purpose of input. If a window has a background (almost all do), it
obscures the other window for purposes of output. Attempts to output to the obscured
area do nothing, and no input events (for example, pointer motion) are generated for the
obscured area.

Windows also have associated property lists (see section 4.2).

Both InputOutput and InputOnly windows have the following common attributes,
which are the only attributes of an InputOnly window:

e win-gravity
o cvent-mask
o do-not-propagate-mask

override-redirect

e cursor

If you specify any other attributes for an InputOnly window, a BadMatch error
results.

InputOnly windows are used for controlling input events in situations where
InputOutput windows are unnecessary. InputOnly windows are invisible; can only
be used to control such things as cursors, input event generation, and grabbing; and cannot
be used in any graphics requests. Note that InputOnly windows cannot have
InputOutput windows as inferiors.

Windows have borders of a programmable width and pattern as well as a background
pattern or tile. Pixel values can be used for solid colors. The background and border
pixmaps can be destroyed immediately after creating the window if no further explicit
references to them are to be made. The pattern can either be relative to the parent or
absolute. If ParentRelative, the parent’s background is used.

3-4 Window Functions

When windows are first created, they are not visible (not mapped) on the screen. Any
output to a window that is not visible on the screen and that does not have backing store
will be discarded. An application may wish to create a window long before it is mapped to
the screen. When a window is eventually mapped to the screen (using XMapWindow), the
X server generates an Expose event for the window if backing store has not been
maintained.

A window manager can override your choice of size, border width, and position for a top-
level window. Your program must be prepared to use the actual size and position of the
top window. It is not acceptable for a client application to resize itself unless in direct
response to a human command to do so. Instead, either your program should use the
space given to it, or if the space is too small for any useful work, your program might ask
the user to resize the window. The border of your top-level window is considered fair
game for window managers.

To set an attribute of a window, set the appropriate member of the
XSetWindowAttributes structure and OR in the corresponding value bitmask in
your subsequent calls to XCreateWindow and XChangeWindowAttributes, or

use one of the other convenience functions that set the appropriate attribute. The symbols
for the value mask bits and the XSetWindowAttributes structure are:

/* Window attribute value mask bits */

#define CWBackPixmap (1L<<0)
#define CWBackPixel (1L<<1)
#define CWBorderPixmap (1L<<2)
#define CWBorderPixel (1L<<3)
#define CWBitGravity (1L<<4)
#define CWWinGravity (1IL<<5)
#define CWBackingStore (1L< <6)
#define CWBackingPlanes (1IL<<7)
#define CWBackingPixel (1L< <8)
#define CWOverrideRedirect (1L<<9)
#define CWSaveUnder (1L< <10)
#define CWEventMask (IL<<11)
#define CWDontPropagate (1L<<12)
#define CWColormap (1L< <13)
#define CWCursor (1L<<14)

Window Functions 3-5

/* Values */

typedef struct {

Pixmap background_pixmap; /* background, None, or ParentRelative */
unsigned long background_pixel;/* background pixel */

Pixmap border_pixmap; /* border of the window or CopyFromParent */
unsigned long border_pixel; /* border pixel value */

int bit_gravity; /%* one of bit gravity values */

int win_gravity; /% one of the window gravity values */

int backing_store; /* NotUseful, WhenMapped, Always */

unsigned long backing_planes; /* planes to be preserved if possible */
unsigned long backing_pixel; /* value to use in restoring planes */

Bool save_under; /* should bits under be saved? (popups) */
long event_mask; /* set of events that should be saved */
long do_not_propagate mask; /* set of events that should not propagate */
Bool override_redirect; /%* boolean value for override_redirect */
Colormap colormap; /* color map to be associated with window */
Cursor cursor; /* cursor to be displayed (or None) */

} XSetWindowAttributes;

The following lists the defaults for each window attribute and indicates whether the
attribute is applicable to InputOutput and InputOnly windows:

Attribute Default InputOutput InputOnly
background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel Zero Yes No
save-under False Yes No
event-mask empty set Yes Yes
do-not-propagate-mask empty set Yes Yes
override-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

3-6 Window Functions

3.2.1 Background Attribute

Only InputOutput windows can have a background. You can set the background of an
InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be used for a
window’s background. This pixmap can be of any size, although some sizes may be faster
than others. The background-pixel attribute of a window specifies a pixel value used to
paint a window’s background in a single color.

You can set the background-pixmap to a pixmap, None (default), or

ParentRelative. You can set the background-pixel of a window to any pixel value
(no default). If you specify a background-pixel, it overrides either the default background-
pixmap or any value you may have set in the background-pixmap. A pixmap of an
undefined size that is filled with the background-pixel is used for the background. Range
checking is not performed on the background pixel; it simply is truncated to the
appropriate number of bits.

If you set the background-pixmap, it overrides the default. The background-pixmap and
the window must have the same depth, or a BadMatch error results. If you set
background-pixmap to None, the window has no defined background. If you set the
background-pixmap to ParentRelative:

¢ The parent window’s background-pixmap is used. The child window, however, must
have the same depth as its parent, or a BadMatch error results.

« If the parent window has a background-pixmap of None, the window also has a
background-pixmap of None.

o A copy of the parent window’s background-pixmap is not made. The parent’s
background-pixmap is examined each time the child window’s background-pixmap is
required.

o The background tile origin always aligns with the parent window’s background tile
origin. If the background-pixmap is not ParentRelative, the background tile
origin is the child window’s origin.

Setting a new background, whether by setting background-pixmap or background-pixel,
overrides any previous background. The background-pixmap can be freed immediately if
no further explicit reference is made to it (the X server will keep a copy to use when
needed). If you later draw into the pixmap used for the background, what happens is
undefined because the X implementation is free to make a copy of the pixmap or to use
the same pixmap.

Window Functions 3-7

When no valid contents are available for regions of a window and either the regions are
visible or the server is maintaining backing store, the server automatically tiles the regions
with the window’s background unless the window has a background of None. If the
background is None, the previous screen contents from other windows of the same depth
as the window are simply left in place as long as the contents come from the parent of the
window or an inferior of the parent. Otherwise, the initial contents of the exposed regions
are undefined. Expose events are then generated for the regions, even if the
background-pixmap is None (see chapter 8).

3.2.2 Border Attribute

Only InputOutput windows can have a border. You can set the border of an
InputOutput window by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used for a window’s
border. The border-pixel attribute of a window specifies a pixmap of undefined size filled
with that pixel be used for a window’s border. Range checking is not performed on the
background pixel; it simply is truncated to the appropriate number of bits. The border tile
origin is always the same as the background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be faster than
others) or to CopyFromParent (default). You can set the border-pixel to any pixel
value (no default).

If you set a border-pixmap, it overrides the default. The border-pixmap and the window
must have the same depth, or a BadMatch error results. If you set the border-pixmap to
CopyFromParent, the parent window’s border-pixmap is copied. Subsequent changes
to the parent window’s border attribute do not affect the child window. However, the child
window must have the same depth as the parent window, or a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit reference is made to it.
If you later draw into the pixmap used for the border, what happens is undefined because
the X implementation is free either to make a copy of the pixmap or to use the same
pixmap. If you specify a border-pixel, it overrides either the default border-pixmap or any
value you may have set in the border-pixmap. All pixels in the window’s border will be set
to the border-pixel. Setting a new border, whether by setting border-pixel or by setting
border-pixmap, overrides any previous border.

Output to a window is always clipped to the inside of the window. Therefore, graphics
operations never affect the window border.

3-8 Window Functions

3.2.3 Gravity Attributes

The bit gravity of a window defines which region of the window should be retained when
an InputOutput window is resized. The default value for the bit-gravity attribute is
ForgetGravity. The window gravity of a window allows you to define how the
InputOutput or InputOnly window should be repositioned if its parent is resized.
The default value for the win-gravity attribute is NorthWestGravity.

If the inside width or height of a window is not changed and if the window is moved or its
border is changed, then the contents of the window are not lost but move with the window.
Changing the inside width or height of the window causes its contents to be moved or lost
(depending on the bit-gravity of the window) and causes children to be reconfigured
(depending on their win-gravity). For a change of width and height, the (x, y) pairs are
defined:

Gravity Direction Coordinates

NorthWestGravity (0, 0)

NorthGravity (Width/2, 0)
NorthEastGravity (Width, 0)
WestGravity (0, Height/2)
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity (0, Height)
SouthGravity (Width/2, Height)

SouthEastGravity (Width, Height)

When a window with one of these bit-gravity values is resized, the corresponding pair
defines the change in position of each pixel in the window. When a window with one of
these win-gravities has its parent window resized, the corresponding pair defines the
change in position of the window within the parent. When a window is so repositioned, a
GravityNotify event is generated (see chapter 8).

A bit-gravity of StaticGravi ty indicates that the contents or origin should not move
relative to the origin of the root window. If the change in size of the window is coupled
with a change in position (X, y), then for bit-gravity the change in position of each pixel is
(-x, -y), and for win-gravity the change in position of a child when its parent is so resized is
(-x, -y). Note that StaticGravity still only takes effect when the width or height of
the window is changed, not when the window is moved.

Window Functions 3-9

A bit-gravity of ForgetGravity indicates that the window’s contents are always
discarded after a size change, even if a backing store or save under has been requested.
The window is tiled with its background and zero or more Expose events are generated.
If no background is defined, the existing screen contents are not altered. Some X servers
may also ignore the specfied bit-gravity and always generate Expose events.

A win-gravity of UnmapGravity is like NorthWestGravity (the window is not
moved), except the child is also unmapped when the parent is resized, and an
UnmapNotify event is generated.

3.2.4 Backing Store Attribute

Some implementations of the X server may choose to maintain the contents of
InputOutput windows. If the X server maintains the contents of a window, the off-
screen saved pixels are known as backing store. The backing store advises the X server on
what to do with the contents of a window. The backing-store attribute can be set to
NotUseful (default), WhenMapped, or Always.

A backing-store attribute of NotUseful advises the X server that maintaining contents is
unnecessary, although some X implementations may still choose to maintain contents and,
therefore, not generate Expose events. A backing-store attribute of WhenMapped
advises the X server that maintaining contents of obscured regions when the window is
mapped would be beneficial. In this case, the server may generate an Expose event
when the window is created. A backing-store attribute of Always advises the X server
that maintaining contents even when the window is unmapped would be beneficial. Even if
the window is larger than its parent, this is a request to the X server to maintain complete
contents, not just the region within the parent window boundaries. While the X server
maintains the window’s contents, Expose events normally are not generated, but the X
server may stop maintaining contents at any time.

When the contents of obscured regions of a window are being maintained, regions
obscured by noninferior windows are included in the destination of graphics requests (and
source, when the window is the source). However, regions obscured by inferior windows
are not included.

3.2.5 Save Under Flag

Some server implementations may preserve contents of InputOutput windows under
other InputOutput windows. This is not the same as preserving the contents of a
~window for you. You may get better visual appeal if transient windows (for example, pop-
“up menus) request that the system preserve the screen contents under them, so the
temporarily obscured applications do not have to repaint.

3-10 Window Functions

You can set the save-under flag to True or False (default). If save-under is True, the
X server is advised that, when this window is mapped, saving the contents of windows it
obscures would be beneficial.

3.2.6 Backing Planes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planes of an
InputOutput window hold dynamic data that must be preserved in backing store and
during save unders. The default value for the backing-planes attribute is all bits set to 1.
You can set backing pixel to specify what bits to use in planes not covered by backing
planes. The default value for the backing-pixel attribute is all bits set to 0. The X server is
free to save only the specified bit planes in the backing store or the save under and is free
to regenerate the remaining planes with the specified pixel value. Any extraneous bits in
these values (that is, those bits beyond the specified depth of the window) may be simply
ignored. If you request backing store or save unders, you should use these members to
minimize the amount of off-screen memory required to store your window.

3.2.7 Event Mask and Do Not Propagate Mask Attributes

The event mask defines which events the client is interested in for this InputOutput or
InputOnly window (or, for some event types, inferiors of that window). The do-not-
propagate-mask attribute defines which events should not be propagated to ancestor
windows when no client has the event type selected in this InputOutput or
InputOnly window. Both masks are the bitwise inclusive OR of one or more of the
valid event mask bits. You can specify that no maskable events are reported by setting
NoEventMask (default).

3.2.8 Override Redirect Flag

To control window placement or to add decoration, a window manager often needs to
intercept (redirect) any map or configure request. Pop-up windows, however, often need
to be mapped without a window manager getting in the way. To control whether an
InputOutput or InputOnly window is to ignore these structure control facilities, use
the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this window
should override a SubstructureRedirectMask on the parent. You can set the
override-redirect flag to True or False (default). Window managers use this
information to avoid tampering with pop-up windows (see also chapter 9).

Window Functions 3-11

3.2.9 Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors of the
InputOutput window. The colormap must have the same visual type as the window, or
a BadMatch error results. X servers capable of supporting multiple hardware colormaps
can use this information, and window managers can use it for calls to
XInstallColormap. You can set the colormap attribute to a colormap or to
CopyFromParent (default).

If you set the colormap to CopyFromParent, the parent window’s colormap is copied
and used by its child. However, the child window must have the same visual type as the
parent, or a BadMatch error results. The parent window must not have a colormap of
None, or a BadMatch error results. The colormap is copied by sharing the colormap
object between the child and parent, not by making a complete copy of the colormap
contents. Subsequent changes to the parent window’s colormap attribute do not affect the
child window.

3.2.10 Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer is in the
InputOutput or InputOnly window. You can set the cursor to a cursor or None
(default).

If you set the cursor to None, the parent’s cursor is used when the pointer is in the
InputOutput or InputOnly window, and any change in the parent’s cursor will cause
an immediate change in the displayed cursor. By calling XFreeCursor, the cursor can
be freed immediately as long as no further explicit reference to it is made.

3.3 Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply higher-level
functions specifically for creating and placing top-level windows, which are discussed in the
appropriate toolkit documentation. If you do not use a toolkit, however, you must provide
some standard information or hints for the window manager by using the Xlib predefined
property functions (see chapter 9).

If you use Xlib to create your own top-level windows (direct children of the root window),
you must observe the following rules so that all applications interact reasonably across the
different styles of window management:

 You must never fight with the window manager for the size or placement of your
top-level window.

3-12 Window Functions

e You must be able to deal with whatever size window you get, even if this means that
your application just prints a message like “Please make me bigger” in its window.

¢ You should only attempt to resize or move top-level windows in direct response to a
user request. If a request to change the size of a top-level window fails, you must be
prepared to live with what you get. You are free to resize or move the children of
top-level windows as necessary. (Toolkits often have facilities for automatic
relayout.)

o If you do not use a toolkit that automatically sets standard window properties, you
should set these properties for top-level windows before mapping them.

XCreateWindow is the more general function that allows you to set specific window
attributes when you create a window. XCreateSimpleWindow creates a window that
inherits its attributes from its parent window.

The X server acts as if InputOnly windows do not exist for the purposes of graphics
requests, exposure processing, and VisibilityNotify events. An InputOnly
window cannot be used as a drawable (that is, as a source or destination for graphics
requests). InputOnly and InputOutput windows act identically in other respects
(properties, grabs, input control, and so on). Extension packages can define other classes
of windows.

To create an unmapped window and set its window attributes, use XCreateWindow.

Window XCreateWindow(display, parent, x, y, width, height, border width, depth,
class , visual, valuemask, attributes)
Display *display ;
Window parent ;
int x, y;
unsigned int width, height;
unsigned int border width ;
int depth;
unsigned int class;
Visual *visual
unsigned long valuemask;
XSetWindowAttributes *attributes ;

display Specifies the connection to the X server.

parent Specifies the parent window.

x

y Specify the x and y coordinates, which are the top-left outside corner of
the created window’s borders and are relative to the inside of the parent
window’s borders.

Window Functions 3-13

width

height Specify the width and height, which are the created window’s inside
dimensions and do not include the created window’s borders. The
dimensions must be nonzero, or a BadValue error results.

border width Specifies the width of the created window’s border in pixels.

depth Specifies the window’s depth. A depth of CopyFromParent means
the depth is taken from the parent.

class Specifies the created window’s class. You can pass InputOutput,
InputOnly, or CopyFromParent. A class of CopyFromParent
means the class is taken from the parent.

visual Specifies the visual type. A visual of CopyFromParent means the
visual type is taken from the parent.

valuemask Specifies which window attributes are defined in the attributes
argument. This mask is the bitwise inclusive OR of the valid attribute
mask bits. If valuemask is zero, the attributes are ignored and are not
referenced.

attributes Specifies the structure from which the values (as specified by the value
mask) are to be taken. The value mask should have the appropriate bits
set to indicate which attributes have been set in the structure.

The XCreateWindow function creates an unmapped subwindow for a specified parent
window, returns the window ID of the created window, and causes the X server to generate
a CreateNotify event. The created window is placed on top in the stacking order with
respect to siblings.

The border_width for an InputOnly window must be zero, or a BadMatch error
results. For class InputOutput, the visual type and depth must be a combination
supported for the screen, or a BadMatch error results. The depth need not be the same
as the parent, but the parent must not be a window of class InputOnly, or a
BadMatch error results. For an InputOnly window, the depth must be zero, and the
visual must be one supported by the screen. If either condition is not met, a BadMatch
error results. The parent window, however, may have any depth and class. If you specify
any invalid window attribute for a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user’s display. To display the
window, call XMapWindow. The new window initially uses the same cursor as its parent.
A new cursor can be defined for the new window by calling XDefineCursor. The
window will not be visible on the screen unless it and all of its ancestors are mapped and it
is not obscured by any of its ancestors.

3-14 Window Functions

XCreateWindow can generate BadAlloc, BadColor, BadCursor, BadMatch,
BadPixmap, BadValue, and BadWindow errors.

To create an unmapped InputOutput subwindow of a given parent window, use
XCreateSimpleWindow.

Window XCreateSimpleWindow (display, parent, x, y, width, height, border width ,
border, background)
Display *display;
Window parent;
int x, y;
unsigned int width, height;
unsigned int border width;
unsigned long border;
unsigned long background ;

display Specifies the connection to the X server.

parent Specifies the parent window.

x

y Specify the x and y coordinates, which are the top-left outside corner of
the new window’s borders and are relative to the inside of the parent
window’s borders.

width

height Specify the width and height, which are the created window’s inside

dimensions and do not include the created window’s borders. The
dimensions must be nonzero, or a BadValue error results.

border_width Specifies the width of the created window’s border in pixels.
border Specifies the border pixel value of the window.

background Specifies the background pixel value of the window.

The XCreateSimpleWindow function creates an unmapped InputOutput
subwindow for a specified parent window, returns the window ID of the created window,
and causes the X server to generate a CreateNotify event. The created window is
placed on top in the stacking order with respect to siblings. Any part of the window that
extends outside its parent window is clipped. The border_width for an InputOnly
window must be zero, or a BadMatch error results. XCreateSimpleWindow inherits
its depth, class, and visual from its parent. All other window attributes, except background
and border, have their default values.

XCreateSimpleWindow can generate BadAlloc, BadMatch, BadValue, and
BadWindow errors.

Window Functions 3-15

3.4 Destroying Windows

Xlib provides functions that you can use to destroy a window or destroy all subwindows of
a window.

To destroy a window and all of its subwindows, use XDestroyWindow.

XDestroyWindow (display, w)
Display *display ;
Window w;

display Specifies the connection to the X server.
w Specifies the window.

The XDestroyWindow function destroys the specified window as well as all of its
subwindows and causes the X server to generate a DestroyNotify event for each
window. The window should never be referenced again. If the window specified by the w
argument is mapped, it is unmapped automatically. The ordering of the
DestroyNotify events is such that for any given window being destroyed,
DestroyNotify is generated on any inferiors of the window before being generated on
the window itself. The ordering among siblings and across subhierarchies is not otherwise
constrained. If the window you specified is a root window, no windows are destroyed.
Destroying a mapped window will generate Expose events on other windows that were
obscured by the window being destroyed.

XDestroyWindow can generate a BadWindow error.
To destroy all subwindows of a specified window, use XDestroySubwindows.

XDestroySubwindows (display, w)
Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XDestroySubwindows function destroys all inferior windows of the specified
window, in bottom-to-top stacking order. It causes the X server to generate a
DestroyNotify event for each window. If any mapped subwindows were actually
destroyed, XDestroySubwindows causes the X server to generate Expose events on
the specified window. This is much more efficient than deleting many windows one at a
time because much of the work need be performed only once for all of the windows, rather
than for each window. The subwindows should never be referenced again.

3-16 Window Functions

XDestroySubwindows can generate a BadWindow error.

3.5 Mapping Windows

A window is considered mapped if an XMapWindow call has been made on it. It may not
be visible on the screen for one of the following reasons:

o It is obscured by another opaque window.
¢ One of its ancestors is not mapped.
o It is entirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes visible on the
screen. A client receives the Expose events only if it has asked for them. Windows retain
their position in the stacking order when they are unmapped.

A window manager may want to control the placement of subwindows. If
SubstructureRedirectMask has been selected by a window manager on a parent
window (usually a root window), a map request initiated by other clients on a child window
is not performed, and the window manager is sent a MapRequest event. However, if the
override-redirect flag on the child had been set to True (usually only on pop-up menus),
the map request is performed.

A tiling window manager might decide to reposition and resize other client’s windows and
then decide to map the window to its final location. A window manager that wants to
provide decoration might reparent the child into a frame first. For further information,
see section 3.2.8 and chapter 8. Only a single client at a time can select for
SubstructureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent window.
Then, any attempt to resize the window by another client is suppressed, and the client
receives a ResizeRequest event.

To map a given window, use XMapWindow.
XMapWindow (display, w)

Display *display;

Window w;

display Specifies the connection to the X server.

w Specifies the window.

Window Functions 3-17

The XMapWindow function maps the window and all of its subwindows that have had
map requests. Mapping a window that has an unmapped ancestor does not display the
window but marks it as eligible for display when the ancestor becomes mapped. Such a
window is called unviewable. When all its ancestors are mapped, the window becomes
viewable and will be visible on the screen if it is not obscured by another window. This
function has no effect if the window is already mapped.

If the override-redirect of the window is False and if some other client has selected
SubstructureRedirectMask on the parent window, then the X server generates a
MapRequest event, and the XMapWindow function does not map the window.
Otherwise, the window is mapped, and the X server gencrates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered, the X
server tiles the window with its background. If the window’s background is undefined, the
existing screen contents are not altered, and the X server generates zero or more Expose
events. If backing-store was maintained while the window was unmapped, no Expose
events are generated. If backing-store will now be maintained, a full-window exposure is
always generated. Otherwise, only visible regions may be reported. Similar tiling and
exposure take place for any newly viewable inferiors.

If the window is an InputOutput window, XMapWindow generates Expose events
on each InputOutput window that it causes to be displayed. If the client maps and
paints the window and if the client begins processing events, the window is painted twice.
To avoid this, first ask for Expose events and then map the window, so the client
processes input events as usual. The event list will include Expose for each window that
has appeared on the screen. The client’s normal response to an Expose event should be
to repaint the window. This method usually leads to simpler programs and to proper
interaction with window managers.

XMapWindow can generate a BadWindow error.
To map and raise a window, use XMapRaised.
XMapRaised (display, w)

Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XMapRaised function essentially is similar to XMapWindow in that it maps the
window and all of its subwindows that have had map requests. However, it also raises the
specified window to the top of the stack. For additional information, see XMapWindow.

XMapRaised can generate multiple BadWindow errors.

3-18 Window Functions

To map all subwindows for a specified window, use XMapSubwindows.

XMapSubwindows (display, w)
Display *display ;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XMapSubwindows function maps all subwindows for a specified window in top-to-
bottom stacking order. The X server generates Expose events on each newly displayed
window. This may be much more efficient than mapping many windows one at a time
because the server needs to perform much of the work only once, for all of the windows,
rather than for each window.

XMapSubwindows can generate a BadWindow error.

3.6 Unmapping Windows

Xlib provides functions that you can use to unmap a window or all subwindows.
To unmap a window, use XUnmapWindow.

XUnmapWindow (display, w)
Display *display ;
Window w;

display Specifies the connection to the X server.
w Specifies the window.

The XUnmapWindow function unmaps the specified window and causes the X server to
generate an UnmapNotify event. If the specified window is already unmapped,
XUnmapWindow has no effect. Normal exposure processing on formerly obscured
windows is performed. Any child window will no longer be visible until another map call is
made on the parent. In other words, the subwindows are still mapped but are not visible
until the parent is mapped. Unmapping a window will generate Expose events on
windows that were formerly obscured by it.

XUnmapWindow can generate a BadWindow error.
To unmap all subwindows for a specified window, use XUnmapSubwindows.
XUnmapSubwindows (display, w)

Display *display ;
Window w;

Window Functions 3-19

display Specifies the connection to the X server.
w Specifies the window.

The XUnmapSubwindows function unmaps all subwindows for the specified window in
bottom-to-top stacking order. It causes the X server to generate an UnmapNotify event
on each subwindow and Expose events on formerly obscured windows. Using this
function is much more efficient than unmapping multiple windows one at a time because
the server needs to perform much of the work only once, for all of the windows, rather
than for each window.

XUnmapSubwindows can generate a BadWindow error.

3.7 Configuring Windows

Xlib provides functions that you can use to move a window, resize a window, move and
resize a window, or change a window’s border width. To change one of these parameters,
set the appropriate member of the XWindowChanges structure and OR in the
corresponding value mask in subsequent calls to XConfigureWindow. The symbols for
the value mask bits and the XWindowChanges structure are:

/* Configure window value mask bits */

#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)

/* Values */

typedef struct {
int x, y;
int width, height;
int border_width;
Window sibling;
int stack_mode;

} XWindowChanges;

3-20 Window Functions

The x and y members are used to set the window’s x and y coordinates, which are relative
to the parent’s origin and indicate the position of the upper-left outer corner of the
window. The width and height members are used to set the inside size of the window, not
including the border, and must be nonzero, or a BadValue error results. Attempts to
configure a root window have no effect.

The border_width member is used to set the width of the border in pixels. Note that
setting just the border width leaves the outer-left corner of the window in a fixed position
but moves the absolute position of the window’s origin. If you attempt to set the border-
width attribute of an InputOnly window nonzero, a BadMatch error results.

The sibling member is used to set the sibling window for stacking operations. The
stack_mode member is used to set how the window is to be restacked and can be set to
Above, Below, TopIf, BottomIf, or Opposite.

If the override-redirect flag of the window is False and if some other client has selected
SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. Otherwise, if
some other client has sclected ResizeRedirectMask on the window and the inside
width or height of the window is being changed, a ResizeRequest event is generated,
and the current inside width and height are used instead. Note that the override-redirect
flag of the window has no effect on ResizeRedirectMask and that
SubstructureRedirectMask on the parent has precedence over
ResizeRedirectMask on the window.

When the geometry of the window is changed as specified, the window is restacked among
siblings, and a ConfigureNotify event is generated if the state of the window actually
changes. GravityNotify events are generated after ConfigureNotify events. If
the inside width or height of the window has actually changed, children of the window are
affected as specified.

If a window’s size actually changes, the window’s subwindows move according to their
window gravity. Depending on the window’s bit gravity, the contents of the window also
may be moved (see section 3.2.3).

If regions of the window were obscured but now are not, exposure processing is performed
on these formerly obscured windows, including the window itself and its inferiors. As a
result of increasing the width or height, exposure processing is also performed on any new
regions of the window and any regions where window contents are lost.

The restack check (specifically, the computation for BottomIf, TopIf, and
Opposite) is performed with respect to the window’s final size and position (as
controlled by the other arguments of the request), not its initial position. If a sibling is
specified without a stack_mode, a BadMatch error results.

If a sibling and a stack_mode are specified, the window is restacked as follows:

Window Functions 3-21

Above
Below
TopIf
BottomIf
Opposite

The window is placed just above the sibling.

The window is placed just below the sibling,

If the sibling occludes the window, the window is placed at the top of the stack.
If the window occludes the sibling, the window is placed at the bottom of the sta

If the sibling occludes the window, the window is placed at the top of the stack. :
window occludes the sibling, the window is placed at the bottom of the stack.

If a stack_mode is specified but no sibling is specified, the window is restacked as follows:

Above
Below
TopIf
BottomIf
Opposite

The window is placed at the top of the stack.

The window is placed at the bottom of the stack.

If any sibling occludes the window, the window is placed at the top of the stack.
If the window occludes any sibling, the window is placed at the bottom of the sta

If any sibling occludes the window, the window is placed at the top of the stack. 1
window occludes any sibling, the window is placed at the bottom of the stack.

Attempts to configure a root window have no effect.

To configure a window’s size, location, stacking, or border, use XConfigureWindow.

XConfigureWindow (display, w, value mask, values)
Display *display; -
Window w;
unsigned int value_mask ;
XWindowChanges *values

display
w

value_mask

values

Specifies the connection to the X server.
Specifies the window to be reconfigured.

Specifies which values are to be set using information in the values
structure. This mask is the bitwise inclusive OR of the valid configure
window values bits.

Specifies a pointer to the XWindowChanges structure.

The XConfigureWindow function uses the values specified in the XWindowChanges
structure to reconfigure a window’s size, position, border, and stacking order. Values not
specified are taken from the existing geometry of the window.

3-22 Window Functions

If a sibling is specified without a stack_mode or if the window is not actually a sibling, a
BadMatch error results. Note that the computations for BottomIf, TopIf, and
Opposite are performed with respect to the window’s final geometry (as controlled by
the other arguments passed to XConfigureWindow), not its initial geometry. Any
backing store contents of the window, its inferiors, and other newly visible windows are
either discarded or changed to reflect the current screen contents (depending on the
implementation).

XConfigureWindow can generate BadMatch, BadValue, and BadWindow errors.
To move a window without changing its size, use XMoveWindow.
XMoveWindow (display, w, x, y)

Display *display;

Window w;
int x, y;

display Specifies the connection to the X server.

w Specifies the window to be moved.
x
y Specify the x and y coordinates, which define the new location of the top-left

pixel of the window’s border or the window itself if it has no border.

The XMoveWindow function moves the specified window to the specified x and y
coordinates, but it does not change the window’s size, raise the window, or change the
mapping state of the window. Moving a mapped window may or may not lose the
window’s contents depending on if the window is obscured by nonchildren and if no
backing store exists. If the contents of the window are lost, the X server generates
Expose events. Moving a mapped window generates Expose events on any formerly
obscured windows.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. Otherwise, the
window is moved.

XMoveWindow can generate a BadWindow error.

To change a window’s size without changing the upper-left coordinate, use
XResizeWindow.

XResizeWindow (display, w, width, height)
Display *display;
Window w;
unsigned int width, height;

Window Functions 3-23

display Specifies the connection to the X server.

w Specifies the window.

width

height Specify the width and height, which are the interior dimensions of the window
after the call completes.

The XResizeWindow function changes the inside dimensions of the specified window,
not including its borders. This function does not change the window’s upper-left
coordinate or the origin and does not restack the window. Changing the size of a mapped
window may lose its contents and generate Expose events. If a mapped window is made
smaller, changing its size generates Expose events on windows that the mapped window
formerly obscured.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. If either width or
height is zero, a BadValue error results.

XResizeWindow can generate BadValue and BadWindow errors.
To change the size and location of a window, use XMoveResizeWindow.

XMoveResizeWindow(display, w, x, y, width, height)
Display *display ;
Window w;
int x, y;
unsigned int width, height;

display Specifies the connection to the X server.

w Specifies the window to be reconfigured.

X

y Specify the x and y coordinates, which define the new position of the window

relative to its parent.

width
height Specify the width and height, which define the interior size of the window.

The XMoveResizeWindow function changes the size and location of the specified
window without raising it. Moving and resizing a mapped window may generate an
Expose event on the window. Depending on the new size and location parameters,
moving and resizing a window may generate Expose events on windows that the window
formerly obscured.

3-24 Window Functions

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no further processing is performed. Otherwise, the
window size and location are changed.

XMoveResizeWindow can generate BadValue and BadWindow errors.
To change the border width of a given window, use XSetWindowBorderWidth.
XSetWindowBorderWidth (display, w, width)

Display *display ;

Window w;
unsigned int width;

display Specifies the connection to the X server.
w Specifies the window.
width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window’s border width to
the specified width.

XSetWindowBorderWidth can generate a BadWindow error.

3.8 Changing Window Stacking Order

Xlib provides functions that you can use to raise, lower, circulate, or restack windows.
To raise a window so that no sibling window obscures it, use XRaiseWindow.

XRaiseWindow (display, w)
Display *display;
Window w;

display Specifies the connection to the X server,
w Specifies the window.

The XRaiseWindow function raises the specified window to the top of the stack so that
no sibling window obscures it. If the windows are regarded as overlapping sheets of paper
stacked on a desk, then raising a window is analogous to moving the sheet to the top of the
stack but leaving its x and y location on the desk constant. Raising a mapped window may
generate Expose events for the window and any mapped subwindows that were formerly
obscured.

Window Functions 3-25

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no processing is performed. Otherwise, the window is
raised.

XRaiseWindow can generate a BadWindow error.
To lower a window so that it does not obscure any sibling windows, use XLowerWindow.
XLowerWindow (display, w)
Display *display ;
Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of the stack so
that it-does not obscure any sibling windows. If the windows are regarded as overlapping
sheets of paper stacked on a desk, then lowering a window is analogous to moving the
sheet to the bottom of the stack but leaving its x and y location on the desk constant.
Lowering a mapped window will generate Expose events on any windows it formerly
obscured.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no processing is performed. Otherwise, the window is
lowered to the bottom of the stack.

XLowerWindow can generate a BadWindow error.
To circulate a subwindow up or down, use XCirculateSubwindows.
XCirculateSubwindows (display, w, direction)
Display *display;
Window w;
int direction ;
display Specifies the connection to the X server.
w Specifies the window.

direction Specifies the direction (up or down) that you want to circulate the window.
You can pass RaiseLowest or LowerHighest.

3-26 Window Functions

The XCirculateSubwindows function circulates children of the specified window in
the specified direction. If you specify RaiseLowest, XCirculateSubwindows
raises the lowest mapped child (if any) that is occluded by another child to the top of the
stack. If you specify LowerHighest, XCirculateSubwindows lowers the highest
mapped child (if any) that occludes another child to the bottom of the stack. Exposure
processing is then performed on formerly obscured windows. If some other client has
selected SubstructureRedirectMask on the window, the X server generates a
CirculateRequest event, and no further processing is performed. If a child is
actually restacked, the X server generates a CirculateNotify event.

XCirculateSubwindows can generate BadValue and BadWindow errors.

To raise the lowest mapped child of a window that is partially or completely occluded by
another child, use XCirculateSubwindowsUp.

XCirculateSubwindowsUp (display, w)
Display *display ;
Window w;
display Specifies the connection to the X server.

w Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child of the
specified window that is partially or completely occluded by another child. Completely
unobscured children are not affected. This is a convenience function equivalent to
XCirculateSubwindows with RaiseLowest specified.

XCirculateSubwindowsUp can generate a BadWindow error.

To lower the highest mapped child of a window that partially or completely occludes
another child, use XCirculateSubwindowsDown.

XCirculateSubwindowsDown (display, w)
Display *display ;
Window w;
display Specifies the connection to the X server,

w Specifies the window.

The XCirculateSubwindowsDown function lowers the highest mapped child of the
specified window that partially or completely occludes another child. Completely
unobscured children are not affected. This is a convenience function equivalent to
XCirculateSubwindows with LowerHighest specified.

XCirculateSubwindowsDown can generate a BadWindow error.

Window Functions 3-27

To restack a set of windows from top to bottom, use XRestackWindows.

XRestackWindows (display, windows, nwindows);
Display *display ;
Window windows[];
int nwindows ;

display Specifies the connection to the X server.
windows Specifies an array containing the windows to be restacked.
nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order specified, from top
to bottom. The stacking order of the first window in the windows array is unaffected, but
the other windows in the array are stacked underneath the first window, in the order of the
array. The stacking order of the other windows is not affected. For each window in the
window array that is not a child of the specified window, a BadMatch error results.

If the override-redirect attribute of a window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates
ConfigureRequest events for each window whose override-redirect flag is not set,
and no further processing is performed. Otherwise, the windows will be restacked in top
to bottom order.

XRestackWindows can generate a BadWindow error.

3.9 Changing Window Attributes

Xlib provides functions that you can use to set window attributes.
XChangeWindowAttributes is the more general function that allows you to set one
or more window attributes provided by the XSetWindowAttributes structure. The
other functions described in this section allow you to set one specific window attribute,
such as a window’s background.

To change one or more attributes for a given window, use
XChangeWindowAttributes.

XChangeWindowAttributes (display, w, valuemask, attributes)
Display *display ;
Window w;
unsigned long valuemask;
XSetWindowAttributes *attributes ;
display Specifies the connection to the X server.

w Specifies the window.

3-28 Window Functions

valuemask . Specifies which window attributes are defined in the attributes argument.
This mask is the bitwise inclusive OR of the valid attribute mask bits. If
valuemask is zero, the attributes are ignored and are not referenced. The
values and restrictions are the same as for XCreateWindow.

attributes Specifies the structure from which the values (as specified by the value
mask) are to be taken. The value mask should have the appropriate bits
set to indicate which attributes have been set in the structure (see section
3.2).

Depending on the valuemask, the XChangeWindowAttributes function uses the
window attributes in the XSetWindowAttributes structure to change the specified
window attributes. Changing the background does not cause the window contents to be
changed. To repaint the window and its background, use XClearWindow. Setting the
border or changing the background such that the border tile origin changes causes the
border to be repainted. Changing the background of a root window to None or
ParentRelative restores the default background pixmap. Changing the border of a
root window to CopyFromParent restores the default border pixmap. Changing the
win-gravity does not affect the current position of the window. Changing the backing-store
of an obscured window to WhenMapped or Always, or changing the backing-planes,
backing-pixel, or save-under of a mapped window may have no immediate effect.
Changing the colormap of a window (that is, defining a new map, not changing the
contents of the existing map) generates a ColormapNotify event. Changing the
colormap of a visible window may have no immediate effect on the screen because the map
may not be installed (see XInstallColormap). Changing the cursor of a root window
to None restores the default cursor. Whenever possible, you are encouraged to share
colormaps.

Multiple clients can select input on the same window. Their event masks are maintained
separately. When an event is generated, it is reported to all interested clients. However,
only one client at a time can select for SubstructureRedirectMask,
ResizeRedirectMask, and ButtonPressMask. If a client attempts to select any
of these event masks and some other client has already selected one, a BadAccess error
results. There is only one do-not-propagate-mask for a window, not one per client.

XChangeWindowAttributes can generate BadAccess, BadColor,
BadCursor, BadMatch, BadPixmap, BadValue, and BadWindow errors.

To set the background of a window to a given pixel, use XSetWindowBackground.
XSetWindowBackground (display, w, background pixel)
Display *display ;

Window w;
unsigned long background pixel;

Window Functions 3-29

display Specifies the connection to the X server.
w Specifies the window.
background_pixel Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the window to the
specified pixel value. Changing the background does not cause the window contents to be
changed. XSetWindowBackground uses a pixmap of undefined size filled with the
pixel value you passed. If you try to change the background of an InputOnly window, a
BadMatch error results.

XSetWindowBackground can generate BadMatch and BadWindow errors.

To set the background of a window to a given pixmap, use
XSetWindowBackgroundPixmap.

XSetWindowBackgroundPixmap (display, w, background_pixmap)
Display *display ;
Window w;
Pixmap background pixmap ;

display Specifies the connection to the X server.
w Specifies the window.
background_pixmap Specifies the background pixmap, ParentRelative, or None.

The XSetWindowBackgroundPixmap function sets the background pixmap of the
window to the specified pixmap. The background pixmap can immediately be freed if no
further explicit references to it are to be made. If ParentRelative is specified, the
background pixmap of the window’s parent is used, or on the root window, the default
background is restored. If you try to change the background of an InputOnly window,
a BadMatch error results. If the background is set to None, the window has no defined
background.

XSetWindowBackgroundPixmap can generate BadMatch, BadPixmap, and
BadWindow errors.

NOTE

The current contents of the window are not changed by
XSetWindowBackground or
XSetWindowBackgroundPixmap

To change and repaint a window’s border to a given pixel, use XSetWindowBorder.

3-30 Window Functions

XSetWindowBorder (display, w, border pixel)
Display *display;
Window w;
unsigned long border pixel ;

display Specifies the connection to the X server.
w Specifies the window.

border_pixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the pixel value you
specify. If you attempt to perform this on an InputOnly window, a BadMatch error
results.

XSetWindowBorder can generate BadMatch and BadWindow errors.

To change and repaint the border tile of a given window, use
XSetWindowBorderPixmap.

XSetWindowBorderPixmap (display, w, border pixmap)
Display *display;
Window w;
Pixmap border pixmap ;

display Specifies the connection to the X server.
w Specifies the window.

border pixmap Specifies the border pixmap or CopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the window to

the pixmap you specify. The border pixmap can be freed immediately if no further explicit
references to it are to be made. If you specify CopyFromParent, a copy of the parent
window’s border pixmap is used. If you attempt to perform this on an InputOnly
window, a BadMatch error results.

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and
BadWindow errors.

3.10 Translating Window Coordinates

Applications, mostly window managers, often need to perform a coordinate transformation
from the coordinate space of one window to another window or need to determine which
subwindow a coordinate lies in. XTranslateCoordinates fulfills these needs (and
avoids any race conditions) by asking the X server to perform this operation.

Window Functions 3-31

Bool XTranslateCoordinates(display, src w, dest w, src x, src_y, dest x retumn,

dest y return, child_return)

Display *display;

Window src w, dest w;

int src x, srcy;

int *dest x_remm, *desty rewm;
Window *child _retum ;

display
src_ w
dest_w

src_x
src_y

dest_x_return
dest_y return

child_retum

Specifies the connection to the X server.
Specifies the source window.

Specifies the destination window.
Specify the x and y coordinates within the source window.
Return the x and y coordinates within the destination window.

Returns the child if the coordinates are contained in a mapped child of
the destination window.

The XTranslateCoordinates function takes the src_x and src_y coordinates relative
to the source window’s origin and returns these coordinates to dest_x_return and

dest_y return relative to the destination window’s origin. If
XTranslateCoordinates returns zero, src_w and dest_w are on different screens,
and dest_x return and dest_y_return are zero. If the coordinates are contained in a
mapped child of dest _w, that child is returned to child_return. Otherwise, child_return is

set to None.

XTranslateCoordinates can generate a BadWindow error.

3-32 Window Functions

Window Information Functions 4

After you connect the display to the X server and create a window, you can use the Xlib
window information functions to:

¢ Obtain information about a window
e Manipulate property lists
e Obtain and change window properties

e Manipulate selections

4.1 Obtaining Window Information

Xlib provides functions that you can use to obtain information about the window tree, the
window’s current attributes, the window’s current geometry, or the current pointer
coordinates. Because they are most frequently used by window managers, these functions
all return a status to indicate whether the window still exists.

To obtain the parent, a list of children, and number of children for a given window, use
XQueryTree.

Status XQueryTree (display, w, root_return, parent return, children_return, nchildren return)
Display *display ;
Window w;
Window *root_retum ;
Window *parent return ;
Window **children_return ;
unsigned int *nchildren_return ;

display Specifies the connection to the X server.

w Specifies the window whose list of children, root, parent, and
number of children you want to obtain.

root_return Returns the root window.

parent_return Returns the parent window.

children_return Returns a pointer to the list of children.

Window Information Functions 4-1

nchildren_return Returns the number of children.

The XQueryTree function returns the root ID, the parent window ID, a pointer to the
list of children windows, and the number of children in the list for the specified window.
The children are listed in current stacking order, from bottommost (first) to topmost
(last). XQueryTree returns zero if it fails and nonzero if it succeeds. To free this list
when it is no longer needed, use XFree.

To obtain the current attributes of a given window, use XGetWindowAttributes.

Status XGetWindowAttributes (display, w, window_attributes_return)
Display *display ; -
Window w;
XWindowAttributes *window_attributes return ;

display Specifies the connection to the X server.

w Specifies the window whose current attributes you want to
obtain.

window_attributes_return Returns the specified window’s attributes in the

XWindowAttributes structure.

The XGetWindowAttributes function returns the current attributes for the specified
window to an XWindowAttributes structure.

typedef struct {

int x, y; /* location of window */

int width, height; /%* width and height of window */

int border_width; /* border width of window ¥/

int depth; /* depth of window */

Visual *visual; /* the associated visual structure */
Window root; /* root of screen containing window */
int class; /* InputOutput, InputOnly*/

int bit_gravity; /* one of the bit gravity values */
int win_gravity; /* one of the window gravity values */
int backing_store; /* NotUseful, WhenMapped, Always */

unsigned long backing_planes; /* planes to be preserved if possible */
unsigned long backing pixel; /* value to be used when restoring planes */

Bool save_under; /* boolean, should bits under be saved? */
Colormap colormap; /* color map to be associated with window */
Bool map_installed; /* boolean, is color map currently installed*/
int map_state; /* IsUnmapped, IsUnviewable, IsViewable */
long all_event_masks; /* set of events all people have interest in*/
long your_event mask; /* my event mask */

long do_not_propagate_mask; /* set of events that should not propagate */
Bool override_redirect; /* boolean value for override-redirect */
Screen *screen; /* back pointer to correct screen */

} XWindowAttributes;

4-2 Window Information Functions

The x and y members are set to the upper-left outer corner relative to the parent window’s
origin. The width and height members are set to the inside size of the window, not
including the border. The border_width member is set to the window’s border width in
pixels. The depth member is set to the depth of the window (that is, bits per pixel for the
object). The visual member is a pointer to the screen’s associated Visual structure. The
root member is set to the root window of the screen containing the window. The class
member is set to the window’s class and can be either InputOutput or InputOnly.

The bit_gravity member is set to the window’s bit gravity and can be one of the following:

ForgetGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

The win_gravity member is set to the window’s window gravity and can be one of the
following;

UnmapGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

For additional information on gravity, see section 3.2.3.

The backing_store member is set to indicate how the X server should maintain the
contents of a window and can be WhenMapped, Always, or NotUseful. The
backing_planes member is set to indicate (with bits set to 1) which bit planes of the
window hold dynamic data that must be preserved in backing_stores and during
save_unders. The backing_pixel member is set to indicate what values to use for planes
not set in backing_planes.

The save_under member is set to True or False. The colormap member is set to the
colormap for the specified window and can be a colormap ID or None. The
map_installed member is set to indicate whether the colormap is currently installed and
can be True or False. The map_state member is set to indicate the state of the window

Window Information Functions 4-3

and can be IsUnmapped, IsUnviewable, or IsViewable. IsUnviewable is
used if the window is mapped but some ancestor is unmapped.

The all_event_masks member is sct to the bitwise inclusive OR of all event masks selected
on the window by all clients. The your_event_mask member is set to the bitwise inclusive
OR of all event masks selected by the querying client. The do_not_propagate_mask
member is set to the bitwise inclusive OR of the set of events that should not propagate.

The override_redirect member is set to indicate whether this window overrides structure
control facilities and can be True or False. Window manager clients should ignore the
window if this member is True.

The screen member is set to a screen pointer that gives you a back pointer to the correct
screen. This makes it easier to obtain the screen information without having to loop over
the root window fields to see which field matches.

XGetWindowAttributes can generate BadDrawable and BadWindow errors.
To obtain the current geometry of a given drawable, use XGetGeometry.

Status XGetGeometry (display, d, root_retumn, x retum, y retum, width_retum ,
height_return , border width_retumn , depth_retum)
Display *display ;
Drawable d;
Window *root_retumn ;
int *x_return, *y return;
unsigned int *width_retum, *height retum
unsigned int *border width_retumn ;
unsigned int *depth return ;

display Specifies the connection to the X server.

d Specifies the drawable, which can be a window or a pixmap.
root_return Returns the root window.

x_return

y_retumn Return the x and y coordinates that define the location of the

drawable. For a window, these coordinates specify the upper-
left outer corner relative to its parent’s origin. For pixmaps,
these coordinates are always zero.

width_return

height_return Return the drawable’s dimensions (width and height). For a
window, these dimensions specify the inside size, not including
the border.

border width_returmn Returns the border width in pixels. If the drawable is a pixmap,

it returns zero.

4-4 Window Information Functions

depth_return Returns the depth of the drawable (bits per pixel for the object).

The XGetGeometry function returns the root window and the current geometry of the
drawable. The geometry of the drawable includes the x and y coordinates, width and
height, border width, and depth. These are described in the argument list. It is legal to
pass to this function a window whose class is InputOnly.

To obtain the root window the pointer is currently on and the pointer coordinates relative
to the root’s origin, use XQueryPointer.

Bool XQueryPointer(display, w, root return, child return, root x_return, rooty retum.,
win_x return, win_y return, mask_return)
Display *display ;
Window w;
Window *root_return, *child_retumn ;
int *root x 1 return, *root 'y Treturn ;
int *win x return, *win _y_retumn;
unsigned int *mask return ;

display Specifies the connection to the X server.

w Specifies the window.

root_return Returns the root window that the pointer is in.

child_return Returns the child window that the pointer is located in, if any.
root_x_return

root_y return Return the pointer coordinates relative to the root window’s origin.
win_x_return

win_y_return Return the pointer coordinates relative to the specified window.
mask_return Returns the current state of the modifier keys and pointer buttons.

The XQueryPointer function returns the root window the pointer is logically on and
the pointer coordinates relative to the root window’s origin. If XQueryPointer returns
False, the pointer is not on the same screen as the specified window, and
XQueryPointer returns None to child_return and zero to win_x_return and

win_y return. If XQueryPointer returns True, the pointer coordinates returned to
win_x_return and win_y return are relative to the origin of the specified window. In this
case, XQueryPointer returns the child that contains the pointer, if any, or else None
to child_return.

XQueryPointer returns the current logical state of the keyboard buttons and the
modifier keys in mask_return. It sets mask_return to the bitwise inclusive OR of one or
more of the button or modifier key bitmasks to match the current state of the mouse
buttons and the modifier keys.

Window Information Functions 4-5

Note that the logical state of a device (as seen through Xlib) may lag the physical state if
device event processing is frozen (see section 7.4).

XQueryPointer can generate a BadWindow error.

4.2 Properties and Atoms

A property is a collection of named, typed data. The window system has a set of
predefined properties (for example, the name of a window, size hints, and so on), and
users can define any other arbitrary information and associate it with windows. Each
property has a name, which is an ISO Latin-1 string. For each named property, a unique
identifier (atom) is associated with it. A property also has a type, for example, string or
integer. These types are also indicated using atoms, so arbitrary new types can be defined.
Data of only one type may be associated with a single property name. Clients can store
and retrieve properties associated with windows. For efficiency reasons, an atom is used
rather than a character string. XInternAtom can be used to obtain the atom for
property names.

A property is also stored in one of several possible formats. The X server can store the
information as 8-bit quantities, 16-bit quantities, or 32-bit quantities. This permits the X
server to present the data in the byte order that the client expects.

NOTE

If you define further properties of complex type, you must encode
and decode them yourself. These functions must be carefully written
if they are to be portable. For further information about how to
write a library extension, see appendix C.

The type of a property is defined by an atom, which allows for arbitrary extension in this
type scheme.

Certain property names are predefined in the server for commonly used functions. The
atoms for these properties are defined in <X11/Xatom.h>. To avoid name clashes
with user symbols, the ffdefine name for each atom has the XA _prefix. For definitions
of these properties, see section 4.3. For an explanation of the functions that let you get and
set much of the information stored in these predefined properties, see chapter 9.

You can use properties to communicate other information between applications. The
functions described in this section let you define new properties and get the unique atom
IDs in your applications.

4-6 Window Information Functions

Although any particular atom can have some client interpretation within each of the name
spaces, atoms occur in five distinct name spaces within the protocol:

e Selections
» Property names
e Property types
» Font properties
e Type of a ClientMessage event (none are built into the X server)
The built-in selection property names are:
PRIMARY SECONDARY

The built-in property names are:

CUT_BUFFERO RGB_GREEN_MAP
CUT_BUFFERI1 RGB_RED MAP
CUT_BUFFER2 RESOURCE_MANAGER
CUT_BUFFER3 WM_CLASS
CUT_BUFFER4 WM _CLIENT MACHINE
CUT_BUFFER5 WM_COMMAND
CUT_BUFFER6 WM_HINTS
CUT_BUFFER7 WM_ICON _NAME
RGB_BEST MAP WM_ICON SIZE
RGB_BLUE_MAP WM_NAME

RGB DEFAULT MAP WM _NORMAL_HINTS
RGB_GRAY MAP WM_ZOOM_HINTS

WM TRANSIENT FOR

The built-in property types are:

Window Information Functions 4-7

ARC POINT

ATOM RGB_COLOR_MAP
BITMAP RECTANGLE
CARDINAL STRING
COLORMAP VISUALID
CURSOR WINDOW
DRAWABLE WM_HINTS

FONT WM _SIZE_HINTS
INTEGER

PIXMAP

The built-in font property names are:

MIN_SPACE
NORM_SPACE
MAX_SPACE

END SPACE
SUPERSCRIPT X
SUPERSCRIPT_Y
SUBSCRIPT X
SUBSCRIPT_Y
UNDERLINE_POSITION
UNDERLINE_THICKNESS
FONT_NAME

FULL NAME

STRIKEOUT DESCENT
STRIKEOUT _ASCENT
ITALIC_ANGLE
X_HEIGHT

QUAD WIDTH
WEIGHT

POINT SIZE
RESOLUTION
COPYRIGHT

NOTICE
FAMILY_NAME
CAP_HEIGHT

For further information about font properties, see section 6.5.

To return an atom for a given name, use XInternAtom.

Atom XInternAtom(display, atom_name, only if exists)

Display *display ;

chaxr *atom_name ;

Bool only if exists ;
display
atom_name

only if exists
creates the atom.

4-8 Window Information Functions

Specifies the connection to the X server.
Specifies the name associated with the atom you want returned.

Specifies a Boolean value that indicates whether XInternAtom

The XInternAtom function returns the atom identifier associated with the specified
atom_name string. If only if exists is False, the atom is created if it does not exist.
Therefore, XInternAtom can return None. You should use a null-terminated ISO
Latin-1 string for atom_name. Case matters; the strings thing, Thing, and thinG all
designate different atoms. The atom will remain defined even after the client’s connection
closes. It will become undefined only when the last connection to the X server closes.

XInternAtom can generate BadAlloc and BadValue errors.
To return a name for a given atom identifier, use XGetAtomName.
char *XGetAtomName (display, atom)
Display *display;
Atom atom;
display Specifies the connection to the X server.
atom Specifies the atom for the property name you want returned.

The XGetAtomName function returns the name associated with the specified atom. To
free the resulting string, call XFree.

XGetAtomName can gencrate a BadAtom error.

4.3 Obtaining and Changing Window Properties

You can attach a property list to every window. Each property has a name, a type, and a
value (see section 4.2). The value is an array of 8-bit, 16-bit, or 32-bit quantities, whose
interpretation is left to the clients.

Xlib provides functions that you can use to obtain, change, update, or interchange window
properties. In addition, Xlib provides other utility functions for predefined property
operations (see chapter 9).

To obtain the type, format, and value of a property of a given window, use
XGetWindowProperty.

Window Information Functions 4-9

int XGetWindowProperty (display, w, property, long offset, long length, delete, req type,

actual_type_return, actual_format_return, nitems_return, bytes_after retumn ,
prop_return)

Display *display;

Window w;

Atom property ;

long long offset, long length ;

Bool delete;

Atom req type;

Atom *actual_type retumn ;

int *actual_format_return ;

unsigned long *nilems retumn;

unsigned long *bytes_after return;

unsigned char **prop return;

display . Specifies the connection to the X server.

w Specifies the window whose property you want to obtain.

property Specifies the property name.

long offset Specifies the offset in the specified property (in 32-bit
quantities) where the data is to be retrieved.

long length Specifies the length in 32-bit multiples of the data to be
retrieved.

delete Specifies a Boolean value that determines whether the
property is deleted.

req_type Specifies the atom identifier associated with the property type
or AnyPropertyType.

actual_type_return Returns the atom identifier that defines the actual type of the
property.

actual_format_return Returns the actual format of the property.

nitems_return Returns the actual number of 8-bit, 16-bit, or 32-bit items

stored in the prop_return data.

bytes_after_return Returns the number of bytes remaining to be read in the
property if a partial read was performed.

prop_return Returns a pointer to the data in the specified format.

The XGetWindowProperty function returns the actual type of the property; the actual
format of the property; the number of 8-bit, 16-bit, or 32-bit items transferred; the number
of bytes remaining to be read in the property; and a pointer to the data actually returned.
XGetWindowProperty sets the return arguments as follows:

4.10 Window Information Functions

o If the specified property does not exist for the specified window,
XGetWindowProperty returns None to actual_type_return and the value zero
to actual format_return and bytes_after_return. The nitems_return argument is.
empty. In this case, the delete argument is ignored.

» If the specified property exists but its type does not match the specified type,
XGetWindowProperty returns the actual property type to actual_type return,
the actual property format (never zero) to actual format_return, and the property
length in bytes (even if the actual format_return is 16 or 32) to bytes after_return.
It also ignores the delete argument. The nitems_return argument is empty

« If the specified property exists and either you assign AnyPropertyType to the
req_type argument or the specified type matches the actual property type,
XGetWindowProperty returns the actual property type to actual_type return
and the actual property format (never zero) to actual_format_return. It also returns
a value to bytes_after_return and nitems_return, by defining the following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)
I = 4 * long_offset

T=N-1I
L = MINIMUM(T, 4 * long_length)
A=N-(I+L)

The returned value starts at byte index I in the property (indexing from zero), and its
length in bytes is L. If the value for long_offset causes L to be negatlve a
BadValue error results. The value of bytes_after_return is A, giving the number of
trailing unread bytes in the stored property.

XGetWindowProperty always allocates one extra byte in prop_return (even if the
property is zero length) and sets it to ASCII null so that simple properties consisting of
characters do not have to be copied into yet another string before use. If delete is True
and bytes_after_return is zero, XGetWindowProperty deletes the property from the
window and generates a PropertyNotify event on the window.

The function returns Success if it executes successfully. To free the resulting data, use
XFree.

XGetWindowProperty can generate BadAtom, BadValue, and BadWindow
€errors.
To obtain a given window’s property list, use XListProperties.
Atom *XListProperties(display, w, num_prop return)
Display *display ;

Window w;
int *num_prop retumn ;

Window Information Functions 4-11

display Specifies the connection to the X server.
w Specifies the window whose property list you want to obtain.
num_prop_return Returns the length of the properties array.

The XListProperties function returns a pointer to an array of atom properties that
are defined for the specified window or returns NULL if no properties were found. To
free the memory allocated by this function, use XFree.

XListProperties can gencrate a BadWindow error.
To change a property of a given window, use XChangeProperty.

XChangeProperty (display, w, propenty, type, format, mode, data, nelements)
Display *display ;
Window w;
Atom property, type;
int format;
int mode;
unsigned char *data;
int nelements ;

display Specifies the connection to the X server.
w Specifies the window whose property you want to change.

property Specifies the property name.

type Specifies the type of the property. The X server does not interpret the type
property
but simply passes it back to an application that later calls
XGetWindowProperty.
format Specifies whether the data should be viewed as a list of 8-bit, 16-bit, or 32-

bit quantities. Possible values are 8, 16, and 32. This information allows the
X server to correctly perform byte-swap operations as necessary. If the
format is 16-bit or 32-bit, you must explicitly cast your data pointer to a
(char *) in the call to XChangeProperty.

mode Specifies the mode of the operation. You can pass PropModeReplace,
PropModePrepend, or PropModeAppend.

data Specifies the property data.
nelements Specifies the number of elements of the specified data format.

The XChangeProperty function alters the property for the specified window and
causes the X server to generate a PropertyNotify event on that window.
XChangeProperty performs the following:

4-12 Window Information Functions

¢ If mode is PropModeReplace, XChangeProperty discards the previous
property value and stores the new data.

o If mode is PropModePrepend or PropModeAppend, XChangeProperty
inserts the specified data before the beginning of the existing data or onto the end of
the existing data, respectively. The type and format must match the existing property
value, or a BadMatch error results. If the property is undefined, it is treated as
defined with the correct type and format with zero-length data.

The lifetime of a property is not tied to the storing client. Properties remain until explicitly
deleted, until the window is destroyed, or until the server resets. For a discussion of what
happens when the connection to the X server is closed, see section 2.5. The maximum size
of a property is server dependent and can vary dynamically depending on the amount of
memory the server has available. (If there is insufficient space, a BadAlloc error
results.)

XChangeProperty can generate BadAlloc, BadAtom, BadMatch, BadValue,
and BadWindow errors.

To rotate a window’s property list, use XRotateWindowProperties.

XRotateWindowProperties (display, w, properties, num_prop, npositions)
Display *display;
Window w;
Atom properties (1] ;
int num_prop ;
int npositions ;

display Specifies the connection to the X server.
w Specifies the window.
properties Specifies the array of properties that are to be rotated.

num_prop Specifies the length of the properties array.
npositions Specifies the rotation amount.

The XRotateWindowProperties function allows you to rotate properties on a
window and causes the X server to generate PropertyNotify events. If the property
names in the properties array are viewed as being numbered starting from zero and if
there are num_prop property names in the list, then the value associated with property
name I becomes the value associated with property name (I + npositions) mod N for all I
from zero to N - 1. The effect is to rotate the states by npositions places around the virtual
ring of property names (right for positive npositions, left for negative npositions). If
npositions mod N is nonzero, the X server generates a PropertyNotify event for each

Window Information Functions 4-13

property in the order that they are listed in the array. If an atom occurs more than once in
the list or no property with that name is defined for the window, a BadMatch error
results. If a BadAtom or BadMatch error results, no properties are changed.

XRotateWindowProperties can generate BadAtom, BadMatch, and
BadWindow errors.

To delete a property on a given window, use XDeleteProperty.

XDeleteProperty (display, w, property)
Display *display ;

Window w;
Atom property ;
display Specifies the connection to the X server.
w Specifies the window whose property you want to delete.

property Specifies the property name.

The XDeleteProperty function deletes the specified property only if the property was
defined on the specified window and causes the X server to generate a
PropertyNotify event on the window unless the property does not exist.

XDeleteProperty can gencrate BadAtom and BadWindow errors.

4.4 Selections

Selections are one method used by applications to exchange data. By using the property
mechanism, applications can exchange data of arbitrary types and can negotiate the type of
the data. A selection can be thought of as an indirect property with a dynamic type. That
is, rather than having the property stored in the X server, the property is maintained by
some client (the owner). A selection is global in nature (considered to belong to the user
but be maintained by clients) rather than being private to a particular window subhierarchy
or a particular set of clients.

Xlib provides functions that you can use to set, get, or request conversion of selections.
This allows applications to implement the notion of current selection, which requires that
notification be sent to applications when they no longer own the selection. Applications
that support selection often highlight the current selection and so must be informed when
another application has acquired the selection so that they can unhighlight the selection.

4-14 Window Information Functions

When a client asks for the contents of a selection, it specifies a selection target type. This
target type can be used to control the transmitted representation of the contents. For
example, if the selection is “the last thing the user clicked on” and that is currently an
image, then the target type might specify whether the contents of the image should be sent
in XY format or Z format.

The target type can also be used to control the class of contents transmitted, for example,
asking for the “looks” (fonts, line spacing, indentation, and so forth) of a paragraph
selection, not the text of the paragraph. The target type can also be used for other
purposes. The protocol does not constrain the semantics.

To set the selection owner, use XSetSelectionOwner.

XSetSelectionOwner (display, selection, owner, time)
Display *display ;
Atom selection ;
Window owner;

Time time;
display Specifies the connection to the X server.
selection Specifies the selection atom.
owner Specifies the owner of the specified selection atom. You can pass a window
or None.
time Specifies the time. You can pass either a timestamp or CurrentTime.

The XSetSelectionOwner function changes the owner and last-change time for the
specified selection and has no effect if the specified time is earlier than the current last-
change time of the specified selection or is later than the current X server time.
Otherwise, the last-change time is set to the specified time, with CurrentTime replaced
by the current server time. If the owner window is specified as None, then the owner of
the selection becomes None (that is, no owner). Otherwise, the owner of the selection
becomes the client executing the request.

If the new owner (whether a client or None) is not the same as the current owner of the
selection and the current owner is not None, the current owner is sent a
SelectionClear event. If the client that is the owner of a selection is later terminated
(that is, its connection is closed) or if the owner window it has specified in the request is
later destroyed, the owner of the selection automatically reverts to None, but the last-
change time is not affected. The selection atom is uninterpreted by the X server.
XGetSelectionOwner returns the owner window, which is reported in
SelectionRequest and SelectionClear events. Selections are global to the X
server.

XSetSelectionOwner can generate BadAtom and BadWindow errors.

Window Information Functions 4-15

To return the selection owner, use XGetSelectionOwner.
Window XGetSelectionOwner (display, selection)

Display *display ;

Atom selection ;
display Specifies the connection to the X server.

selection Specifies the selection atom whose owner you want returned.

The XGetSelectionOwner function returns the window ID associated with the
window that currently owns the specified selection. If no selection was specified, the
function returns the constant None. If None is returned, there is no owner for the
selection.

XGetSelectionOwner can generate a BadAtom error.
To request conversion of a selection, use XConvertSelection.
XConvertSelection (display, selection, target, property, requestor, time)

Display *display ;
Atom selection, target;

Atom property ;
Windov{ requestor ;
Time time;
display Specifies the connection to the X server.
selection Specifies the selection atom.
target Specifies the target atom,
property Specifies the property name. You also can pass None.
requestor Specifies the requestor.
time Specifies the time. You can pass either a timestamp or CurrentTime.

XConvertSelection requests that the specified selection be converted to the
specified target type:

« If the specified selection has an owner, the X server sends a SelectionRequest
event to that owner.

« If no owner for the specified selection exists, the X server generates a
SelectionNotify event to the requestor with property None.

In either event, the arguments are passed on unchanged. There are two predefined
selection atoms: PRIMARY and SECONDARY.

XConvertSelection can generate BadAtom and BadWindow errors.

4-16 Window Information Functions

Graphics Resource Functions 5

After you connect your program to the X server by calling XOpenDisplay, you can use
the Xlib graphics resource functions to:

¢ Create, copy, and destroy colormaps

e Allocate, modify, and free color cells

« Read entries in a colormap

e Create and free pixmaps

o Create, copy, change, and destroy graphics contexts

A number of resources are used when performing graphics operations in X. Most
information about performing graphics (for example, foreground color, background color,
line style, and so on) are stored in resources called graphics contexts (GC). Most graphics
operations (see chapter 6) take a GC as an argument. Although in theory it is possible to
share GCs between applications, it is expected that applications will use their own GCs
when performing operations. Sharing of GCs is highly discouraged because the library may
cache GC state.

Each X window always has an associated colormap that provides a level of indirection
between pixel values and colors displayed on the screen. Many of the hardware displays
built today have a single colormap, so the primitives are written to encourage sharing of
colormap entries between applications. Because colormaps are associated with windows,
X will support displays with multiple colormaps and, indeed, different types of colormaps.
If there are not sufficient colormap resources in the display, some windows may not be
displayed in their true colors. A client or window manager can control which windows are
displayed in their true colors if more than one colormap is required for the color resources
the applications are using.

Off-screen memory or pixmaps are often used to define frequently used images for later
use in graphics operations. Pixmaps are also used to define tiles or patterns for use as
window backgrounds, borders, or cursors. A single bit-plane pixmap is sometimes referred
to as a bitmap.

Note that some screens have very limited off-screen memory. Therefore, you should
regard off-screen memory as a precious resource.

Graphics Resource Functions 5-1

Graphics operations can be performed to either windows or pixmaps, which collectively
are called drawables. Each drawable exists on a single screen and can only be used on that
screen. GCs can also only be used with drawables of matching screens and depths.

5.1 Colormap Functions

Xlib provides functions that you can use to manipulate a colormap. This section discusses
how to:

« Create, copy, and destroy a colormap
o Allocate, modify, and free color cells
 Read entries in a colormap

The following functions manipulate the representation of color on the screen. For each
possible value that a pixel can take in a window, there is a color cell in the colormap. For
example, if a window is 4 bits deep, pixel values 0 through 15 are defined. A colormap is a
collection of color cells. A color cell consists of a triple of red, green, and blue. As each
pixel is read out of display memory, its value is taken and looked up in the colormap. The
values of the cell determine what color is displayed on the screen. On a multiplane display
with a black-and-white monitor (with grayscale but not color), these values can be
combined to determine the brightness on the screen.

Screens always have a default colormap, and programs typically allocate cells out of this
colormap. You should not write applications that monopolize color resources. On a
screen that either cannot load the colormap or cannot have a fully independent colormap,
only certain kinds of allocations may work. Depending on the hardware, one or more
colormaps may be resident (installed) at one time. To install a colormap, use
XInstallColormap. The DefaultColormap macro returns the default colormap.
The DefaultVisual macro returns the default visual type for the specified screen.
Colormaps are local to a particular screen. Possible visual types are StaticGray,
GrayScale, StaticColor, PseudoColor, TrueColor, or DirectColor (sce
section 3.1).

The functions discussed in this section operate on an XColor structure, which contains:

typedef struct {

unsigned long pixel; /% pixel value */
unsigned short red, green, blue;/* rgb values */
char flags; /* DoRed, DoGreen, DoBlue */
char pad;

} XColor;

5-2 Graphics Resource Functions

The red, green, and blue values are scaled between 0 and 65535. Full color brightness is a
value of 65535, independent of the number of bits actually used in the display hardware.
Half brightness in a color is a value of 32767, and off is 0. This representation gives
uniform results for color values across different screens. In some functions, the flags
member controls which of the red, green, and blue members is used and can be one or
more of DoRed, DoGreen, and DoBlue.

The members of the Visual structure that are pertinent to the discussion of
XCreateColormap are class, red_mask, green_mask, blue_mask, and map_entries.
The class member specifies the screen class and can be GrayScale, PseudoColor,
DirectColor, StaticColor, StaticGray, or TrueColor. The red_mask,
green_mask, and blue_mask members specify the color mask values. The map_ ‘entries
member specifies the number of color map entries. The class member constant
determines whether the initial values for map_entries are defined. If the class member is
GrayScale, PseudoColor, or DirectColor, the initial values for map_entries
are undefined. However, if the class member is StatlcColor StaticGray, or
TrueColor, map_entries has initial values that are defined. However, these values are
specific to the visual type and are not defined by the X server.

The class member constant also determines the constant you can pass to the alloc
argument:

o If the class member is StaticGray, StaticColor, or TrueColor, you must
pass AllocNone. Otherwise, a BadMatch error is generated.

o If the class member is any other class, you can pass AllocNone. In this case, the
color map has no values defined for map_entries. This allows you and other clients
to allocate the entries in the color map. You can also pass AllocAll. In this case,
XCreateColormap allocates the entire color map as writable. The initial values
of all map_entries are undefined. You cannot free any of these map_entries with a
call to the function XFreeColors,

When using AllocAll for a color map class of GrayScale or PseudoColor,
the processing simulates a call to the function XAllocColorCells, where
XAllocColorCells returns all pixel values from zero to N - 1. The value N
represents the map_entries value in the spec1fxed Visual structure. For a color
map class of DirectColor, the processing simulates a call to the function
XAllocColorPlanes, where XAllocColorPlanes returns a pixel value of
zero and rmask, gmask, and bmask values containing the same bits as the red_mask,
green_mask, and blue_mask members in the specified Visual structure.

Graphics Resource Functions 5-3

The introduction of color alters the view a programmer should take when dealing with a
bitmap display. For example, when printing text, you write a pixel value, which is defined
as a specific color, rather than setting or clearing bits. Hardware will impose limits (the
number of significant bits, for example) on these values. Typically, one allocates color cells
or sets of color cells. If read-only, the pixel values for these colors can be shared among
multiple applications, and the RGB values of the cell cannot be changed. If read/write,
they are exclusively owned by the program, and the color cell associated with the pixel
value may be changed at will.

5.1.1 Creating, Copying, and Destroying Colormaps
To create a colormap for a screen, use XCreateColormap.

Colormap XCreateColormap(display, w, visual, alloc)
Display *display;
Window w;
Visual *visual;
int dalloc;

display Specifies the connection to the X server.

w Specifies the window on whose screen you want to create a colormap.

visual Specifies a pointer to a visual type supported on the screen. If the visual type
is not one supported by the screen, a BadMatch error results.

alloc Specifies the colormap entries to be allocated. You can pass AllocNone or
AllocAll.

The XCreateColormap function creates a colormap of the specified visual type for the
screen on which the specified window resides and returns the colormap ID associated with
it. Note that the specified window is only used to determine the screen.

The initial values of the colormap entries are undefined for the visual classes
GrayScale, PseudoColor, and DirectColor. For StaticGray,
StaticColor, and TrueColor, the entries have defined values, but those values are
specific to the visual and are not defined by X. For StaticGray, StaticColor, and
TrueColor, alloc must be AllocNone, or a BadMatch error results. For the other
visual classes, if alloc is AllocNone, the colormap initially has no allocated entries, and
clients can allocate them. For information about the visual types, see section 3.1.

If alloc is A11locAll, the entire colormap is allocated writable. The initial values of all
allocated entries are undefined. For GrayScale and PseudoColor, the effect is as if
an XAllocColorCells call returned all pixel values from zero to N - 1, where N is the
colormap entries value in the specified visual. For DirectColor, the effect is as if an

5-4 Graphics Resource Functions

XAllocColorPlanes call returned a pixel value of zero and red_mask, green_mask,
and blue_mask values containing the same bits as the corresponding masks in the specified
visual. However, in all cases, none of these entries can be freed by using XFreeColors.

XCreateColormap can generate BadAlloc, BadMatch, BadValue, and
BadWindow errors.

To create a new colormap when the allocation out of a previously shared colormap has
failed because of resource exhaustion, use XCopyColormapAndFree.

Colormap XCopyColormapAndFree (display, colormap)
Display *display;
Colormap colormap ;

display Specifies the connection to the X server.
colormap Specifies the colormap.

The XCopyColormapAndFree function creates a colormap of the same visual type and
for the same screen as the specified colormap and returns the new colormap ID. It also
moves all of the client’s existing allocation from the specified colormap to the new
colormap with their color values intact and their read-only or writable characteristics intact
and frees those entries in the specified colormap. Color values in other entries in the new
colormap are undefined. If the specified colormap was created by the client with alloc set
to AllocAll, the new colormap is also created with A11ocAll, all color values for all
entries are copied from the specified colormap, and then all entries in the specified
colormap are freed. If the specified colormap was not created by the client with
AllocAll, the allocations to be moved are all those pixels and planes that have been
allocated by the client using XAllocColor, XAllocNamedColor,
XAllocColorCells, or XAllocColorPlanes and that have not been freed since
they were allocated.

XCopyColormapAndFree can generate BadAlloc and BadColor errors.
To set the colormap of a given window, use XSetWindowColormap.
XSetWindowColormap (display, w, colormap)

Display *display;

Window w;

Colormap colormap ;
display Specifies the connection to the X server.
w Specifies the window.

colormap Specifies the colormap.

Graphics Resource Functions 5-5

The XSetWindowColormap function sets the specified colormap of the specified
window. The colormap must have the same visual type as the window, or a BadMatch
error results.

XSetWindowColormap can generate BadColor, BadMatch, and BadWindow
errors.

To destroy a colormap, use XFreeColormap.

XFreeColormap (display, colormap)
Display *display;
Colormap colormap ;

display Specifies the connection to the X server.
colormap Specifies the colormap that you want to destroy.

The XFreeColormap function deletes the association between the colormap resource
ID and the colormap and frees the colormap storage. However, this function has no effect
on the default colormap for a screen. If the specified colormap is an installed map for a
screen, it is uninstalled (see XUninstallColormap). If the specified colormap is
defined as the colormap for a window (by XCreateWindow, XSetWindowColormap,
or XChangeWindowAttributes), XFreeColormap changes the colormap
associated with the window to None and generates a ColormapNotify event. X does
not define the colors displayed for a window with a colormap of None.

XFreeColormap can generate a BadColor error.

5.1.2 Allocating, Modifying, and Freeing Color Cells

There are two ways of allocating color cells: explicitly as read-only entries by pixel value or
read /write, where you can allocate a number of color cells and planes simultaneously. The
read /write cells you allocate do not have defined colors until set with XStoreColor or
XStoreColors.

To determine the color names, the X server uses a color database. Although you can
change the values in a read /write color cell that is allocated by another application, this is
considered “antisocial” behavior.

To allocate a read-only color cell, use XAllocColor.
Status XAllocColor (display, colormap, screen_in_out)
Display *display ;

Colormap colormap ;
XColor *screen_in_out;

display Specifies the connection to the X server.

5-6 Graphics Resource Functions

colormap Specifies the colormap.
screen_in_out Specifies and returns the values actually used in the colormap.

The XAllocColor function allocates a read-only colormap entry corresponding to the
closest RGB values supported by the hardware. XAllocColor returns the pixel value of
the color closest to the specified RGB elements supported by the hardware and returns the
RGB values actually used. The corresponding colormap cell is read-only. In addition,
XAllocColor returns nonzero if it succeeded or zero if it failed. Read-only colormap
cells are shared among clients. When the last client deallocates a shared cell, it is
deallocated. XAllocColor does not use or affect the flags in the XColor structure.

XAllocColor can generate a BadColor error.

To allocate a read-only color cell by name and return the closest color supported by the
hardware, use XAllocNamedColor.

Status XAllocNamedColor (display, colormap, color_name, screen_def return, exact def return)
Display *display;
Colormap colormap ;
char *color_ name;
XColor *screen_def retum, *exact_def return ;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_name Specifies the color name string (for example, red) whose color
definition structure you want returned.

screen_def returmn Returns the closest RGB values provided by the hardware.

exact_def return Returns the exact RGB values.

The XAllocNamedColor function looks up the named color with respect to the screen
that is associated with the specified colormap. It returns both the exact database definition
and the closest color supported by the screen. The allocated color cell is read-only. You
should use the ISO Latin-1 encoding; uppercase and lowercase do not matter.

XAllocNamedColor can generate a BadColor error.

To look up the name of a color, use XLookupColor.

Status XLookupColor (display, colormap, color name, exact_def return, screen_def return)
Display *display;
Colormap colormap ;

char *color name;
XColor *exact_def retun, *screen_def return ;

display Specifies the connection to the X server.

Graphics Resource Functions 5-7

colormap

color_name

exact_def return

screen_def return

Specifies the colormap.

Specifies the color name string (for example, red) whose color
definition structure you want returned.

Returns the exact RGB values.
Returns the closest RGB values provided by the hardware.

The XLookupColor function looks up the string name of a color with respect to the
screen associated with the specified colormap. It returns both the exact color values and
the closest values provided by the screen with respect to the visual type of the specified
colormap. You should use the ISO Latin-1 encoding; uppercase and lowercase do not
matter. XLookupColor returns nonzero if the name existed in the color database or

zero if it did not exist.

To allocate read/write color cell and color plane combinations for a PseudoColor
model, use XAllocColorCells.

Status XAllocColorCells (display, colormap, contig, plane_masks_retum , nplanes,

Display *display ;
Colormap colormap ;

Bool contig;

Dpixels_return, npixels)

unsigned long plane_masks remm(] ;
unsigned int nplanes;

unsigned long pivels reuml(] ;
unsigned int npixels;

display
colormap

contig

plane_mask_return

nplanes

Dpixels_return

npixels

Specifies the connection to the X server.
Specifies the colormap.

Specifies a Boolean value that indicates whether the planes must
be contiguous.

Returns an array of plane masks.

Specifies the number of plane masks that are to be returned in the
plane masks array. '

Returns an array of pixel values.

Specifies the number of pixel values that are to be returned in the
pixels_return array.

5-8 Graphics Resource Functions

The XAllocColorCells function allocates read /write color cells. The number of
colors must be positive and the number of planes nonnegative, or a BadValue error
results. If ncolors and nplanes are requested, then ncolors pixels and nplane plane masks
are returned. No mask will have any bits set to 1 in common with any other mask or with
any of the pixels. By ORing together each pixel with zero or more masks, ncolors * 22/
distinct pixels can be produced. All of these are allocated writable by the request. For
GrayScale or PseudoColor, each mask has exactly one bit set to 1. For
DirectColor, each has exactly three bits set to 1. If contig is True and if all masks are
ORed together, a single contiguous set of bits set to 1 will be formed for GrayScale or
PseudoColor and three contiguous sets of bits set to 1 (one within each pixel subfield)
for DirectColor. The RGB values of the allocated entries are undefined.
XAllocColorCells returns nonzero if it succeeded or zero if it failed.

XAllocColorCells can generate BadColor and BadValue errors.

To allocate read /write color resources for a DirectColor model, use
XAllocColorPlanes.

Status XAllocColorPlanes (display, colormap, contig, pixels retun, ncolors, nreds, ngreens,
nblues, rmask _retumn, gmask return, bmask_return)
Display *display;
Colormap colormap ;
Bool contig;
unsigned long pixels return[];
int ncolors;
int nreds, ngreens, nblues;
unsigned long *mmask return, *gmask return, *bmask_return ;

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the planes must be
contiguous.

Dpixels_return Returns an array of pixel values. XAllocColorPlanes returns the
pixel values in this array.

ncolors Specifies the number of pixel values that are to be returned in the
pixels_return array.

nreds

ngreens

nblues Specify the number of red, green, and blue planes. The value you pass

must be nonnegative.

Graphics Resource Functions 5-9

rmask_retum
gmask_return
bmask_retun Return bit masks for the red, green, and blue planes.

The specified ncolors must be positive; and nreds, ngreens, and nblues must be
nonnegative, or a BadValue error results. If ncolors colors, nreds reds, ngreens greens,
and nblues blues are requested, ncolors pixels are returned; and the masks have nreds,
ngreens, and nblues bits set to 1, respectively. If contig is True, each mask will have a
contiguous set of bits set to 1. No mask will have any bits set to 1 in common with any
other mask or with any of the pixels. For DirectColor, each mask will lie within the
corresponding pixel subfield. By ORing together subsets of masks with each pixel value,
ncolors * 2(veds +ngreens +nblues) distinct pixel values can be produced. All of these are
allocated by the request. However, in the colormap, there are only ncolors * 2%
independent red entries, ncolors * 28 independent green entries, and ncolors * 27044
independent blue entries. This is true even for PseudoColor. When the colormap entry
of a pixel value is changed (using XStoreColors, XStoreColor, or
XStoreNamedColor), the pixel is decomposed according to the masks, and the
corresponding independent entries are updated. XAllocColorPlanes returns
nonzero if it succeeded or zero if it failed.

XAllocColorPlanes can generate BadColor and BadValue errors.
To store RGB values into colormap cells, use XStoreColors.

XStoreColors (display, colormap, color, ncolors)
Display *display;
Colormap colormap ;
XColor color(];
int ncolors ;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies an array of color definition structures to be stored.

ncolors Specifies the number of XColor structures in the color definition array.

The XStoreColors function changes the colormap entries of the pixel values specified
in the pixel members of the XColor structures. You specify which color components are
to be changed by setting DoRed, DoGreen, or DoBlue in the flags member of the
XColor structures. If the colormap is an installed map for its screen, the changes are
visible immediately. XStoreColors changes the specified pixels if they are allocated
writable in the colormap by any client, even if one or more pixels generates an error. If a
specified pixel is not a valid index into the colormap, a BadValue error results. If a
specified pixel either is unallocated or is allocated read-only, a BadAccess error results.
If more than one pixel is in error, the one that gets reported is arbitrary.

5-10 Graphics Resource Functions

XStoreColors can generate BadAccess, BadColor, and BadValue errors.
To store an RGB value in a single colormap cell, use XStoreColor.

XStoreColor (display, colormap, color)
Display *display;
Colormap colormap ;
XColor *color;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the pixel and RGB values.

The XStoreColor function changes the colormap entry of the pixel value specified in
the pixel member of the XColor structure. You specified this value in the pixel member
of the XColor structure. This pixel value must be a read /write cell and a valid index into
the colormap. If a specified pixel is not a valid index into the colormap, a BadValue
error results. XStoreColor also changes the red, green, or blue color components.
You specify which color components are to be changed by setting DoRed, DoGreen, or
DoBlue in the flags member of the XColor structure. If the colormap is an installed
map for its screen, the changes are visible immediately.

XStoreColor can generate BadAccess, BadColor, and BadValue errors.
To set the color of a pixel to a named color, use XStoreNamedColor.
XStoreNamedColor (display, colormap, color, pixel, flags)

Display *display ;

Colormap colormap ;

char *color;

unsigned long pixel;

int flags;
display Specifies the connection to the X server.

colormap Specifics the colormap.

color Specifies the color name string (for example, red).
pixel Specifies the entry in the colormap.
flags Specifies which red, green, and blue components are set.

Graphics Resource Functions 5-11

The XStoreNamedColor function looks up the named color with respect to the screen
associated with the colormap and stores the result in the specified colormap. The pixel
argument determines the entry in the colormap. The flags argument determines which of
the red, green, and blue components are set. You can set this member to the bitwise
inclusive OR of the bits DoRed, DoGreen, and DoBlue. If the specified pixel is not a
valid index into the colormap, a BadValue error results. If the specified pixel either is
unallocated or is allocated read-only, a BadAccess error results. You should use the
ISO Latin-1 encoding; uppercase and lowercase do not matter.

XStoreNamedColor can generate BadAccess, BadColor, BadName, and
BadValue errors.

To free colormap cells, use XFreeColors.

XFreeColors (display, colormap, pixels, npixels, planes)
Display *display ;
Colormap colormap ;
unsigned long pixels|[1;
int npixels ;
unsigned long planes;

display Specifies the connection to the X server.

colormap Specifies the colormap.

pixels Specifies an array of pixel values that map to the cells in the specified
colormap.

npixels Specifies the number of pixels.

planes Specifies the planes you want to free.

The XFreeColors function frees the cells represented by pixels whose values are in the
pixels array. The planes argument should not have any bits set to 1 in common with any of
the pixels. The set of all pixels is produced by ORing together subsets of the planes
argument with the pixels. The request frees all of these pixels that were allocated by the
client (using XAllocColor, XAllocNamedColor, XAllocColorCells, and
XAllocColorPlanes). Note that freeing an individual pixel obtained from
XAllocColorPlanes may not actually allow it to be reused until all of its related

pixels are also freed.

All specified pixels that are allocated by the client in the colormap are freed, even if one or
more pixels produce an error. If a specified pixel is not a valid index into the colormap, a
BadValue error results. If a specified pixel is not allocated by the client (that is, is
unallocated or is only allocated by another client), a BadAccess error results. If more
than one pixel is in error, the one that gets reported is arbitrary.

XFreeColors can generate BadAccess, BadColor, and BadValue errors.

5-12 Graphics Resource Functions

5.1.3 Reading Entries in a Colormap

The XQueryColor and XQueryColors functions return the RGB values stored in the
specified colormap for the pixel value you pass in the pixel member of the XColor
structure(s). The values returned for an unallocated entry are undefined. These functions
also set the flags member in the XColor structure to all three colors. If a pixel is not a
valid index into the specified colormap, a BadValue error results. If more than one pixel
is in error, the one that gets reported is arbitrary.

To query the RGB values of a single specified pixel value, use XQueryColor.

XQueryColor (display, colormap, def in_out)
Display *display;
Colormap colormap ;
XColor *def in_out;

display Specifies the connection to the X server.

colormap Specifies the colormap.

def in_out Specifies and returns the RGB values for the pixel specified in the
structure.

The XQueryColor function returns the RGB values for each pixel in the XColor
structures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColor can generate BadColor and BadValue errors.

To query the RGB values of an array of pixels stored in color structures, use
XQueryColors.

XQueryColors (display, colormap, defs_in_out, ncolors)
Display *display ;
Colormap colormap ;
XColor defs_in_out(];

int ncolors;
display Specifies the connection to the X server.
colormap Specifies the colormap.
defs_in_out Specifies and returns an array of color definition structures for the pixel

specified in the structure.
ncolors Specifies the number of XColor structures in the color definition array.

The XQueryColors function returns the RGB values for each pixel in the XColor
structures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColors can generate BadColor and BadValue errors.

Graphics Resource Functions 5-13

5.2 Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created. Pixmaps are off-
screen resources that are used for various operations, for example, defining cursors as
tiling patterns or as the source for certain raster operations. Most graphics requests can
operate either on a window or on a pixmap. A bitmap is a single bit-plane pixmap.
To create a pixmap of a given size, use XCreatePixmap.
Pixmap XCreatePixmap (display, d, width, height, depth)

Display *display ;

Drawable d;

unsigned int width, height;
unsigned int depth;

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

width
height Specify the width and height, which define the dimensions of the pixmap.

depth Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and depth you
specified and returns a pixmap ID that identifies it. It is valid to pass an InputOnly
window to the drawable argument. The width and height arguments must be nonzero, or a
BadValue error results. The depth argument must be one of the depths supported by
the screen of the specified drawable, or a BadValue error results.

The server uses the specified drawable to determine on which screen to create the pixmap.
The pixmap can be used only on this screen and only with other drawables of the same
depth (see XCopyPlane for an exception to this rule). The initial contents of the pixmap
are undefined.

XCreatePixmap can generate BadAlloc, BadDrawable, and BadValue errors.
To free all storage associated with a specified pixmap, use XFreePixmap.
XFreePixmap (display, pixmap)
Display *display;
Pixmap pixmap ;
display Specifies the connection to the X server.

pixmap Specifies the pixmap.

5-14 Graphics Resource Functions

The XFreePixmap function first deletes the association between the pixmap ID and the
pixmap. Then, the X server frees the pixmap storage when there are no references to it.
The pixmap should never be referenced again.

XFreePixmap can generate a BadPixmap error.

5.3 Manipulating Graphics Context/State

Most attributes of graphics operations are stored in Graphic Contexts (GCs). These
include line width, line style, plane mask, foreground, background, tile, stipple, clipping
region, end style, join style, and so on. Graphics operations (for example, drawing lines)
use these values to determine the actual drawing operation. Extensions to X may add
additional components to GCs. The contents of a GC are private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not resource IDs to
allow Xlib to implement the transparent coalescing of changes to GCs. For example, a call
to XSetForeground of a GC followed by a call to XSetLineAttributes results in
only a single-change GC protocol request to the server. GCs are neither expected nor
encouraged to be shared between client applications, so this write-back caching should
present no problems. Applications cannot share GCs without external synchronization.
Therefore, sharing GCs between applications is highly discouraged.

To set an attribute of a GC, set the appropriate member of the XGCValues structure and
OR in the corresponding value bitmask in your subsequent calls to XCreateGC. The
symbols for the value mask bits and the XGCValues structure are:

Graphics Resource Functions 5-15

/* GC attribute value mask bits */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

GCFunction
GCPlaneMask
GCForeground
GCBackground
GCLineWidth
GCLineStyle
GCCapStyle
GCJoinStyle
GCFillStyle
GCFillRule

GCTile

GCStipple
GCTileStipXOrigin
GCTileStipYOrigin
GCFont
GCSubwindowMode
GCGraphicsExposures
GCClipXOrigin
GCClipYOrigin
GCClipMask
GCDashOffset
GCDashList
GCArcMode

5-16 Graphics Resource Functions

(1L<<0)
(1L<<1)
(1IL<<2)
(1L<<3)
(1IL<<4)
(1L<<5)
(1L<<6)
(1L<<7)
(1L<<8)
(1IL<<9)
(1L< <10)
(1IL< <11)
(1IL<<12)
(1L<<13)
(1L<<14)
(1L< <15)
(1L<<16)
(1L<<17)
(1L<<18)
(1IL<<19)
(1L < <20)
(1L<<21)
(1L<<22)

/* Values */

typedef struct {
int function;
unsigned long plane_mask;
unsigned long foreground;
unsigned long background;
int line width;
int line_style;
int cap_style;
int join_style;
int fill style;
int fill rule;
int arc_mode;
Pixmap tile;
Pixmap stipple;
int ts_x origin;
int ts_y_origin;
Font font;
int subwindow_mode;
Bool graphics_exposures;
int clip x origin;
int clip_y_origin;
Pixmap clip mask;
int dash offset;
char dashes;
} XGCValues;

The default GC values are:

/*
/*
/*
VA
VA
/¥
VA
/*
/*
/*
/*
Vil
/*
/*

VA
/*
VA
/*

Vi
/%

logical operation */

plane mask */

foreground pixel */

background pixel */

line width (in pixels) */

LineSolid, LineOnOffDash, LineDoubleDash */
CapNotLast, CapButt, CapRound, CapProjecting */
JoinMiter, JoinRound, JoinBevel ¥*/

FillSolid, FillTiled, FillStippled FillOpaqueStippled’
EvenOddRule, WindingRule */

ArcChord, ArcPieSlice */

tile pixmap for tiling operations */

stipple 1 plane pixmap for stippling */

offset for tile or stipple operations */

default text font for text operations */
ClipByChildren, IncludeInferiors */
boolean, should exposures be generated */
origin for clipping */

bitmap clipping; other calls for rects */
patterned/dashed line information */

Graphics Resource Functions 5-17

Component Default

function GXcopy

plane_mask All ones

foreground 0

background 1

line_width 0

line_style LineSolid

cap_style CapButt

join_style JoinMiter

fill style FillSolid

fill rule EvenOddRule

arc_mode ArcPieSlice

tile Pixmap of unspecified size filled with foreground pixel
(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this pixmap)

stipple Pixmap of unspecified size filled with ones

ts_x_origin 0

ts_y origin 0

font <implementation dependent >

subwindow_mode ClipByChildren

graphics_exposures True

clip x_origin 0

clip_y_origin 0

clip_mask None

dash_offset 0

dashes 4 (that is, the list [4, 4])

Note that foreground and background are not set to any values likely to be useful in a
window.

The function attributes of a GC are used when you update a section of a drawable (the
destination) with bits from somewhere else (the source). The function in a GC defines how
the new destination bits are to be computed from the source bits and the old destination
bits. GXcopy is typically the most useful because it will work on a color display, but
special applications may use other functions, particularly in concert with particular planes
of a color display. The 16 GC functions, defined in <X11/X.h >, are:

5-18 Graphics Resource Functions

Function Name Hex Code Operation

GXclear 0x0 0

GXand 0x1 src AND dst
GXandReverse 0x2 src AND NOT dst
GXcopy 0x3 src

GXandInverted 0x4 (NOT src) AND dst
GXnoop 0x5 dst

GXxor 0x6 src XOR dst

GXor 0x7 src OR dst

GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst
GXinvert Oxa NOT dst

GXorReverse 0xb src OR (NOT dst)
GXcopyInverted Oxc NOT src
GXorInverted Oxd (NOT src) OR dst
GXnand Oxe (NOT src) OR (NOT dst)
GXset Oxf 1

Many graphics operations depend on either pixel values or planes in a GC. The planes
attribute is of type long, and it specifies which planes of the destination are to be modified,
one bit per plane. A monochrome display has only one plane and will be the least-
significant bit of the word. As planes are added to the display hardware, they will occupy
more significant bits in the plane mask.

In graphics operations, given a source and destination pixel, the result is computed bitwise
on corresponding bits of the pixels. That is, a Boolean operation is performed in each bit
plane. The plane_mask restricts the operation to a subset of planes. A macro constant
AllPlanes can be used to refer to all planes of the screen simultaneously. The result is
computed by the following:

((sxc FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or
plane_mask. They are simply truncated to the appropriate number of bits. The line-width
is measured in pixels and either can be greater than or equal to one (wide line) or can be
the special value zero (thin line).

Graphics Resource Functions 5-19

Wide lines are drawn centered on the path described by the graphics request. Unless
otherwise specified by the join-style or cap-style, the bounding box of a wide line with
endpoints [x1, y1], [x2, y2] and width w is a rectangle with vertices at the following real
coordinates:

[x1-(w*sn/2), yl+(w*cs/2)], [x1+(w*sn/2), yl-(w*cs/2)],
[x2-(w*sn/2), y2+(w*cs/2)]}, [x2+(w*sn/2), y2-(w*cs/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of the line. A
pixel is part of the line and so is drawn if the center of the pixel is fully inside the bounding
box (which is viewed as having infinitely thin edges). If the center of the pixel is exactly on
the bounding box, it is part of the line if and only if the interior is immediately to its right
(x increasing direction). Pixels with centers on a horizontal edge are a special case and are
part of the line if and only if the interior or the boundary is immediately below (y
increasing direction) and the interior or the boundary is immediately to the right (x
increasing direction).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified, device-
dependent algorithm. There are only two constraints on this algorithm.

1. 1If a line is drawn unclipped from [x1,y1] to [x2,y2] and if another line is drawn
unclipped from [x1+dx,y1 +dy] to [x2+dx,y2+dy], a point [x,y] is touched by drawing
the first line if and only if the point [x+dx,y+dy] is touched by drawing the second
line.

2. The effective set of points comprising a line cannot be affected by clipping. That is, a
point is touched in a clipped line if and only if the point lies inside the clipping region
and the point would be touched by the line when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a wide line drawn
from [x2,y2] to [x1,y1], not counting cap-style and join-style. It is recommended that this
property be true for thin lines, but this is not required. A line-width of zero may differ
from a line-width of one in which pixels are drawn. This permits the use of many
manufacturers’ line drawing hardware, which may run many times faster than the more
precisely specified wide lines.

In general, drawing a thin line will be faster than drawing a wide line of width one.
However, because of their different drawing algorithms, thin lines may not mix well
aesthetically with wide lines. If it is desirable to obtain precise and uniform results across
all displays, a client should always use a line-width of one rather than a line-width of zero.

The line-style defines which sections of a line are drawn:

5-20 Graphics Resource Functions

LineSolid
LineDoubleDash

LineOnOffDash

The full path of the line is drawn.

The full path of the line is drawn, but the even dashes are filled differently
than the odd dashes (see fill-style) with CapButt style used where even .
odd dashes meet.

Only the even dashes are drawn, and cap-style applies to all internal ends
the individual dashes, except CapNotLast is treated as CapButt.

The cap-style defines how the endpoints of a path are drawn:

CapNotLast

CapButt

CapRound

CapProjecting

This is equivalent to CapButt except that for a line-width of zero the fina
endpoint is not drawn.

The line is square at the endpoint (perpendicular to the slope of the line)
with no projection beyond.

The line has a circular arc with the diameter equal to the line-width, center:
on the endpoint. (This is equivalent to CapButt for line-width of zero).

The line is square at the end, but the path continues beyond the endpoint fc
a distance equal to half the line-width. (This is equivalent to CapButt for
line-width of zero).

The join-style defines how corners are drawn for wide lines:

JoinMiter The outer edges of two lines extend to meet at an angle. However, if the
angle is less than 11 degrees, then a JoinBevel join-style is used instead.

JoinRound The corner is a circular arc with the diameter equal to the line-width,
centered on the joinpoint.

JoinBevel The corner has CapButt endpoint styles with the triangular notch filled.

For a line with coincident endpoints (x1=x2, yl1=y2), when the cap-style is applied to both
endpoints, the semantics depends on the line-width and the cap-style:

Graphics Resource Functions 5-21

CapNotLast thin The results are device-dependent, but the desired effect is that

nothing is drawn.
CapButt thin The results are device-dependent, but the desired effect is that a
single pixel is drawn.
CapRound thin The results are the same as for CapButt/thin.
CapProjecting thin The results are the same as for Butt/thin.
CapButt wide Nothing is drawn.
CapRound wide The closed path is a circle, centered at the endpoint, and with the

diameter equal to the line-width.

CapProjecting wide The closed path is a square, aligned with the coordinate axes,
centered at the endpoint, and with the sides equal to the line-widi

For a line with coincident endpoints (x1=x2, y1=y2), when the join-style is applied at one
or both endpoints, the effect is as if the line was removed from the overall path. However,
if the total path consists of or is reduced to a single point joined with itself, the effect is the
same as when the cap-style is applied at both endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of whatever
destination drawable is specified in a graphics request. The tile pixmap must have the
same root and depth as the GC, or a BadMatch error results. The stipple pixmap must
have depth one and must have the same root as the GC, or a BadMatch error results,
For stipple operations where the fill-style is Fi1l1Stippled but not
FillOpaqueStippled, the stipple pattern is tiled in a single plane and acts as an
additional clip mask to be ANDed with the clip-mask. Although some sizes may be faster
to use than others, any size pixmap can be used for tiling or stippling.

The fill-style defines the contents of the source for line, text, and fill requests. For all text
and fill requests (for example, XDrawText, XDrawText16, XFillRectangle,
XFillPolygon, and XFillArc); for line requests with line-style LineSolid (for
example, XDrawLine, XDrawSegments, XDrawRectangle, XDrawArc); and for
the even dashes for line requests with line-style LineOnOf£Dash or
LineDoubleDash, the following apply:

5-22 Graphics Resource Functions

FillSolid Foreground
FillTiled Tile

FillOpaqueStippled A tile with the same width and height as stipple, but with
background everywhere stipple has a zero and with foreground
everywhere stipple has a one

FillStippled Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are controlled by
the fill-style in the following manner:

FillSolid Background

FillTiled Same as for even dashes
FillOpaqueStippled Same as for even dashes
Fillstippled Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If the pixmap is
later used as the destination for a graphics request, the change might or might not be
reflected in the GC. If the pixmap is used simultaneously in a graphics request both as a
destination and as a tile or stipple, the results are undefined.

For optimum performance, you should draw as much as possible with the same GC
(without changing its components). The costs of changing GC components relative to
using different GCs depend upon the display hardware and the server implementation. It
is quite likely that some amount of GC information will be cached in display hardware and
that such hardware can only cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns that can be set
with XSetDashes. Specifying a value of N is equivalent to specifying the two-element
list [N, N]in XSetDashes. The value must be nonzero, or a BadValue error results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set to a
pixmap, it must have depth one and have the same root as the GC, or a BadMatch error
results. If clip-mask is set to None, the pixels are always drawn regardless of the clip
origin. The clip-mask also can be set by calling the XSetClipRectangles or
XSetRegion functions. Only pixels where the clip-mask has a bit set to 1 are drawn.
Pixels are not drawn outside the area covered by the clip-mask or where the clip-mask has
a bit set to 0. The clip-mask affects all graphics requests. The clip-mask does not clip
sources. The clip-mask origin is interpreted relative to the origin of whatever destination
drawable is specified in a graphics request.

Graphics Resource Functions 5-23

You can set the subwindow-mode to CLipByChildren or IncludelInferiors.

For ClipByChildren, both source and destination windows are additionally clipped by
all viewable InputOutput children. For IncludeInferiors, neither source nor
destination window is clipped by inferiors. This will result in including subwindow contents
in the source and drawing through subwindow boundaries of the destination. The use of
IncludeInferiors on a window of one depth with mapped inferiors of differing
depth is not illegal, but the semantics are undefined by the core protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in XFillPolygon
requests and can be set to EvenOddRule or WindingRule. For EvenOddRule, a
point is inside if an infinite ray with the point as origin crosses the path an odd number of
times. For WindingRule, a point is inside if an infinite ray with the point as origin
crosses an unequal number of clockwise and counterclockwise directed path segments. A
clockwise directed path segment is one that crosses the ray from left to right as observed
from the point. A counterclockwise segment is one that crosses the ray from right to left
as observed from the point. The case where a directed line segment is coincident with the
ray is uninteresting because you can simply choose a different ray that is not coincident
with a segment.

For both EvenOddRule and WindingRule, a point is infinitely small, and the path is
an infinitely thin line. A pixel is inside if the center point of the pixel is inside and the
center point is not on the boundary. If the center point is on the boundary, the pixel is
inside if and only if the polygon interior is immediately to its right (x increasing direction).
Pixels with centers on a horizontal edge are a special case and are inside if and only if the
polygon interior is immediately below (y increasing direction).

The arc-mode controls filling in the XFil1lArcs function and can be set to
ArcPieSlice or ArcChord. For ArcPieSlice, the arcs are pie-slice filled. For
ArcChord, the arcs are chord filled.

The graphics-exposure flag controls GraphicsExpose event generation for
XCopyArea and XCopyPlane requests (and any similar requests defined by
extensions).

To create a new GC that is usable on a given screen with a depth of drawable, use
XCreateGC.

GC XCreateGC (display, d, valuemask, values)
Display *display ;
Drawable d;
unsigned long valuemask ;
XGCValues *values;
display Specifies the connection to the X server.

d Specifies the drawable.

5-24 Graphics Resource Functions

valuemask Specifies which components in the GC are to be set using the information in
the specified values structure. This argument is the bitwise inclusive OR of
one or more of the valid GC component mask bits.

values Specifies any values as specified by the valuemask.

The XCreateGC function creates a graphics context and returns a GC. The GC can be
used with any destination drawable having the same root and depth as the specified
drawable. Use with other drawables results in a BadMatch error.

XCreateGC can generate BadAlloc, BadDrawable, BadFont, BadMatch,
BadPixmap, and BadValue errors.

To copy components from a source GC to a destination GC, use XCopyGC.
XCopyGC (display, src, valuemask, dest)
Display *display;
GC src, dest;
unsigned long valuemask;
display Specifies the connection to the X server.
src Specifies the components of the source GC.

valuemask Specifies which components in the GC are to be copied to the destination
GC. This argument is the bitwise inclusive OR of one or more of the valid
GC component mask bits.

dest Specifies the destination GC.

The XCopyGC function copies the specified components from the source GC to the
destination GC. The source and destination GCs must have the same root and depth, or a
BadMatch error results. The valuemask specifies which component to copy, as for
XCreateGC.

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors.
To change the components in a given GC, use XChangeGC.
XChangeGC (display, gc, valuemask, values)

Display *display;

GC gc;

unsigned long valuemask;

XGCValues *values ;

display Specifies the connection to the X server.

g Specifies the GC.

Graphics Resource Functions §-25

valuemask Specifies which components in the GC are to be changed using information
in the specified values structure. This argument is the bitwise inclusive OR
of one or more of the valid GC component mask bits.

values Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask for the
specified GC. The values argument contains the values to be set. The values and
restrictions are the same as for XCreateGC. Changing the clip-mask overrides any
previous XSetClipRectangles request on the context. Changing the dash-offset or
dash-list overrides any previous XSetDashes request on the context. The order in which
components are verified and altered is server-dependent. If an error is generated, a subset
of the components may have been altered.

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch, BadPixmap,
and BadValue errors.

To free a given GC, use XFreeGC.
XFreeGC (display, gc)
Display *display;
GC gC;
display Specifies the connection to the X server.
g Specifies the GC.
The XFreeGC function destroys the specified GC as well as all the associated storage.
XFreeGC can generate a BadGC error.
To obtain the GContext resource ID for a given GC, use XGContextFromGC.
GContext XGContextFromGC (gc)

GC gc;

g Specifies the GC for which you want the resource ID.

5.4 Using GC Convenience Routines

This section discusses how to set the:
o Foreground, background, plane mask, or function components
« Line attributes and dashes components

« Fill style and fill rule components

5-26 Graphics Resource Functions

« Fill tile and stipple components
o Font component
o Clip region component

¢ Arc mode, subwindow mode, and graphics exposure components

5.4.1 Setting the Foreground, Background, Function, or Plane Mask

To set the foreground, background, plane mask, and function components for a given GC,
use XSetState,

XSetState (display, gc, foreground, background, function, plane_mask)
Display *display;
GC gc;
unsigned long foreground, background;
int function;
unsigned long plane_mask;
display Specifies the connection to the X server.
g Specifies the GC.
foreground Specifies the foreground you want to set for the specified GC.
background Specifies the background you want to set for the specified GC.
function Specifies the function you want to set for the specified GC.
plane_mask Specifies the plane mask.
XSetState can generate BadAlloc, BadGC, and BadValue errors.
To set the foreground of a given GC, use XSetForeground.
XSetForeground (display, gc, foreground)
Display *display ;
GC g
unsigned long foreground;
display Specifies the connection to the X server.
g Specifies the GC.
foreground Specifies the foreground you want to set for the specified GC.
XSetForeground can generate BadAlloc and BadGC errors.

To set the background of a given GC, use XSetBackground.

Graphics Resource Functions 5-27

XSetBackground (display, gc, background)

Display *display ;

GC gc;

unsigned long background ;
display Specifies the connection to the X server.
g Specifies the GC.
background Specifies the background you want to set for the specified GC.
XSetBackground can generate BadAlloc and BadGC errors.
To set the display function in a given GC, use XSetFunction.
XSetFunction (display, gc, function)

Display *display ;

GC gc;
int function ;

display Specifies the connection to the X server.
g Specifies the GC.
function Specifies the function you want to set for the specified GC.

XSetFunction can generate BadAlloc, BadGC, and BadValue errors.
To set the plane mask of a given GC, use XSetPlaneMask.
XSetPlaneMask (display, gc, plane _mask)
Display *display ;
GC g
unsigned long plane_mask ;
display Specifies the connection to the X server.
& Specifies the GC.
plane_mask Specifies the plane mask.

XSetPlaneMask can generate BadAlloc and BadGC errors.

5.4.2 Setting the Line Attributes and Dashes

To set the line drawing components of a given GC, use XSetLineAttributes.

5-28 Graphics Resource Functions

XSetLineAttributes (display, gc, line_width, line_style, cap style, join_style)
Display *display ;
GC g ;
unsigned int line width;
int line_style;
int cap_style;
int join_style;

display Specifies the connection to the X server.

g Specifies the GC.

line_width Specifies the line-width you want to set for the specified GC.

line_style Specifies the line-style you want to set for the specified GC. You can pass
LineSolid, LineOnOffDash, or LineDoubleDash.

cap_style Specifies the line-style and cap-style you want to set for the specified GC.
You can pass CapNotLast, CapButt, CapRound, or
CapProjecting.

join_style Specifies the line join-style you want to set for the specified GC. You can

pass JoinMiter, JoinRound, or JoinBevel.
XSetLineAttributes can generate BadAlloc, BadGC, and BadValue errors.

To set the dash-offset and dash-list for dashed line styles of a given GC, use
XSetDashes.

XSetDashes (display, gc, dash_offset, dash list, n)
Display *display;
GC gc;
int dash_offset;
char dash _list[1;

int n;

display Specifies the connection to the X server.

8¢ Specifies the GC.

dash_offset Specifies the phase of the pattern for the dashed lme style you want to set
for the specified GC.

dash_list Specifies the dash-list for the dashed line-style you want to set for the
specified GC.

n Specifies the number of elements in dash_list.

Graphics Resource Functions 5-29

The XSetDashes function sets the dash-offset and dash-list attributes for dashed line
styles in the specified GC. There must be at least one element in the specified dash_list,
or a BadValue error results. The initial and alternating elements (second, fourth, and so
on) of the dash_list are the even dashes, and the others are the odd dashes. Each element
specifies a dash length in pixels. All of the elements must be nonzero, or a BadValue
error results. Specifying an odd-length list is equivalent to specifying the same list
concatenated with itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels into the dash-
list the pattern should actually begin in any single graphics request. Dashing is continuous
through path elements combined with a join-style but is reset to the dash-offset each time a
cap-style is applied at a line endpoint.

The unit of measure for dashes is the same for the ordinary coordinate system. Ideally, a
dash length is measured along the slope of the line, but implementations are only required
to match this ideal for horizontal and vertical lines. Failing the ideal semantics, it is
suggested that the length be measured along the major axis of the line. The major axis is
defined as the x axis for lines drawn at an angle of between -45 and +45 degrees or
between 315 and 225 degrees from the x axis. For all other lines, the major axis is the y
axis.

XSetDashes can generate BadAlloc, BadGC, and BadValue errors.

5.4.3 Setting the Fill Style and Fill Rule
To set the fill-style of a given GC, use XSetFillStyle.

XSetFillStyle (display, gc, fill style)
Display *display;
GC gc;
int fill_style;

display Specifies the connection to the X server.

g Specifies the GC.

fill_style Specifies the fill-style you want to set for the specified GC. You can pass
FillSolid, FillTiled, FillStippled, or
FillOpaqueStippled.

XSetFillStyle can generate BadAlloc, BadGC, and BadValue errors.
To set the fill-rule of a given GC, use XSetFillRule.
XSetFillRule(display, gc, fill rule)

Display *display ;

GC gc;
int fill_rule;

5-30 Graphics Resource Functions

display Specifies the connection to the X server.
g Specifies the GC.

fill_rule Specifies the fill-rule you want to set for the specified GC. You can pass
EvenOddRule or WindingRule.

XSetFillRule can generate BadAlloc, BadGC, and BadValue errors.

5.4.4 Setting the Fill Tile and Stipple

Some displays have hardware support for tiling or stippling with patterns of specific sizes.
Tiling and stippling operations that restrict themselves to those specific sizes run much
faster than such operations with arbitrary size patterns. Xlib provides functions that you
can use to determine the best size, tile, or stipple for the display as well as to set the tile or
stipple shape and the tile or stipple origin.

To obtain the best size of a tile, stipple, or cursor, use XQueryBestSize.

Status XQueryBestSize (display, class, which_screen, width, height, width _return, height return)
Display *display ; - -
int class;
Drawable which_screen ;
unsigned int width, height;
unsigned int *width_retum, *height_retum ;

display Specifies the connection to the X server.

class Specifies the class that you are interested in. You can pass
TileShape, CursorShape, or StippleShape.

which_screen Specifies any drawable on the screen.

width

height Specify the width and height.

width_return

height_return Return the width and height of the object best supported by the display
hardware.

The XQueryBestSize function returns the best or closest size to the specified size.
For CursorShape, this is the largest size that can be fully displayed on the screen
specified by which_screen. For TileShape, this is the size that can be tiled fastest. For
StippleShape, this is the size that can be stippled fastest. For CursorShape, the
drawable indicates the desired screen. For TileShape and StippleShape, the
drawable indicates the screen and possibly the window class and depth. An InputOnly
window cannot be used as the drawable for TileShape or StippleShape, or a
BadMatch error results.

Graphics Resource Functions 5-31

XQueryBestSize can generate BadDrawable, BadMatch, and BadValue errors.
To obtain the best fill tile shape, use XQueryBestTile.

Status XQueryBestTile(display, which_screen, width, height, width_return, height return)
) Display *display;

Drawable which_screen ;

unsigned int width, height;

unsigned int *width_return, “height return ;

display Specifies the connection to the X server.

which_screen Specifies any drawable on the screen.

width

height Specify the width and height.

width_return

height_return Return the width and height of the object best supported by the display
hardware.

The XQueryBestTile function returns the best or closest size, that is, the size that can
be tiled fastest on the screen specified by which_screen. The drawable indicates the screen
and possibly the window class and depth. If an InputOnly window is used as the
drawable, a BadMatch error results.

XQueryBestTile can generate BadDrawable and BadMatch errors.
To obtain the best stipple shape, use XQueryBestStipple.

Status XQueryBestStipple (display, which_screen, width, height, width_return, height return)
Display *display;
Drawable which_screen ;
unsigned int width, height;
unsigned int *width_retum, *height return ;

display Specifies the connection to the X server.

which_screen Specifies any drawable on the screen.

width

height Specify the width and height.

width_return

height return Return the width and height of the object best supported by the display
hardware.

5-32 Graphics Resource Functions

The XQueryBestStipple function returns the best or closest size, that is, the size that
can be stippled fastest on the screen specified by which_screen. The drawable indicates
the screen and possibly the window class and depth. If an InputOnly window is used as
the drawable, a BadMatch error results,

XQueryBestStipple can generate BadDrawable and BadMatch errors.
To set the fill tile of a given GC, use XSetTile.
XSetTile (display, gc, tle)
Display *display ;
GC ge;
Pixmap tile;
display Specifies the connection to the X server.
g Specifies the GC.
tile Specifies the fill tile you want to set for the specified GC.
The tile and GC must have the same depth, or a BadMatch error results.
XSetTile can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.
To set the stipple of a given GC, use XSetStipple.
XSetStipple (display, gc, stipple)
Display *display ;
GC gc;
Pixmap stipple;
display Specifies the connection to the X server.
g Specifies the GC.
stipple Specifies the stipple you want to set for the specified GC.

Stipple depth is 1. The stipple and GC must be on the same screen, or a BadMatch error
results.

XSetStipple can generate BadAlloc, BadGC, BadMatch, and BadPixmap
errors.

To set the tile or stipple origin of a given GC, use XSetTSOrigin.
XSetTSOrigin (display, gc, ts x origin, ts_y origin)
Display *display ;

GC gc;
int s _x_origin, ts y_ongn;

display Specifies the connection to the X server.

Graphics Resource Functions 5-33

g Specifies the GC.

Is_x_origin
ts_y origin Specify the x and y coordinates of the tile and stipple origin.

When graphics requests call for tiling or stippling, the parent’s origin will be interpreted
relative to whatever destination drawable is specified in the graphics request.

XSetTSOrigin can generate BadAlloc and BadGC error.

5.4.5 Setting the Current Font

To set the current font of a given GC, use XSetFont.
XSetFont (display, gc, font)

Display *display;

GC ge;

Font font;
display Specifies the connection to the X server.
gc Specifies the GC.
font Specifies the font.

XSetFont can generate BadAlloc, BadFont, and BadGC errors.

5.4.6 Setting the Clip Region

Xlib provides functions that you can use to set the clip-origin and the clip-mask or set the
clip-mask to a list of rectangles.

To set the clip-origin of a given GC, use XSetClipOrigin.

XSetClipOrigin (display, gc, clip x_origin, clip_y origin)
Display *display;
GC gc;
int clip x origin, clip_y origin;

display Specifies the connection to the X server.

g Specifies the GC.

clip_x_origin

clip_y origin Specify the x and y coordinates of the clip-mask origin.

The clip-mask origin is interpreted relative to the origin of whatever destination drawable
is specified in the graphics request.

XSetClipOrigin can generate BadAlloc and BadGC errors.

5-34 Graphics Resource Functions

To set the clip-mask of a given GC to the specified pixmap, use XSetClipMask.

XSetClipMask (display, gc, pixmap)
Display *display;
GC gc;
Pixmap pixmap ;

display Specifies the connection to the X server.
g Specifies the GC.
pixmap Specifies the pixmap or None.

If the clip-mask is set to None, the pixels are are always drawn (regardless of the clip-
origin).

XSetClipMask can generate BadAlloc, BadGC, BadMatch, and BadValue
errors.

To set the clip-mask of a given GC to the specified list of rectangles, use
XSetClipRectangles.

XSetClipRectangles (display, gc, clip_x origin, clip y origin, rectangles, n, ordering)
Display *display;
GC gc;
int clip x _origin, clip_y origin;
XRectangle rectangles(];
int n;
int ordering;

display Specifies the connection to the X server.

g Specifies the GC.

clip_x_origin

clip y origin Specify the x and y coordinates of the clip-mask origin.
rectangles Specifies an array of rectangles that define the clip-mask.

n Specifies the number of rectangles.

ordering Specifies the ordering relations on the rectangles. You can pass

Unsorted, YSorted, YXSorted, or YXBanded.

The XSetClipRectangles function changes the clip-mask in the specified GC to the
specified list of rectangles and sets the clip origin. The output is clipped to remain
contained within the rectangles. The clip-origin is interpreted relative to the origin of
whatever destination drawable is specified in a graphics request. The rectangle coordinates
are interpreted relative to the clip-origin. The rectangles should be nonintersecting, or the

Graphics Resource Functions 5-35

graphics results will be undefined. Note that the list of rectangles can be empty, which
effectively disables output. This is the opposite of passing None as the clip-mask in
XCreateGC, XChangeGC, and XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with the
ordering argument. This may provide faster operation by the server. If an incorrect
ordering is specified, the X server may generate a BadMatch error, but it is not required
to do so. If no error is generated, the graphics results are undefined. Unsorted means
the rectangles are in arbitrary order. YSorted means that the rectangles are
nondecreasing in their Y origin. YXSorted additionally constrains YSorted order in
that all rectangles with an equal Y origin are nondecreasing in their X origin. YXBanded
additionally constrains YXSorted by requiring that, for every possible Y scanline, all
rectangles that include that scanline have an identical Y origins and Y extents.

XSetClipRectangles can generate BadAlloc, BadGC, BadMatch, and
BadValue errors.

Xlib provides a set of basic functions for performing region arithmetic. For information
about these functions, see chapter 10.

5.4.7 Setting the Arc Mode, Subwindow Mode, and Graphics
Exposure

To set the arc mode of a given GC, use XSetArcMode.
XSetArcMode (display, gc, arc_mode)

Display *display;

GC ge;

int arc_mode;
display Specifies the connection to the X server.
g Specifies the GC.
arc_mode Specifies the arc mode. You can pass ArcChord or ArcPieSlice.
XSetArcMode can generate BadAlloc, BadGC, and BadValue errors.
To set the subwindow mode of a given GC, use XSetSubwindowMode.
XSetSubwindowMode (display, gc, subwindow_mode)

Display *display;

GC gc;

int subwindow_mode ;

display Specifies the connection to the X server.

g Specifies the GC.

5-36 Graphics Resource Functions

subwindow_mode Specifies the subwindow mode. You can pass ClipByChildren or
IncludeInferiors.

XSetSubwindowMode can generate BadAlloc, BadGC, and BadValue errors.
To set the graphics-exposures flag of a given GC, use XSetGraphicsExposures.
XSetGraphicsExposures (display, gc, graphics_exposures)

Display *display;

GC gc;
Bool graphics_exposures ;

display Specifies the connection to the X server.
g Specifies the GC.
graphics_exposures Specifies a Boolean value that indicates whether you want

GraphicsExpose and NoExpose events to be reported
when calling XCopyArea and XCopyPlane with this GC.

XSetGraphicsExposures can generate BadAlloc, BadGC, and BadValue
errors.

Graphics Resource Functions 5-37

Graphics Functions 6

Once you have connected the display to the X server, you can use the Xlib graphics
functions to:

o Clear and copy areas

e Draw points, lines, rectangles, and arcs

o Fill areas

« Manipulate fonts

e Draw text

« Transfer images between clients and the server
e Manipulate cursors

If the same drawable and GC is used for each call, Xlib batches back-to-back calls to
XDrawPoint, XDrawLine, XDrawRectangle, XFillArc, and
XFillRectangle. Note that this reduces the number of requests sent to the server.

6.1 Clearing Areas

Xlib provides functions that you can use to clear an area or the entire window. Because
pixmaps do not have defined backgrounds, they cannot be filled by using the functions
described in this section. Instead, to accomplish an analogous operation on a pixmap, you
should use XFillRectangle, which sets the pixmap to a known value.
To clear a rectangular area of a given window, use XClearArea.
XClearArea(display, w, x, y, width, height, exposures)

Display *display;

Window w;

int x, y;

unsigned int width, height;

Bool exposures ;

display Specifies the connection to the X server.

w Specifies the window.

Graphics Functions 6-1

X

y Specify the x and y coordinates, which are relative to the origin of the
window and specify the upper-left corner of the rectangle.

width
height Specify the width and height, which are the dimensions of the rectangle.
exposures Specifies a Boolean value that indicates if Expose events are to be

generated.

The XClearArea function paints a rectangular area in the specified window according
to the specified dimensions with the window’s background pixel or pixmap. The
subwindow-mode effectively is C1ipByChildren. If width is zero, it is replaced with
the current width of the window minus x. If height is zero, it is replaced with the current
height of the window minus y. If the window has a defined background tile, the rectangle
clipped by any children is filled with this tile. If the window has background None, the
contents of the window are not changed. In either case, if exposures is True, one or more
Expose events are generated for regions of the rectangle that are either visible or are

being retained in a backing store. If you specify a window whose class is InputOnly, a
BadMatch error results.

XClearArea can generate BadMatch, BadValue, and BadWindow errors.
To cléar the entire area in a given window, use XClearWindow.
XClearWindow (display, w)
Display *display ;
Window w;
display Specifies the connection to the X server.

w Specifies the window.

The XClearWindow function clears the entire area in the specified window and is
equivalent to XClearArea (display, w, 0, 0, 0, 0, False). If the window has a defined
background tile, the rectangle is tiled with a plane-mask of all ones and GXcopy function.
If the window has background None, the contents of the window are not changed. If you
specify a window whose class is InputOnly, a BadMatch error results.

XClearWindow can generate BadMatch and BadWindow errors.

6-2 Graphics Functions

6.2 Copying Areas

Xlib provides functions that you can use to copy an area or a bit plane.
To copy an area between drawables of the same root and depth, use XCopyArea.

¥Copyarealdisplay, src, dest, gc, src x, src_y, width, height, destx, desty)
Display *display;
Drawable src, dest;
GC &;
int src x, src y;
unsigned int width, height;
int dest x, dest y;

display Specifies the connection to the X server.

src

dest Specify the source and destination rectangles to be combined.

g Specifies the GC.

src x

src_y Specify the x and y coordinates, which are relative to the origin of the source
rectangle and specify its upper-left corner.

width

height Specify the width and height, which are the dimensions of both the source and
destination rectangles.

dest x

dest y Specify the x and y coordinates, which are relative to the origin of the

destination rectangle and specify its upper-left corner.

The XCopyArea function combines the specified rectangle of src with the specified
rectangle of dest. The drawables must have the same root and depth, or a BadMatch
error results.

If regions of the source rectangle are obscured and have not been retained in backing store
or if regions outside the boundaries of the source drawable are specified, those regions are
not copied. Instead, the following occurs on all corresponding destination regions that are
cither visible or are retained in backing store. If the destination is a window with a
background other than None, corresponding regions of the destination are tiled with that
background (with plane-mask of all ones and GXcopy function). Regardless of tiling or
whether the destination is a window or a pixmap, if graphics-exposures is True, then
GraphicsExpose events for all corresponding destination regions are generated. If

Graphics Functions 6-3

graphics-exposures is True but no GraphicsExpose events are generated, a
NoExpose event is generated. Note that by default graphics-exposures is True in new
GCs.

This function uses these GC components: function, plane-mask, subwindow-mode,
graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyArea can generate BadDrawable, BadGC, and BadMatch errors.

To copy a single bit plane of a given drawable, use XCopyPlane.

XCopyPlane (display, src, dest, gc, src x, srcy, width, height, dest x, dest_y, plane)
Display *display;
Drawable src, dest;
GC g¢;
int src x, src y;
unsigned int width, height;
int dest x, dest y;
unsigned long plane;

display Specifies the connection to the X server.

src

dest Specify the source and destination rectangles to be combined.

g Specifies the GC.

src_x

src_y Specify the x and y coordinates, which are relative to the origin of the source
rectangle and specify its upper-left corner.

width

height Specify the width and height, which are the dimensions of both the source and
destination rectangles.

dest x
dest y Specify the x and y coordinates, which are relative to the origin of the
destination rectangle and specify its upper-left corner.

plane Specifies the bit plane. You must set exactly one bit to 1.

The XCopyPlane function uses a single bit plane of the specified source rectangle
combined with the specified GC to modify the specified rectangle of dest. The drawables
must have the same root but need not have the same depth. If the drawables do not have
the same root, a BadMatch error results. If plane does not have exactly one bit set to 1
and the values of planes must be less than 2", where n is the depth of scr, a BadValue
error results.

6-4 Graphics Functions

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of dest and
with a size specified by the source region. It uses the foreground/background pixels in the
GC (foreground everywhere the bit plane in src contains a bit set to 1, background
everywhere the bit plane in src contains a bit set to 0) and the equivalent of a CopyArea
protocol request is performed with all the same exposure semantics. This can also be
thought of as using the specified region of the source bit plane as a stipple with a fill-style
of FillOpaqueStippled for filling a rectangular area of the destination.

This function uses these GC components: function, plane-mask, foreground, background,
subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyPlane can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

6.3 Drawing Points, Lines, Rectangles, and Arcs

Xlib provides functions that you can use to draw:
« A single point or multiple points
« A single line or multiple lines
« A single rectangle or multiple rectangles
+ A single arc or multiple arcs

Some of the functions described in the following sections use these structures:

typedef struct {
short x1, yl, x2, y2;
} XSegment;

typedef struct {
short x, y;
} XPoint;

typedef struct {

short x, y;

unsigned short width, height;
} XRectangle;

Graphics Functions 6-5

typedef struct {

short x, y;

unsigned short width, height;

short anglel, angle2; /* Degrees multiplied by 64 */
} XArc;

All x and y members are signed integers. The width and height members are 16-bit
unsigned integers. You should be careful not to generate coordinates and sizes out of the
16-bit ranges, because the protocol only has 16-bit fields for these values.

6.3.1 Drawing Single and Multiple Points

To draw a single point in a given drawable, use XDrawPoint.

XDrawPoint (display, d, gc, x, y)
Display *display;

Drawable d;
GC gc;
int x, y;
display Specifies the connection to the X server.
d Specifies the drawable.
g Specifies the GC.
x
y Specify the x and y coordinates where you want the point drawn.

To draw multiple points in a given drawable, use XDrawPoints.

XDrawPoints (display, d, gc, points, npoints, mode)
Display *display ;
Drawable d;
GC gc;
XPoint *points ;
int npoints ;

int mode;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
points Specifies a pointer to an array of points.

npoints Specifies the number of points in the array.

mode Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

6-6 Graphics Functions

The XDrawPoint function uses the foreground pixel and function components of the
GC to draw a single point into the specified drawable; XDrawPoints draws multiple
points this way. CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the previous
point. XDrawPoints draws the points in the order listed in the array.

Both functions use these GC components: function, plane-mask, foreground, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generate BadDrawable, BadGC, and BadMatch errors.
XDrawPoints can generate BadDrawable, BadGC, BadMatch, and BadValue
€r1or1s.

6.3.2 Drawing Single and Multiple Lines
To draw a single line between two points in a given drawable, use XDrawLine.

XDrawLine (display, d, gc, xI1, yl1, x2, y2)
Display *display;
Drawable d;
GC gc;
int x1, yl, x2, y2;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x1

yl

x2

¥y2 Specify the points (x1, y1) and (x2, y2) to be connected.

To draw multiple lines in a given drawable, use XDrawLines.

XDrawLines (display, d, gc, points, npoints, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;
int npoints;
int mode;

display Specifies the connection to the X server.
d Specifies the drawable.
g Specifies the GC.

Graphics Functions 6-7

points Specifies a pointer to an array of points.
npoints Specifies the number of points in the array.

mode Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

L4 oV DU, PN DRI I LI SR I TR
iav uraw ululllPlC, ULILCULLIICULOU HLIOD 111 a
XDrawSegments (display, d, gc, segments, nsegments)

Display *display;

Drawable d;

GC gc;

XSegment *segrnents ;

int nsegments ;

display Specifies the connection to the X server.

d Specifies the drawable.

g Specifies the GC.

segments Specifies a pointer to an array of segments.

nsegments Specifies the number of segments in the array.

The XDrawLine function uses the components of the specified GC to draw a line
between the specified set of points (x1, y1) and (x2, y2). It does not perform joining at
coincident endpoints. For any given line, XDrawLine does not draw a pixel more than
once. If lines intersect, the intersecting pixels are drawn multiple times.

The XDrawLines function uses the components of the specified GC to draw npoints-1
lines between each pair of points (point[i], point[i+1]) in the array of XPoint structures.
It draws the lines in the order listed in the array. The lines join correctly at all
intermediate points, and if the first and last points coincide, the first and last lines also join
correctly. For any given line, XDrawLines does not draw a pixel more than once. If thin
(zero line-width) lines intersect, the intersecting pixels are drawn multiple times. If wide
lines intersect, the intersecting pixels are drawn only once, as though the entire

PolyLine protocol request were a single, filled shape. CoordModeOrigin treats all
coordinates as relative to the origin, and CoordModePrevious treats all coordinates
after the first as relative to the previous point.

The XDrawSegments function draws multiple, unconnected lines. For each segment,
XDrawSegments draws a line between (x1, y1) and (x2, y2). It draws the lines in the
order listed in the array of XSegment structures and does not perform joining at
coincident endpoints. For any given line, XDrawSegments does not draw a pixel more
than once. If lines intersect, the intersecting pixels are drawn multiple times.

6-8 Graphics Functions

All three functions use these GC components: function, plane-mask, line-width, line-style,
cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. The
XDrawLines function also uses the join-style GC component. All three functions also
use these GC mode-dependent components: foreground, background, tile, stipple, tile-
stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawLine, XDrawLines, and XDrawSegments can generate BadDrawable,
BadGC, and BadMatch errors. XDrawLines also can generate BadValue errors.

6.3.3 Drawing Single and Multiple Rectangles
To draw the outline of a single rectangle in a given drawable, use XDrawRectangle.

XDrawRectangle (display, d, gc, x, y, width, height)
Display *display;
Drawable d;
GC gc; -
int x, y;
unsigned int width, height;

display Specifies the connection to the X server.

d Specifics the drawable.

g Specifies the GC.

x

y Specify the x and y coordinates, which specify the upper-left corner of the
rectangle.

width

height Specify the width and height, which specify the dimensions of the rectangle.
To draw the outline of multiple rectangles in a given drawable, use XDrawRectangles.

XDrawRectangles (display, d, gc, rectangles, nrectangles)
Display *display ;
Drawable d;
GC gc;
XRectangle rectangles[];
int nrectangles ;

display Specifies the connection to the X server.

d Specifies the drawable.

g Specifies the GC.

rectangles Specifies a pointer to an array of rectangles.

Graphics Functions 6-9

nrectangles Specifies the number of rectangles in the array.

The XDrawRectangle and XDrawRectangles functions draw the outlines of the
specified rectangle or rectangles as if a five-point PolyLine protocol request were
specified for each rectangle:

[xy] [x+width,y] [x+width,y+height] [xy+height] [x,y]

For the specified rectangle or rectangles, these functions do not draw a pixel more than
once. XDrawRectangles draws the rectangles in the order listed in the array. If
rectangles intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, line-width, line-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also
use these GC mode-dependent components: foreground, background, tile, stipple, tile-
stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawRectangle and XDrawRectangles can generate BadDrawable, BadGC,
and BadMatch errors.

6.3.4 Drawing Single and Multiple Arcs
To draw a single arc in a given drawable, use XDrawArc.

XDrawArc (display, d, gc, x, y, width, height, anglel, angle2)
Display *display ;
Drawable d;
GC gc;
int X, y;
unsigned int width, height;
int anglel, angle?;

display Specifies the connection to the X server.

d Specifies the drawable.

g Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the origin of the drawable
and specify the upper-left corner of the bounding rectangle.

width

height Specify the width and height, which are the major and minor axes of the arc.

anglel Specifies the start of the arc relative to the three-o’clock position from the

center, in units of degrees multiplied by 64.

6-10 Graphics Functions

angle2 Specifies the path and extent of the arc relative to the start of the arc, in units
of degrees multiplied by 64.

To draw multiple arcs in a given drawable, use XDrawArcs.

XDrawArcs (display, d, gc, arcs, narcs)
Display *display;

Drawable d;

GC gc;

XArc *arcs;

int narces;
display Specifies the connection to the X server.
d Specifies the drawable.
g Specifies the GC.
arcs Specifies a pointer to an array of arcs.
narcs Specifies the number of arcs in the array.

XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws multiple
circular or elliptical arcs. Each arc is specified by a rectangle and two angles. The center
of the circle or ellipse is the center of the rectangle, and the major and minor axes are
specified by the width and height. Positive angles indicate counterclockwise motion, and
negative angles indicate clockwise motion. If the magnitude of angle2 is greater than 360
degrees, XDrawArc or XDrawArcs truncates it to 360 degrees.

For an arc specified as [x, y, width, height, angle 1, angle 2}, the origin of the major and
width y+ hezg {], and the infinitely thin path describing the entire

2 ?
circle or ellipse intersects the horlzontal axis at [x, y + ﬁf—’}—] and [x + width, y + Mg—-]

w:dth

minor axes is at [x +

and intersects the vertical axis at [x + ,y]and [x+ gh y + height]. These

coordinates can be fractional and so are not truncated to discrete coordinates. The path
should be defined by the ideal mathematical path. For a wide line with line-width lw, the
bounding outlines for filling are given by the two infinitely thin paths consisting of all
points whose perpendicular distance from the path of the circle/ellipse is equal to lw/2
(which may be a fractional value). The cap-style and join-style are applied the same as for
a line corresponding to the tangent of the circle/ellipse at the endpoint.

For an arc specified as [x, y, width, height, angle 1, angle 2], the angles must be specified
in the effectively skewed coordinate system of the ellipse (for a circle, the angles and
coordinate systems are identical). The relationship between these angles and angles
expressed in the normal coordinate system of the screen (as measured with a protractor) is
as follows:

Graphics Functions 6-11

width

skewed-angle = afan |tan(normal-angle)* height

+ adjust

The skewed-angle and normal-angle are expressed in radians (rather than in degrees
scaled by 64) in the range [0, 2x] and where atan returns a value in the range [—;L, 12[] and

adjust is:

0 for normal-angle in the range [0, ;.]
” for normal-angle in the range [.;., 3_21_']
2w for normal-angle in the range [?2"_, 2n

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more than once. If
two arcs join correctly and if the line-width is greater than zero and the arcs intersect,
XDrawArc and XDrawArcs do not draw a pixel more than once. Otherwise, the
intersecting pixels of intersecting arcs are drawn multiple times. Specifying an arc with one
endpoint and a clockwise extent draws the same pixels as specifying the other endpoint and
an equivalent counterclockwise extent, except as it affects joins.

If the last point in one arc coincides with the first point in the following arc, the two arcs
will join correctly. If the first point in the first arc coincides with the last point in the last
arc, the two arcs will join correctly. By specifying one axis to be zero, a horizontal or
vertical line can be drawn. Angles are computed based solely on the coordinate system
and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask, line-width, line-style,
cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.
They also use these GC mode-dependent components: foreground, background, tile,
stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawArc and XDrawArcs can generate BadDrawable, BadGC, and BadMatch
errors,

6.4 Filling Areas

Xlib provides functions that you can use to fill:
e A single rectangle or multiple rectangles
« A single polygon

« A single arc or multiple arcs

6-12 Graphics Functions

6.4.1 Filling Single and Multiple Rectangles
To fill a single rectangular area in a given drawable, use XFillRectangle.

XFillRectangle(display, d, gc, x, y, width, height)
Display *display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;

display Specifies the connection to the X server,

d Specifies the drawable.

g Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the origin of the drawable
and specify the upper-left corner of the rectangle.

width

height Specify the width and height, which are the dimensions of the rectangle to be

filled.
To fill multiple rectangular areas in a given drawable, use XFillRectangles.

XFillRectangles (display, d, gc, rectangles, nrectangles)
Display *display;
Drawable d;
GC gc;
XRectangle *rectangles ;
int nrectangles ;

display Specifies the connection to the X server.

d Specifies the drawable.

g Specifies the GC.

rectangles Specifies a pointer to an array of rectangles.
nrectangles Specifies the number of rectangles in the array.

The XFillRectangle and XFillRectangles functions fill the specified rectangle
or rectangles as if a four-point Fil1Polygon protocol request were specified for each
rectangle:

[x,y] [xtwidth,y] [xt+width,ytheight] [x,y+theight]

Graphics Functions 6-13

Each function uses the x and y coordinates, width and height dimensions, and GC you
specify.

XFillRectangles fills the rectangles in the order listed in the array. For any given
rectangle, XFillRectangle and XFillRectangles do not draw a pixel more than
once. If rectangles intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent
components: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-
origin.

XFillRectangle and XFillRectangles can generate BadDrawable, BadGC,
and BadMatch errors.

6.4.2 Filling a Single Polygon
To fill a polygon area in a given drawable, use XFillPolygon.

XFillPolygon (display, d, gc, points, npoints, shape, mode)
Display *display ;
Drawable d;
GC gc;
XPoint *points;
int npoints ;
int shape;
int mode;

display Specifies the connection to the X server.

d Specifies the drawable.
gc Specifies the GC.
points Specifies a pointer to an array of points,

npoints Specifies the number of points in the array.

shape Specifies a shape that helps the server to improve performance. You can pass
Complex, Convex, or Nonconvex.

mode Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

6-14 Graphics Functions

XFillPolygon fills the region closed by the specified path. The path is closed
automatically if the last point in the list does not coincide with the first point.
XFillPolygon does not draw a pixel of the region more than once.
CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the previous
point.

Depending on the specified shape, the following occurs:
e If shape is Complex, the path may self-intersect.

« If shape is Convex, the path is wholly convex. If known by the client, specifying
Convex can improve performance. If you specify Convex for a path that is not
convex, the graphics results are undefined.

« If shape is Nonconvex, the path does not self-intersect, but the shape is not wholly
convex. If known by the client, specifying Nonconvex instead of Complex may
improve performance. If you specify Nonconvex for a self-intersecting path, the
graphics results are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: function, plane-mask, fill-style, fill-rule,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode-
dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, and
tile-stipple-y-origin.

XFillPolygon can generate BadDrawable, BadGC, BadMatch, and BadValue
errors,

6.4.3 Filling Single and Mulitiple Arcs
To fill a single arc in a given drawable, use XFillArc.
XFillArc(display, d, gc, x, y, width, height, anglel, angle2)
Display *display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;
int anglel, angle2;
display Specifies the connection to the X server.
d Specifies the drawable.

g Specifies the GC.,

Graphics Functions 6-15

X

y Specify the x and y coordinates, which are relative to the origin of the drawable
and specify the upper-left corner of the bounding rectangle.

width

height Specify the width and height, which are the major and minor axes of the arc.

anglel Specifies the start of the arc relative to the three-o’clock position from the
center, in units of degrees multiplied by 64.

angle2 Specifies the path and extent of the arc relative to the start of the arc, in units

of degrees multiplied by 64.
To fill multiple arcs in a given drawable, use XFillArcs.

XFillArcs(display, d, gc, arcs, narcs)
Display *display ;

Drawable d;

GC gc;

XArc *arcs ;

int narcs;
display Specifies the connection to the X server.
d Specifies the drawable.
g Specifies the GC.
arcs Specifies a pointer to an array of arcs.
narcs Specifies the number of arcs in the array.

For each arc, XFillArc or XFillArcs fills the region closed by the infinitely thin path
described by the specified arc and, depending on the arc-mode specified in the GC, one or
two line segments. For ArcChord, the single line segment joining the endpoints of the
arc is used. For ArcPieSlice, the two line segments joining the endpoints of the arc
with the center point are used. XFillArcs fills the arcs in the order listed in the array.
For any given arc, XFillArc and XFillArcs do not draw a pixel more than once. If
regions intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, arc-mode,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XFillArc and XFillArcs can generate BadDrawable, BadGC, and BadMatch
errors.

6-16 Graphics Functions

6.5 Font Metrics

A font is a graphical description of a set of characters that are used to increase efficiency
whenever a set of small, similar sized patterns are repeatedly used.

This section discusses how to:
e Load and free fonts
« Obtain and free font names
e Set and retrieve the font secarch path
o Compute character string sizes
» Return logical extents
¢ Query character string sizes

The X server loads fonts whenever a program requests a new font. The server can cache
fonts for quick lookup.. Fonts are global across all screens in a server. Several levels are
possible when dealing with fonts. Most applications simply use XLoadQueryFont to
load a font and query the font metrics.

Characters in fonts are regarded as masks. Except for image text requests, the only pixels
modified are those in which bits are set to 1 in the character. This means that it makes
sense to draw text using stipples or tiles (for example, many menus gray-out unusable
entries).

The XFontStruct structure contains all of the information for the font and consists of
the font-specific information as well as a pointer to an array of XCharStruct structures
for the characters contained in the font. The XFontStruct, XFontProp, and
XCharStruct structures contain:

typedef struct {

short lbearing; /* origin to left edge of raster */
short rbearing; /* origin to right edge of raster */
short width; /* advance to next char'’'s origin */
short ascent; /* baseline to top edge of raster */
short descent; /* baseline to bottom edge of raster */
unsigned short attributes; /* per char flags (not predefined) */

} XCharStruct;

typedef struct {

Atom name;

unsigned long card32;
} XFontProp;

Graphics Functions. 6-17

typedef struct { /* normal 16 bit characters are two bytes */
unsigned char bytel;
unsigned char byte2;

} XChar2b;

typedef struct {

XExtData *ext_data; /* hook for extension to hang data */

Font fid; /* Font id for this font */

unsigned direction; /* hint about the direction font is painted */
unsigned min_char_or_ byte2; /* first character */

unsigned max_char_or_byte2; /* last character */

unsigned min_bytel; /%* first row that exists */

unsigned max_bytel; /* last row that exists */

Bool all chars_exist; /* flag if all characters have nonzero size */
unsigned default_char; /* char to print for undefined character */

int n_properties; /* how many properties there are */

XFontProp *properties; /* pointer to array of additional properties */
XCharStruct min_bounds; /* minimum bounds over all existing char */
XCharStruct max_bounds; /% maximum bounds over all existing char */
XCharStruct *per_ char; /* first char to last_char information */

int ascent; /* logical extent above baseline for spacing */
int descent; /* logical decent below baseline for spacing */

} XFontStruct;

X supportts single byte/character, two bytes/character matrix, and 16-bit character text
operations. Note that any of these forms can be used with a font, but a single
byte/character text request can only specify a single byte (that is, the first row of a 2-byte
font). You should view 2-byte fonts as a two-dimensional matrix of defined characters:
bytel specifies the range of defined rows and byte2 defines the range of defined columns
of the font. Single byte/character fonts have one row defined, and the byte2 range
specified in the structure defines a range of characters.

The bounding box of a character is defined by the XCharStruct of that character.
When characters are absent from a font, the default_char is used. When fonts have all
characters of the same size, only the information in the XFontStruct min and max
bounds are used.

The members of the XFontStruct have the following semantics:

« The direction member can be either FontLeftToRight or
FontRightToLeft. Itis just a hint as to whether most XCharStruct
elements have a positive (FontLeftToRight) or a negative
(FontRightToLeft) character width metric. The core protocol defines no
support for vertical text.

6-18 Graphics Functions

« If the min_bytel and max_bytel members are both zero, min_char_or_byte2
specifies the linear character index corresponding to the first “element of the
per_char array, and max_char_or_byte2 specifies the linear character index of the
last element.

If either min_bytel or max_bytel are nonzero, both min_char_or_byte2 and
max_char_or_byte2 are less than 256, and the 2-byte character index values
corresponding to the per_char array element N (counting from 0) are:

bytel = N/D + min_bytel
byte2 = N\D + min_char_or_byte2
where:
D = max_char_or_byte2 - min_char_or_byte2 + 1
/ = integer division
\ = integer modulus
o If the per_char pointer is NULL, all glyphs between the first and last character

indexes inclusive have the same information, as given by both min_bounds and
max_bounds.

o If all chars_exist is True, all characters in the per_char array have nonzero
bounding boxes.

o The default_char member specifies the character that will be used when an
undefined or nonexistent character is prmted The default_char is a 16-bit character
(not a 2-byte character). For a font using 2-byte matrix format, the default_char has
bytel in the most-significant byte and byte2 in the least-significant byte. If the
default_char itself specifies an undefined or nonexistent character, no printing is
performed for an undefined or nonexistent character.

 The min_bounds and max_bounds members contain the most extreme values of each
individual XCharStruct component over all elements of this array (and ignore
nonexistent characters). The bounding box of the font (the smallest rectangle
enclosing the shape obtained by superimposing all of the characters at the same
origin [x,y]) has its upper-left coordinate at:

[x + min_bounds.lbearing, y - max_bounds.ascent]

Its width is:

max_bounds.rbearing - min_bounds. lbearing

Its height is:

max_bounds.ascent + max_bounds.descent

Graphics Functions 6-19

 The ascent member is the logical extent of the font above the baseline that is used
for determining line spacing. Specific characters may extend beyond this.

« The descent member is the logical extent of the font at or below the baseline that is
used for determining line spacing. Specific characters may extend beyond this.

o If the baseline is at Y-coordinate y, the logical extent of the font is inclusive between
the Y-coordinate values (y - font.ascent) and (y + font.descent - 1). Typically, the
minimum interline spacing between rows of text is given by ascent + descent.

For a character origin at [x,y], the bounding box of a character (that is, the smallest
rectangle that encloses the character’s shape) described in terms of XCharStruct
components is a rectangle with its upper-left corner at:

{x + lbearing, y - ascent]

Its width is:

rbearing - lbearing
Its height is:

ascent + descent

The origin for the next character is defined to be:

[x + width, y]

The lbearing member defines the extent of the left edge of the character ink from the
origin. The rbearing member defines the extent of the right edge of the character ink from
the origin. The ascent member defines the extent of the top edge of the character ink
from the origin. The descent member defines the extent of the bottom edge of the
character ink from the origin. The width member defines the logical width of the
character.

Note that the baseline (the y position of the character origin) is logically viewed as being
the scanline just below nondescending characters. When descent is zero, only pixels with
Y-coordinates less than y are drawn, and the origin is logically viewed as being coincident
with the left edge of a nonkerned character. When Ibearing is zero, no pixels with X-
coordinate less than x are drawn. Any of the XCharStruct metric members could be
negative. If the width is negative, the next character will be placed to the left of the current
origin,

6-20 Graphics Functions

The X protocol does not define the interpretation of the attributes member in the
XCharStruct structure. A nonexistent character is represented with all members of its
XCharStruct set to zero.

A font is not guaranteed to have any properties. The interpretation of the property value
(for example, long or unsigned long) must be derived from a priori knowledge of the
property. When possible, fonts should have at least the properties listed in the following
table. With atom names, uppercase and lowercase matter. The following built-in property
atoms can be found in <X11/Xatom.h>:

Graphics Functions 6-21

Property Name Type Description
MIN SPACE unsigned The minimum interword spacing, in pixels.
NORM_SPACE unsigned The normal interword spacing, in pixels.
MAX SPACE unsigned The maximum interword spacing, in pixels.
END _SPACE unsigned The additional spacing at the end of sentences, in pixc
SUPERSCRIPT X int Offset from the character origin where superscripts st
SUPERSCRIPT Y begin, in pixels. If the origin is at [x,y], then superscri
should begin at
[x + SUPERSCRIPT X,y - SUPERSCRIPT Y].
SUBSCRIPT X int Offset from the character origin where subscripts sho
SUBSCRIPT Y begin, in pixels. If the origin is at [x,y], then subscript
should begin at
[x + SUPERSCRIPT X,y + SUPERSCRIPT _Y].
UNDERLINE _POSITION int Y offset from the baseline to the top of an underline,
pixels. If the baseline is Y-coordinate y, then the top
underline is at
(y + UNDERLINE_POSITION).
UNDERLINE THICKNESS unsigned Thickness of the underline, in pixels.
STRIKEOUT ASCENT int Vertical extents for boxing or voiding characters, in pi
STRIKEOUT DESCENT If the baseline is at Y-coordinate y, then the top of th
strikeout box is at
(y - STRIKEOUT ASCENT),
and the height of the box is
(STRIKEOUT _ASCENT + STRIKEOUT DESCENT).
ITALIC ANGLE int The angle of the dominant staffs of characters in the |
degrees scaled by 64, relative to the three-o’clock pos
from the character origin, with positive indicating
counterclockwise motion (as in XDrawArc).
X HEIGHT int 1 ex as in TeX, but expressed in units of pixels. Often
height of lowercase x.
QUAD WIDTH int 1 em as in TeX, but expressed in units of pixels. Ofte
width of the digits 0-9.
CAP_HEIGHT int Y offset from the baseline to the top of the capital let

6-22 Graphics Functions

ignoring accents, in pixels. If the baseline is at Y-coo
y, then the top of the capitals is at

(v - CAP_HEIGHT).

WEIGHT unsigned The weight or boldness of the font, expressed as a val
between 0 and 1000.

POINT SIZE unsigned The point size of this font at the ideal resolution, expr
in 1/10 points.

RESOLUTION unsigned The number of pixels per point, expressed in 1/100, at

which this font was created.

6.5.1 Loading and Freeing Fonts

Xlib provides functions that you can use to load fonts, get font information, unload fonts,
and free font information. A few font functions use a GContext resource ID or a font
ID interchangeably.

To load a given font, use XLoadFont.
Font XLoadFont (display, name)
Display *display;
char *name;
display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated string,

The XLoadFont function loads the specified font and returns its associated font ID. The
name should be ISO Latin-1 encoding; uppercase and lowercase do not matter. If
XLoadFont was unsuccessful at loading the specified font, a BadName error results.
Fonts are not associated with a particular screen and can be stored as a component of any
GC. When the font is no longer needed, call XUnloadFont.

XLoadFont can generate BadAlloc and BadName errors.
To return information about an available font, use XQueryFont.
XFontStruct *XQueryFont (display, font ID)
Display *display;
XID font ID;
display Specifies the connection to the X server.

font_ ID Specifies the font ID or the GContext ID.

Graphics Functions 6-23

The XQueryFont function returns a pointer to the XFontStruct structure, which
contains information associated with the font. You can query a font or the font stored in a
GC. The font ID stored in the XFontStruct structure will be the GContext ID, and
you need to be careful when using this ID in other functions (see XGContextFromGC).
To free this data, use XFreeFontInfo.

To perform a XLoadFont and XQuery¥Font in a singie operation, use
XLoadQueryFont.

XFontStruct *XLoadQueryFont (display, name)
Display *display;
char *name;
display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated string.

The XLoadQueryFont function provides the most common way for accessing a font.
XLoadQueryFont both opens (loads) the specified font and returns a pointer to the
appropriate XFontStruct structure. If the font does not exist, XLoadQueryFont

returns NULL.

XLoadQueryFont can generate a BadAlloc error.

To unload the font and free the storage used by the font structure that was allocated by
XQueryFont or XLoadQueryFont, use XFreeFont.

XFreeFont (display, font struct)
Display *display;
XFontStruct *font struct;
display Specifies the connection to the X server.

font_struct Specifies the storage associated with the font.

The XFreeFont function deletes the association between the font resource ID and the
specified font and frees the XFontStruct structure. The font itself will be freed when
no other resource references it. The data and the font should not be referenced again.

XFreeFont can generate a BadFont error.

To return a given font property, use XGetFontProperty.

Bool XGetFontProperty (font struct, atom, value return)
XFontStruct *font struct;

Atom atom;
unsigned long *value return;

font_struct Specifies the storage associated with the font.

6-24 Graphics Functions

atom Specifies the atom for the property name you want returned.
value_return Returns the value of the font property.

Given the atom for that property, the XGetFontProperty function returns the value of
the specified font property. XGetFontProperty also returns False if the property
was not defined or True if it was defined. A set of predefined atoms exists for font
properties, which can be found in <X11/Xatom.h>. This set contains the standard
properties associated with a font. Although it is not guaranteed, it is likely that the
predefined font properties will be present.

To unload a font that was loaded by XLoadFont, use XUnloadFont.
XUnloadFont (display, font)
Display *display ;
Font font;
display Specifies the connection to the X server.
font Specifies the font.

The XUnloadFont function deletes the association between the font resource ID and
the specified font. The font itself will be freed when no other resource references it. The
font should not be referenced again.

XUnloadFont can generate a BadFont error.

6.5.2 Obtaining and Freeing Font Names and Information

You obtain font names and information by matching a wildcard specification when
querying a font type for a list of available sizes and so on.

To return a list of the available font names, use XListFonts.

. char **XListFonts (display, pattern, maxnames, actual count retum)
Display *display ; - -

char *pattemn ;

int maxnames ;

int *acwal count_retumn ;

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain
wildcard characters.

maxnames Specifies the maximum number of names to be returned.

actual_count_return Returns the actual number of font names.

Graphics Functions 6-25

The XListFonts function returns an array of available font names (as controlled by the
font search path; see XSetFontPath) that match the string you passed to the pattern
argument. The string should be ISO Latin-1; uppercase and lowercase do not matter.
Each string is terminated by an ASCII null. The pattern string can contain any characters,
but each asterisk (*) is a wildcard for any number of characters, and each question mark
(?) is a wildcard for a single character. The client should call XFreeFontNames when
finished with the result to free the memory.

To free a font name array, use XFreeFontNames.

XFreeFontNames (/list)
char *ist[];
list Specifies the array of strings you want to free.

The XFreeFontNames function frees the array and strings returned by XListFonts
or XListFontsWithInfo.

To obtain the names and information about available fonts, use
XListFontsWithInfo.

char **XListFontsWithInfo (display, pattem, maxnames, count remm, info_retum)
Display *display;
char *pattern ;
int maxnames ;
int *count_return ;
XFontStruct **info_retumn ;

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain wildcard
characters.

maxnames Specifies the maximum number of names to be returned.

count_return Returns the actual number of matched font names.

info_return Returns a pointer to the font information.

The XListFontsWithInfo function returns a list of font names that match the
specified pattern and their associated font information. The list of names is limited to size
specified by maxnames. The information returned for each font is identical to what
XLoadQueryFont would return except that the per-character metrics are not returned.
The pattern string can contain any characters, but each asterisk (*) is a wildcard for any
number of characters, and each question mark (?) is a wildcard for a single character. To
free the allocated name array, the client should call XFreeFontNames. To free the the
font information array, the client should call XFreeFontInfo.

6-26 Graphics Functions

To free the the font information array, use XFreeFontInfo.

XFreeFontInfo(names, free info, actual count)
char **names ;
XFontStruct *free_info;
int actual_count;

names Specifies the list of font names returned by XListFontsWithInfo.

free_info Specifies the pointer to the font information returned by
XListFontsWithInfo. _

actual_count Specifies the actual number of matched font names returned by
XListFontsWithInfo.

6.5.3 Setting and Retrieving the Font Search Path
To set the font search path, use XSetFontPath,
XSetFontPath (display, directories, ndirs)

Display *display ;
char **directories ;

int ndirs;
display Specifies the connection to the X server.
directories Specifies the directory path used to look for a font. Setting the path to
the empty list restores the default path defined for the X server.
ndirs Specifies the number of directories in the path.

The XSetFontPath function defines the directory search path for font lookup. There is
only one search path per X server, not one per client. The interpretation of the strings is
operating system dependent, but they are intended to specify directories to be searched in
the order listed. Also, the contents of these strings are operating system dependent and
are not intended to be used by client applications. Usually, the X server is free to cache
font information internally rather than having to read fonts from files. In addition, the X
server is guaranteed to flush all cached information about fonts for which there currently
are no explicit resource IDs allocated. The meaning of an error from this request is
operating system dependent.

XSetFontPath can generate a BadValue error.

To get the current font search path, use XGetFontPath.

Graphics Functions 6-27

char **XGetFontPath (display, npaths_retum)
Display *display ;
int *npaths_retum;

display Specifies the connection to the X server.
npaths_return Returns the number of strings in the font path array.

The XGetFontPath function allocates and returns an array of strings containing the
search path. When it is no longer needed, the data in the font path should be freed by
using XFreeFontPath.

To free data returned by XGetFontPath, use XFreeFontPath.

XFreeFontPath (list)
char **list;
list Specifies the array of strings you want to free.

The XFreeFontPath function frees the data allocated by XGetFontPath.

6.5.4 Computing Character String Sizes

Xlib provides functions that you can use to compute the width, the logical extents, and the
server information about 8-bit and 2-byte text strings. The width is computed by adding
the character widths of all the characters. It does not matter if the font is an 8-bit or 2-byte
font. These functions return the sum of the character metrics, in pixels.

To determine the width of an 8-bit character string, use XTextWidth.
int XTextWidth (font struct, string, count)

XFontStruct *font_struct;
char *string;

int count;
font_struct Specifies the font used for the width computation.
string Specifies the character string,
count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, use XTextWidthl6.

int XTextWidthl6 (font struct, string, count)
XFontStruct *font_struct;
XChar2b *string;
int count;

6-28 Graphics Functions

font_struct Specifies the font used for the width computation.
string Specifies the character string,

count Specifies the character count in the specified string.

6.5.5 Computing Logical Extents

To compute the bounding box of an 8-bit character string in a given font, use
XTextExtents.

XTextExtents (font_struct, string, nchars, direction_retum, font_ascent_return,
font_descent_retumn, overall_return)
XFontStruct *font struct ;
char *string;
int nchars;
int *direction_return ;
int *font_ascent_return, *font_descent_return ;
XCharStruct *overall_retumn ;

font_struct Specifies a pointer to the XFontStruct structure.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_return . ; Returns the value of the direction hmt (FontLeftToRight
or FontRightToLeft).

font_ascent_return Returns the font ascent.

font_descent_retum Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct
structure.

To compute the bounding box of a 2-byte character string in a given font, use
XTextExtentsl6.

XTextExtentsl6 (font struct, string, nchars, direction_retum, font_ascent retumn,
font_descent_retun, overall_return)
XFontStruct *font struct;
XChar2b *string;
int nchars;
int *direction_return ;
int *font_ascent retun, *font_descent retum
XCharStruct *overall_return ;

Graphics Functions 6-29

ont struct Specifies a pointer to the XFontStruct structure.
_ pe po

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_return Returns the value of the direction hint (FontLeftToRight
or FontRightToLeft).

font_ascent_return Returns the font ascent.

font_descent_return Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct
structure.

The XTextExtents and XTextExtents16 functions perform the size computation
locally and, thereby, avoid the round-trip overhead of XQueryTextExtents and
XQueryTextExtents16. Both functions return an XCharStruct structure, whose
members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the
string. The descent member is set to the maximum of the descent metrics. The width
member is set to the sum of the character-width metrics of all characters in the string. For
each character in the string, let W be the sum of the character-width metrics of all
characters preceding it in the string. Let L be the left-side-bearing metric of the character
plus W. Let R be the right-side-bearing metric of the character plus W. The lbearing
member is set to the minimum L of all characters in the string. The rbearing member is
set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b
structure is interpreted as a 16-bit number with bytel as the most-significant byte. If the
font has no defined default character, undefined characters in the string are taken to have
all zero metrics.

6.5.6 Querying Character String Sizes

To query the server for the bounding box of an 8-bit character string in a given font, use
XQueryTextExtents.

XQueryTextExtents (display, font ID, string, nchars, direction_retumn, font_ascent retumn,
font_descent_return, overall_return)
Display *display;
XID font ID;
char *swing;
int nchars;
int *direction_retum ;
int *font_ascent return, *font_descent retumn ;
XCharStruct *overall_return ;

6-30 Graphics Functions

display
font ID

string
nchars

direction_return

font_ascent_return
font_descent_return

overall_return

Specifies the connection to the X server,

Specifies either the font ID or the GContext ID that contains
the font.

Specifies the character string,
Specifies the number of characters in the character string.

Returns the value of the direction hint (FontLeftToRight
or FontRightToLeft).

Returns the font ascent.
Returns the font descent.

Returns the overall size in the specified XCharStruct
structure.

To query the server for the bounding box of a 2-byte character string in a given font, use
XQueryTextExtentsl6.

XQueryTextExtents16 (display, font ID, string, nchars, direction return, font_ascent return,

Display *display;

XID font ID;

XChaer_*string ;

int nchars;

int *direction_return ;

font_descent_return, overall return)

int *font_ascent_retumn, *font_descent retumn ;
XCharStruct *overall_return ;

display
font_ID

string
nchars

direction_return

font_ascent_return
font_descent_return

overall_return

Specifies the connection to the X server.

Specifies either the font ID or the GContext ID that contains
the font.

Specifies the character string.
Specifies the number of characters in the character string.

Returns the value of the direction hint (FontLeftToRight
or FontRightToLeft).

Returns the font ascent.
Returns the font descent.

Returns the overall size in the specified XCharStruct
structure.

Graphics Functions 6-31

The XQueryTextExtents and XQueryTextExtentsl6 functions return the
bounding box of the specified 8-bit and 16-bit character string in the specified font or the
font contained in the specified GC. These functions query the X server and, therefore,
suffer the round-trip overhead that is avoided by XTextExtents and
XTextExtents16. Both functions return a XCharStruct structure, whose members
are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the
string. The descent member is set to the maximum of the descent metrics. The width
member is set to the sum of the character-width metrics of all characters in the string. For
each character in the string, let W be the sum of the character-width metrics of all
characters preceding it in the string. Let L be the left-side-bearing metric of the character
plus W. Let R be the right-side-bearing metric of the character plus W. The Ibearing
member is set to the minimum L of all characters in the string. The rbearing member is
set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b
structure is interpreted as a 16-bit number with bytel as the most-significant byte. If the
font has no defined default character, undefined characters in the string are taken to have
all zero metrics.

XQueryTextExtents and XQueryTextExtentsl6 can generate BadFont and
BadGC errors.

6.6 Drawing Text

This section discusses how to draw:
o Complex text
e Text characters
o Image text characters
The fundamental text functions XDrawText and XDrawText16 use the following

structures.

typedef struct {

char *chars; /* pointer to string */

int nchars; /* number of characters */

int delta; /* delta between strings */

Font font; /* Font to print it in, None don't change */

} XTextItem;

6-32 Graphics Functions

typedef struct {

XChar2b *chars; /* pointer to two-byte characters */

int nchars; /* number of characters */

int delta; /* delta between strings */

Font font; /* font to print it in, None don't change */

} XTextIteml$;

If the font member is not None, the font is changed before printing and also is stored in
the GC. If an error was generated during text drawing, the previous items may have been
drawn. The baseline of the characters are drawn starting at the x and y coordinates that
you pass in the text drawing functions.

For example, consider the background rectangle drawn by XDrawImageString. If you
want the upper-left corner of the background rectangle to be at pixel coordinate (x,y), pass
the (xy + ascent) as the baseline origin coordinates to the text functions. The ascent is the
font ascent, as given in the XFontStruct structure. If you want the lower-left corner of
the background rectangle to be at pixel coordinate (x,y), pass the (xy - descent + 1) as the
baseline origin coordinates to the text functions. The descent is the font descent, as given
in the XFontStruct structure.

6.6.1 Drawing Complex Text
To draw 8-bit characters in a given drawable, use XDrawText.

XDrawText (display, d, gc, x, y, items, nitems)
Display *display ;
Drawable d;
GC gc;
int x, y;
XTextItem *items;
int nitems;

display Specifies the connection to the X server.

d Specifies the drawable.

g Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.

items Specifies a pointer to an array of text items.

nitems Specifies the number of text items in the array.

To draw 2-byte characters in a given drawable, use XDrawText16.

j Graphics Functions 6-33

XDrawText16 (display, d, gc, x, y, items, nitems)
Display *display ;
Drawable d;
GC gc;
int x, y;
XTextIteml6 *items ;
int nitems;

display Specifies the connection to the X server.

d Specifies the drawable.

g Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.

items Specifies a pointer to an array of text items.

nitems Specifies the number of text items in the array.

The XDrawText16 function is similar to XDrawText except that it uses 2-byte or 16-bit
characters. Both functions allow complex spacing and font shifts between counted strings.

Each text item is processed in turn. A font member other than None in an item causes
the font to be stored in the GC and used for subsequent text. A text element delta specifies
an additional change in the position along the x axis before the string is drawn. The delta is
always added to the character origin and is not dependent on any characteristics of the
font. Each character image, as defined by the font in the GC, is treated as an additional
mask for a fill operation on the drawable. The drawable is modified only where the font
character has a bit set to 1. If a text item generates a BadFont error, the previous text
items may have been drawn.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b
structure is interpreted as a 16-bit number with bytel as the most-significant byte.

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC

mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XDrawText and XDrawText16 can generate BadDrawable, BadFont, BadGC,
and BadMatch errors.

6-34 Graphics Functions

6.6.2 Drawing Text Characters

To draw 8-bit characters in a given drawable, use XDrawString.

XDrawString (display, d, gc, x, y, string, length)
Display *display ;
Drawable d;
GC gc;
int x, y;
char *string;
int length;

display Specifies the connection to the X server.

d Specifies the drawable.

g Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.

string Specifies the character string,

length Specifies the number of characters in the string argument.

To draw 2-byte characters in a given drawable, use XDrawStringlé.

XDrawStringl6 (display, d, gc, x, y, string, length)
Display *display ;

Drawable d;
GC gc;
int x, y;
XChar2b *string;
int length;
display Specifies the connection to the X server.
d Specifies the drawable.
g Specifies the GC.
x
y Specify the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

Graphics Functions 6-35

Each character image, as defined by the font in the GC, is treated as an additional mask
for a fill operation on the drawable. The drawable is modified only where the font
character has a bit set to 1. For fonts defined with 2-byte matrix indexing and used with
XDrawStringl6, each byte is used as a byte2 with a bytel of zero.

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components; foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XDrawString and XDrawStringlé can generate BadDrawable, BadGC, and
BadMatch errors.

6.6.3 Drawing Image Text Characters

Some applications, in particular terminal emulators, need to print image text in which both
the foreground and background bits of each character are painted. This prevents annoying
flicker on many displays.

To draw 8-bit image text characters in a given drawable, use XDrawImageString.

XDrawImageString (display, d, gc, x, y, string, length)
Display *display ;

Drawable d;
6C gc;
int x, y;
char *string;
int length;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
x
y Specify the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

To draw 2-byte image text characters in a given drawable, use XDrawImageStringlé.

6-36 Graphics Functions

XDrawImageStringl6 (display, d, gc, x, y, string, length)
Display *display ;
Drawable d;
GC gc;
int x, y;
XChar2b *string;
int length ;

display Specifies the connection to the X server.

d : Specifies the drawable.

g Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the origin of the specified
drawable and define the origin of the first character.

string Specifies the character string,

length Specifies the number of characters in the string argument.

The XDrawImageStringlé function is similar to XDrawImageString except that
it uses 2-byte or 16-bit characters. Both functions also use both the foreground and
background pixels of the GC in the destination.

The effect is first to fill a destination rectangle with the background pixel defined in the
GC and then to paint the text with the foreground pixel. The upper-left corner of the filled
rectangle is at:

[x, ¥y - font-ascent]

The width is:

overall-width

The height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as would be returned by
XQueryTextExtents using gc and string. The function and fill-style defined in the GC
are ignored for these functions. The effective function is GXcopy, and the effective fill-
styleis FillSolid.

For fonts defined with 2-byte matrix indexing and used with XDrawImageString, each
byte is used as a byte2 with a bytel of zero.

Graphics Functions 6-37

Both functions use these GC components: plane-mask, foreground, background, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawImageString and XDrawImageStringl6 can generate BadDrawable,
BadGC, and BadMatch errors.

6.7 Transferring Images between Client and Server

XIlib provides functions that you can use to transfer images between a client and the server.
Because the server may require diverse data formats, Xlib provides an image object that
fully describes the data in memory and that provides for basic operations on that data. You
should reference the data through the image object rather than referencing the data
directly. However, some implementations of the Xlib library may efficiently deal with
frequently used data formats by replacing functions in the procedure vector with special
case functions. Supported operations include destroying the image, getting a pixel, storing
a pixel, extracting a subimage of an image, and adding a constant to an image (see chapter
10).

All the image manipulation functions discussed in this section make use of the XImage
data structure, which describes an image as it exists in the client’s memory.

typedef struct _XImage {

int width, height; /* size of image */

int xoffset; /* number of pixels offset in X direction */
int format; /* XYBitmap, XYPixmap, ZPixmap */

char *data; /* pointer to image data */

int byte_order; /* data byte order, LSBFirst, MSBFirst */
int bitmap_unit; /* quant. of scanline 8, 16, 32 ¥/

int bitmap_bit_order; /% LSBFirst, MSBFirst */

int bitmap_ pad; /* 8, 16, 32 either XY or ZPixmap */

int depth; /* depth of image */

int bytes_per_line; /* accelerator to next scanline %/

int bits_per pixel; /* bits per pixel (ZPixmap) */

unsigned long red_mask; /* bits in z arrangement ¥/

unsigned long green_mask;
unsigned long blue_mask;
char *obdata; /* hook for the object routines to hang on */
struct funcs { /* image manipulation routines */
struct _XImage *(*create_image)();
int (*destroy_image)();
unsigned long (*get_pixel)();
int (*put_pixel)();
struct _XImage *(*sub_image)();
int (*add _pixel)();
} £
} XImage;

6-38 Graphics Functions

You may request that height, width, or xoffset be changed when the image is sent to the
server. That is, you may send a subset of the image. All other members are characteristics
of both the image and the server, and should not be changed. If these members differ
between the image and the server, XPutImage makes the appropriate conversions. The
first byte of the first scanline of plane n is located at the address (data + (n * height *

bytes_per_line)).

To combine an image in memory with a rectangle of a drawable on the display, use
XPutImage.

XPutImage (display, d, gc, image, src x, src y, dest x, dest'y, width, height)
Display *display ;
Drawable d;
GC g¢;
XImage *image;
int src x, srcy;
int dest x, dest y;
unsigned int width, height;

display Specifies the connection to the X server.

d Specifies the drawable.

g Specifies the GC.

image Specifies the image you want combined with the rectangle.

src_x Specifies the offset in X from the left edge of the image defined by the

XImage data structure.

src_y Specifies the offset in Y from the top edge of the image defined by the
XImage data structure.

dest x
dest y Specify the x and y coordinates, which are relative to the origin of the drawable
and are the coordinates of the subimage.

width
height Specify the width and height of the subimage, which define the dimensions of
the rectangle.

The XPutImage function combines an image in memory with a rectangle of the specified
drawable. If XYBitmap format is used, the depth must be one, or a BadMatch error
results. The foreground pixel in the GC defines the source for the one bits in the image,
and the background pixel defines the source for the zero bits. For XYPixmap and
ZPixmap, the depth must match the depth of the drawable, or a BadMatch error
results. The section of the image defined by the src_x, src_y, width, and height arguments
is drawn on the specified part of the drawable.

Graphics Functions 6-39

This function uses these GC components: function, plane-mask, subwindow-mode, clip-x-
origin, clip-y-origin, and clip-mask. It also uses these GC mode-dependent components:
foreground and background.

XPutImage can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

To return the contents of a rectangle in a given drawable on the display, use XGetImage.
This function specifically supports rudimentary screen dumps.

XImage *XGetlImage(display, d, x, y, width, height, plane_mask, format)
Display *display ;
Drawable d;
int x, y;
unsigned int width, height;
long plane_mask ;

int format;
display Specifies the connection to the X server.
d Specifies the drawable.
x
y Specify the x and y coordinates, which are relative to the origin of the
drawable and define the upper-left corner of the rectangle.
width
height Specify the width and height of the subimage, which define the dimensions

of the rectangle.
plane_mask Specifies the plane mask.

format Specifies the format for the image. You can pass XYBitmap,
XYPixmap, or ZPixmap.

The XGetImage function returns a pointer to an XImage structure. This structure
provides you with the contents of the specified rectangle of the drawable in the format you
specify. If the format argument is XYPixmap, the image contains only the bit planes you
passed to the plane_mask argument. If the plane_mask argument only requests a subset of
the planes of the display, the depth of the returned image will be the number of planes
requested. If the format argument is ZPixmap, XGetImage returns as zero the bits in
all planes not specified in the plane_mask argument. The function performs no range
checking on the values in plane_mask and ignores extraneous bits.

XGetImage returns the depth of the image to the depth member of the XImage
structure. The depth of the image is as specified when the drawable was created, except
when getting a subset of the planes in XYPixmap format, when the depth is given by the
number of bits set to 1 in plane_mask.

6-40 Graphics Functions

If the drawable is a pixmap, the given rectangle must be wholly contained within the
pixmap, or a BadMatch error results. If the drawable is a window, the window must be
viewable, and it must be the case that if there were no inferiors or overlapping windows,
the specified rectangle of the window would be fully visible on the screen and wholly
contained within the outside edges of the window, or a BadMatch error results. Note
that the borders of the window can be included and read with this request. If the window
has backing-store, the backing-store contents are returned for regions of the window that
are obscured by noninferior windows. If the window does not have backing-store, the
returned contents of such obscured regions are undefined. The returned contents of
visible regions of inferiors of a different depth than the specified window’s depth are also
undefined. The pointer cursor image is not included in the returned contents.

XGetImage can generate BadDrawable, BadMatch, and BadValue errors.

To copy the contents of a rectangle on the display to a location within a preexisting image
structure, use XGetSubImage.

XImage *XGetSublImage (display, d, x, y, width, height, plane_mask, format, dest_image, dest x,
dest y)
Display *display ;
Drawable d;
int x, y;
unsigned int width, height;
unsigned long plane_mask;
int format;
XImage *dest_image;
int dest x, dest y;

display Specifies the connection to the X server.

d Specifies the drawable.

x

y Specify the x and y coordinates, which are relative to the origin of the
drawable and define the upper-left corner of the rectangle.

width

height Specify the width and height of the subimage, which define the dimensions

of the rectangle.
plane_mask Specifies the plane mask.

format Specifies the format for the image. You can pass XYBitmap,
XYPixmap, or ZPixmap.

dest_image Specify the destination image.

Graphics Functions 6 -41

dest x

dest y Specify the x and y coordinates, which are relative to the origin of the
destination rectangle, specify its upper-left corner, and determine where
the subimage is placed in the destination image.

The XGetSubImage function updates dest_image with the specified subimage in the
same manner as XGetImage. If the format argument is XYPixmap, the image contains
only the bit planes you passed to the plane_mask argument. If the format argument is
ZPixmap, XGetSubImage returns as zero the bits in all planes not specified in the
plane_mask argument. The function performs no range checking on the values in
plane_mask and ignores extraneous bits. As a convenience, XGetSubImage returns a
pointer to the same XImage structure specified by dest_image.

The depth of the destination XImage structure must be the same as that of the drawable.
If the specified subimage does not fit at the specified location on the destination image,
the right and bottom edges are clipped. If the drawable is a pixmap, the given rectangle
must be wholly contained within the pixmap, or a BadMatch error results. If the
drawable is a window, the window must be viewable, and it must be the case that if there
were no inferiors or overlapping windows, the specified rectangle of the window would be
fully visible on the screen and wholly contained within the outside edges of the window, or
a BadMatch error results. If the window has backing-store, then the backing-store
contents are returned for regions of the window that are obscured by noninferior windows.
If the window does not have backing-store, the returned contents of such obscured regions
are undefined. The returned contents of visible regions of inferiors of a different depth
than the specified window’s depth are also undefined.

XGetSubImage can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

6.8 Cursors

This section discusses how to:
e Create a cursor
o Change or destroy a cursor
« Define the cursor for a window

Each window can have a different cursor defined for it. Whenever the pointer is in a
visible window, it is set to the cursor defined for that window. If no cursor was defined for
that window, the cursor is the one defined for the parent window.

6-42 Graphics Functions

From X’s perspective, a cursor consists of a cursor source, mask, colors, and a hotspot.
The mask pixmap determines the shape of the cursor and must be a depth of one. The
source pixmap must have a depth of one, and the colors determine the colors of the
source. The hotspot defines the point on the cursor that is reported when a pointer event
occurs. There may be limitations imposed by the hardware on cursors as to size and
whether a mask is implemented. XQueryBestCursor can be used to find out what
sizes are possible. It is intended that most standard cursors will be stored as a special font.

6.8.1 Creating a Cursor
Xlib provides functions that you can use to create a font, bitmap, or glyph cursor.
To create a cursor from a standard font, use XCreateFontCursor.

#include <X11/cursorfont.h>

Cursor XCreateFontCursor (display, shape)
Display *display ;
unsigned int shape;

display Specifies the connection to the X server.
shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor. Applications
are encouraged to use this interface for their cursors because the font can be customized
for the individual display type. The shape argument specifies which glyph of the standard
fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colors of a
cursor are a black foreground and a white background (see XRecolorCursor). For
further information about cursor shapes, see appendix B.

XCreateFontCursor can generate BadAlloc and BadValue errors.
To create a cursor from two bitmaps, use XCreatePixmapCursor.
Cursor XCreatePixmapCursor (display, source, mask, foreground color, background color, x, y)
Display *display;
Pixmap source;
Pixmap mask;
XColor *foreground_color ;
XColor *background _color;
unsigned int x, y;

display Specifies the connection to the X server.

source Specifies the shape of the source cursor.

Graphics Functions 6-43

mask Specifies the cursor’s source bits to be displayed or None.
foreground_color Specifies the RGB values for the foreground of the source.
background_color Specifies the RGB values for the background of the source.

x
y Specify the x and y coordinates, which indicate the hotspot relative
to the source’s origin.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID
associated with it. The foreground and background RGB values must be specified using
foreground_color and background_color, even if the X server only has a StaticGray or
GrayScale screen. The foreground color is used for the pixels set to 1.in the source,
and the background color is used for the pixels set to 0. Both source and mask, if
specified, must have depth one (or a BadMatch error results) but can have any root.

The mask argument defines the shape of the cursor. The pixels set to 1 in the mask define
which source pixels are displayed, and the pixels set to 0 define which pixels are ignored. If
no mask is given, all pixels of the source are displayed. The mask, if present, must be the
same size as the pixmap defined by the source argument, or a BadMatch error results.
The hotspot must be a point within the source, or a BadMatch error results.

The components of the cursor can be transformed arbitrarily to meet display limitations.
The pixmaps can be freed immediately if no further explicit references to them are to be
made. Subsequent drawing in the source or mask pixmap has an undefined effect on the
cursor. The X server might or might not make a copy of the pixmap.

XCreatePixmapCursor can generate BadAlloc and BadPixmap errors.
To create a cursor from font glyphs, use XCreateGlyphCursor.

Cursor XCreateGlyphCursor (display, source font, mask _font, source_char, mask_char,
foreground _color, background color)
Display *display; - -
Font source_font, mask_font;
unsigned int sowrce_char, mask_char;
XColor *foreground color;
XColor *background_color;

display Specifies the connection to the X server.

source_font Specifies the font for the source glyph.

mask_font Specifies the font for the mask glyph or None.
source_char Specifies the character glyph for the source.

mask_char Specifies the glyph character for the mask.
foreground_color Specifies the RGB values for the foreground of the source.

6-44 Graphics Functions

background_color Specifies the RGB values for the background of the source.

The XCreateGlyphCursor function is similar to XCreatePixmapCursor except
that the source and mask bitmaps are obtained from the specified font glyphs. The
source_char must be a defined glyph in source_font, or a BadValue error results. If
mask font is given, mask_char must be a defined glyph in mask_font, or a BadValue
error results. The mask font and character are optional. The origins of the source_char
and mask_char (if defined) glyphs are positioned coincidentally and define the hotspot.
The source_char and mask_char need not have the same bounding box metrics, and there
is no restriction on the placement of the hotspot relative to the bounding boxes. If no
mask_char is given, all pixels of the source are displayed. You can free the fonts
immediately by calling XFreeFont if no further explicit references to them are to be
made.

For 2-byte matrix fonts, the 16-bit value should be formed with the bytel member in the
most-significant byte and the byte2 member in the least-significant byte.

XCreateGlyphCursor can generate BadAlloc, BadFont, and BadValue errors.

6.8.2 Changing and Destroying Cursors

Xlib provides functions that you can use to change the cursor color, destroy the cursor, and
determine the best cursor size.

To change the color of a given cursor, use XRecolorCursor.

XRecolorCursor (display, cursor, foreground_color, background_color)
Display *display;
Cursor cursor;
XColor *foreground_color, *background_color;

display Specifies the connection to the X server.
cursor Specifies the cursor.
foreground_color Specifies the RGB values for the foreground of the source.

background_color Specifies the RGB values for the background of the source.

The XRecolorCursor function changes the color of the specified cursor, and if the
cursor is being displayed on a screen, the change is visible immediately.

XRecolorCursor can generate a BadCursor error.
To free (destroy) a given cursor, use XFreeCursor.
XFreeCursor (display, cursor)

Display *display;
Cursor cursor;

Graphics Functions 6 -45

display Specifies the connection to the X server.
cursor Specifies the cursor.

The XFreeCursor function deletes the association between the cursor resource ID and
the specified cursor. The cursor storage is freed when no other resource references it.
The specified cursor ID should not be referred to again.

XFreeCursor can generate a BadCursor error.
To determine useful cursor sizes, use XQueryBestCursor.

Status XQueryBestCursor (display, d, width, height, width_return, height return)
Display *display ;
Drawable d;
unsigned int width, height;
unsigned int *width_retumn, *height return ;

display Specifies the connection to the X server.

d Specifies the drawable, which indicates the screen.

width

height Specify the width and height of the cursor that you want the size
information for.

width_return

height_return Return the best width and height that is closest to the specified width

and height.

Some displays allow larger cursors than other displays. The XQueryBestCursor
function provides a way to find out what size cursors are actually possible on the display. It
returns the largest size that can be displayed. Applications should be prepared to use
smaller cursors on displays that cannot support large ones.

XQueryBestCursor can gencrate a BadDrawable error.

6.8.3 Defining the Cursor

Xlib provides functions that you can use to define or undefine the cursor that should be
displayed in a window.
To define which cursor will be used in a window, use XDefineCursor.
XDefineCursor (display, w, cursor)
Display *display ;

Window w;
Cursor cursor;

6-46 Graphics Functions

display Specifies the connection to the X server.
w Specifies the window.
cursor Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cursor is None,
it is equivalent to XUndefineCursor.

XDefineCursor can generate BadCursor and BadWindow errors.
To undefine the cursor in a given window, use XUndefineCursor.

XUndefineCursor (display, w)
Display *display ;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XUndefineCursor undoes the effect of a previous XDefineCursor for this
window. When the pointer is in the window, the parent’s cursor will now be used. On the
root window, the default cursor is restored.

XUndefineCursor can generate a BadWindow error.

Graphics Functions 6 -47

Window Manager Functions 7

Although it is difficult to categorize functions as application only or window manager only,
the functions in this chapter are most often used by window managers. It is not expected
that these functions will be used by most application programs. You can use the Xlib
window manager functions to:

o Change the parent of a window

e Control the lifetime of a window

e Determine resident colormaps

o Grab the pointer

o Grab the keyboard

e Grab the server

« Control event processing

o Manipulate the keyboard and pointer settings
o Control the screen saver

e Control host access

7.1 Changing the Parent of a Window

To change a window’s parent to another window on the same screen, use
XReparentWindow. There is no way to move a window between screens.

XReparentWindow (display, w, parent, x, y)
Display *display ;
Window w;
Window parent ;
int x, y;

display Specifies the connection to the X server.

w Specifies the window.

Window Manager Functions 7-1

parent Specifies the parent window.

x
y Specify the x and y coordinates of the position in the new parent window.

If the specified window is mapped, XReparentWindow automatically performs an
UnmapWindow request on it, removes it from its current position in the hierarchy, and
inserts it as the child of the specified parent. The window is placed in the stacking order
on top with respect to sibling windows.

After reparenting the specified window, XReparentWindow causes the X server to
generate a ReparentNotify event. The override redirect member returned in this
event is set to the window’s corresponding attribute. Window manager clients usually
should ignore this window if this member is set to True. Finally, if the specified window
was originally mapped, the X server automatically performs a MapWindow request on it.

The X server performs normal exposure processing on formerly obscured windows. The X
server might not generate Expose events for regions from the initial UnmapWindow
request that are immediately obscured by the final MapWindow request. A BadMatch
error results if:

 The new parent window is not on the same screen as the old parent window.

o The new parent window is the specified window or an inferior of the specified
window.

» The specified window has a ParentRelative background, and the new parent
window is not the same depth as the specified window.

XReparentWindow can generate BadMatch and BadWindow errors.

7.2 Controlling the Lifetime of a Window

The save-set of a client is a list of other clients’ windows that, if they are inferiors of one of
the client’s windows at connection close, should not be destroyed and should be remapped
if they are unmapped. For further information about close-connection processing, see
section 2.6. To allow an application’s window to survive when a window manager that has
reparented a window fails, Xlib provides the save-set functions that you can use to control
the longevity of subwindows that are normally destroyed when the parent is destroyed. For
example, a window manager that wants to add decoration to a window by adding a frame
might reparent an application’s window. When the frame is destroyed, the application’s
window should not be destroyed but be returned to its previous place in the window
hierarchy.

The X server automatically removes windows from the save-set when they are destroyed.

7-2 Window Manager Functions

To add or remove a window from the client’s save-set, use XChangeSaveSet.

XChangeSaveSet (display, w, change_mode)
Display *display;
Window w;
int change_mode ;

display Specifies the connection to the X server.
w Specifies the window that you want to add to or delete from the client’s
p y
save-set.

change_mode Specifies the mode. You can pass SetModeInsert or
SetModeDelete.

Depending on the specified mode, XChangeSaveSet either inserts or deletes the
specified window from the client’s save-set. The specified window must have been created
by some other client, or a BadMatch error results.

XChangeSaveSet can generate BadMatch, BadValue, and BadWindow errors.
To add a window to the client’s save-set, use XAddToSaveSet.

XAddToSaveSet (display, w)
Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window that you want to add to the client’s save-set.

The XAddToSaveSet function adds the specified window to the client’s save-set. The
specified window must have been created by some other client, or a BadMatch error
results.

XAddToSaveSet can generate BadMatch and BadWindow errors.
To remove a window from the client’s save-set, use XRemoveFromSaveSet.

XRemoveFromSaveSet (display, w)
Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window that you want to delete from the client’s save-set.

The XRemoveFromSaveSet function removes the specified window from the client’s
save-set. The specified window must have been created by some other client, or a
BadMatch error results.

Window Manager Functions 7-3

XRemoveFromSaveSet can generate BadMatch and BadWindow errors.

7.3 Determining Resident Colormaps

Xlib provides functions that you can use to install a colormap, uninstall a colormap, and
obtain a list of installed colormaps.

At any time, there is a subset of the installed maps that is viewed as an ordered list and is
called the required list. The length of the required list is at most M, where M is the
minimum number of installed colormaps specified for the screen in the connection setup.
The required list is maintained as follows. When a colormap is specified to
XInstallColormap, it is added to the head of the list; the list is truncated at the tail, if
necessary, to keep its length to at most M. When a colormap is specified to
XUninstallColormap and it is in the required list, it is removed from the list. A
colormap is not added to the required list when it is implicitly installed by the X server,
and the X server cannot implicitly uninstall a colormap that is in the required list.

To install a colormap, use XInstallColormap.

XInstallColormap(display, colormap)
Display *display ;
Colormap colommap ;

display Specifies the connection to the X server.
colormap Specifies the colormap.

The XInstallColormap function installs the specified colormap for its associated
screen. All windows associated with this colormap immediately display with true colors.
You associated the windows with this colormap when you created them by calling
XCreateWindow, XCreateSimpleWindow, XChangeWindowAttributes, or
XSetWindowColormap.

If the specified colormap is not already an installed colormap, the X server generates a
ColormapNotify event on each window that has that colormap. In addition, for every
other colormap that is installed as a result of a call to XInstallColormap, the X
server generates a ColormapNotify event on each window that has that colormap.

XInstallColormap can generate a BadColor error.
To uninstall a colormap, use XUninstallGolormap.
XUninstallColormap (display, colormap)

Display *display;
Colormap colormap ;

7-4 Window Manager Functions

display Specifies the connection to the X server.
colormap Specifies the colormap.

The XUninstallColormap function removes the specified colormap from the
required list for its screen. As a result, the specified colormap might be uninstalled, and
the X server might implicitly install or uninstall additional colormaps. Which colormaps
get installed or uninstalled is server-dependent except that the required list must remain
installed.

If the specified colormap becomes uninstalled, the X server generates a
ColormapNotify event on each window that has that colormap. In addition, for every
other colormap that is installed or uninstalled as a result of a call to
XUninstallColormap, the X server generates a ColormapNotify event on each
window that has that colormap.

XUninstallColormap can generate a BadColor error.

To obtain a list of the currently installed colormaps for a given screen, use
XListInstalledColormaps.

Colormap *XListInstalledColormaps (display, w, num_retum)
Display *display ;
Window w;
int *num_return;
display Specifies the connection to the X server.
w Specifies the window that determines the screen.
num_return Returns the number of currently installed colormaps.

The XListInstalledColormaps function returns a list of the currently installed
colormaps for the screen of the specified window. The order of the colormaps in the list is
not significant and is no explicit indication of the required list. When the allocated list is
no longer needed, free it by using XFree.

XListInstalledColormaps can generate a BadWindow error.

7.4 Pointer Grabbing

Xlib provides functions that you can use to control input from the pointer, which usually is
a mouse. Window managers most often use these facilities to implement certain styles of
user interfaces. Some toolkits also need to use these facilities for special purposes.

Window Manager Functions 7-5

Usually, as soon as keyboard and mouse events occur, the X server delivers them to the
appropriate client, which is determined by the window and input focus. The X server
provides sufficient control over event delivery to allow window managers to support mouse
ahead and various other styles of user interface. Many of these user interfaces depend
upon synchronous delivery of events. The delivery of pointer and keyboard events can be
controlled independently.

When mouse buttons or keyboard keys are grabbed, events will be sent to the grabbing
client rather than the normal client who would have received the event. If the keyboard or
pointer is in asynchronous mode, further mouse and keyboard events will continue to be
processed. If the keyboard or pointer is in synchronous mode, no further events are
processed until the grabbing client allows them (see XAllowEvents). The keyboard or
pointer is considered frozen during this interval. The event that triggered the grab can also
be replayed.

Note that the logical state of a device (as seen by client applications) may lag the physical
state if device event processing is frozen.

There are two kinds of grabs: active and passive. An active grab occurs when a single
client grabs the keyboard or pointer explicitly (see XGrabPointer and
XGrabKeyboard). A passive grab occurs when clients grab a particular keyboard key or
pointer button in a window, and the grab will activate when the key or button is actually
pressed. Passive grabs are convenient for implementing reliable pop-up menus. For
example, you can guarantee that the pop-up is mapped before the up pointer button event
occurs by grabbing a button requesting synchronous behavior. The down event will trigger
the grab and freeze further processing of pointer events until you have the chance to map
the pop-up window. You can then allow further event processing. The up event will then
be correctly processed relative to the pop-up window.

For many operations, there are functions that take a time argument. The X server
includes a timestamp in various events. One special time, called CurrentTime,
represents the current server time. The X server maintains the time when the input focus
was last changed, when the keyboard was last grabbed, when the pointer was last grabbed,
or when a selection was last changed. Your application may be slow reacting to an event.
You often need some way to specify that your request should not occur if another
application has in the meanwhile taken control of the keyboard, pointer, or selection. By
providing the timestamp from the event in the request, you can arrange that the operation
not take effect if someone else has performed an operation in the meanwhile.

A timestamp is a time value, expressed in milliseconds. It typically is the time since the last
server reset. Timestamp values wrap around (after about 49.7 days). The server, given its
current time is represented by timestamp T, always interprets timestamps from clients by
treating half of the timestamp space as being later in time than T. One timestamp value,

7-6 Window Manager Functions

named CurrentTime, is never generated by the server. This value is reserved for use in
requests to represent the current server time.

For many functions in this section, you pass pointer event mask bits. The valid pointer
event mask bits are: ButtonPressMask, ButtonReleaseMask,
EnterWindowMask, LeaveWindowMask, PointerMotionMask,
PointerMotionHintMask, ButtonlMotionMask, Button2MotionMask,
Button3MotionMask, Button4MotionMask, Button5MotionMask,
ButtonMotionMask, and KeyMapStateMask. For other functions in this section,
you pass keymask bits. The valid keymask bits are: ShiftMask, LockMask,
ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

To grab the pointer, use XGrabPointer.

int XGrabPointer (display, grab_window, owner events, event_mask, pointer_mode,
keyboard mode, confine to, cursor, time)
Display *display; - -
Window grab_window ;
Bool owner_evenis;
unsigned int event mask;
int. pointer_ mode, keyboard_mode ;
Window confine to;
Cursor cursor;

Time time;

display Specifies the connection to the X server.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the pointer events are
to be reported as usual or reported with respect to the grab window if
selected by the event mask.

event_mask Specifies which pointer events are reported to the client. The mask is
the bitwise inclusive OR of the valid pointer event mask bits.

pointer_mode Specifies further processing of pointer events. You can pass

GrabModeSync or GrabModeAsync.

keyboard_mode Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

confine_to Specifies the window to confine the pointer in or None.

cursor Specifies the cursor that is to be displayed during the grab or None.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

Window Manager Functions 7-7

The XGrabPointer function actively grabs control of the pointer and returns
GrabSuccess if the grab was successful. Further pointer events are reported only to
the grabbing client. XGrabPointer overrides any active pointer grab by this client. If
owner_events is False, all generated pointer events are reported with respect to

grab window and are reported only if selected by event_mask. If owner_events is True
and if a generated pointer event would normally be reported to this client, it is reported as
usual. Otherwise, the event is reported with respect to the grab_window and is reported
only if selected by event_mask. For either value of owner_events, unreported events are
discarded.

If the pomter mode is GrabModeAsync, pointer event processing continues as usual. If
the pointer is currently frozen by this client, the processing of events for the pointer is
resumed. If the pointer_mode is GrabModeSync, the state of the pointer, as seen by
client applications, appears to freeze, and the X server generates no further pointer events
until the grabbing client calls XA1lowEvents or until the pointer grab is released.
Actual pointer changes are not lost while the pointer is frozen; they are simply queued in
the server for later processing.

If the keyboard_mode is GrabModeAsync, keyboard event processing is unaffected by
activation of the grab. If the keyboard_mode is GrabModeSync, the state of the
keyboard, as seen by client applications, appears to freeze, and the X server generates no
further keyboard events until the grabbing client calls XAllowEvents or until the
pointer grab is released. Actual keyboard changes are not lost while the pointer is frozen;
they are simply queued in the server for later processing.

If a cursor is specified, it is displayed regardless of what window the pointer is in. If None
is specified, the normal cursor for that window is displayed when the pointer is in
grab_window or one of its subwindows; otherwise, the cursor for grab_window is displayed.

If a confine_to window is specified, the pointer is restricted to stay contained in that
window. The confine _to window need have no relatlonshlp to the grab_window. If the
pointer is not initially in the confine_to window, it is warped automatically to the closest
edge just before the grab activates and enter/leave events are generated as usual. If the
confine_to window is subsequently reconfigured, the pointer is warped automatically, as
necessary, to keep it contained in the window.

The time argument allows you to avoid certain circumstances that come up if applications
take a long time to respond or if there are long network delays. Consider a situation
where you have two applications, both of which normally grab the pointer when clicked on.
If both applications specify the timestamp from the event, the second application may wake
up faster and successfully grab the pointer before the first application. The first application
then will get an indication that the other application grabbed the pointer before its request
was processed.

XGrabPointer generates EnterNotify and LeaveNotify events.

7-8 Window Manager Functions

Either if grab_window or confine_to window is not viewable or if the confine_to window
lies completely outside the boundaries of the root window, XGrabPointer fails and
returns GrabNotViewable. If the pointer is actively grabbed by some other client, it
fails and returns AlreadyGrabbed. If the pointer is frozen by an active grab of another
client, it fails and returns GrabFrozen. If the specified time is earlier than the last-
pointer-grab time or later than the current X server time, it fails and returns
GrabInvalidTime. Otherwise, the last-pointer-grab time is set to the specified time
(CurrentTime is replaced by the current X server time).

XGrabPointer can generate BadCursor, BadValue, and BadWindow errors.
To ungrab the pointer, use XUngrabPointer.

XUngrabPointer (display, time)
Display *display ;
Time time;

display Specifies the connection to the X server.
time Specifies the time. You can pass either a timestamp or CurrentTime.

The XUngrabPointer function releases the pointer and any queued events if this client
has actively grabbed the pointer from XGrabPointer, XGrabButton, or from a
normal button press. XUngrabPointer does not release the pointer if the specified
time is earlier than the last-pointer-grab time or is later than the current X server time. It
also generates EnterNotify and LeaveNotify events. The X server performs an
UngrabPointer request automatically if the event window or confine_to window for an
active pointer grab becomes not viewable or if window reconfiguration causes the
confine_to window to lic completely outside the boundaries of the root window.

To change an active pointer grab, use XChangeActivePointerGrab.
XChangeActivePointerGrab (display, event mask, cursor, time)

Display *display; -

unsigned int event_mask;

Cursor cursor;

Time time;

display Specifies the connection to the X server.

event_mask Specifies which pointer events are reported to the client. The mask is the
bitwise inclusive OR of the valid pointer event mask bits.

cursor Specifies the cursor that is to be displayed or None.

time Specifies the time. You can pass either a timestamp or CurrentTime.

Window Manager Functions 7-9

The XChangeActivePointerGrab function changes the specified dynamic
parameters if the pointer is actively grabbed by the client and if the specified time is no
earlier than the last-pointer-grab time and no later than the current X server time. This
function has no effect on the passive parameters of a XGrabButton. The interpretation
of event_mask and cursor is the same as described in XGrabPointer.

XChangeActivePointerGrab can generate BadCursor and BadValue errors.

To grab a pointer button, use XGrabButton,

XGrabButton (display, button, modifiers, grab window, owner events, event_mask,

pointer_mode, keyboard_mode, confine_to, cursor)

Display *display;

unsigned int button;

unsigned int modifiers;

Window grab_window ;

Bool owner events ;

unsigned int event_mask ;

int pointer mode, keyboard mode ;
Window confine to;

Cursor cursor;

display
button

modifiers
grab_window
owner_events
event_mask
pointer_mode
keyboard_mode

confine_to

cursor

Specifies the connection to the X server.
Specifies the pointer button that is to be grabbed or AnyButton.

Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

Specifies the grab window.

Specifies a Boolean value that indicates whether the pointer events are
to be reported as usual or reported with respect to the grab window if
selected by the event mask.

Specifies which pointer events are reported to the client. The mask is
the bitwise inclusive OR of the valid pointer event mask bits,

Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

Specifies the window to confine the pointer in or None,

Specifies the cursor that is to be displayed or None.

7-10 Window Manager Functions

The XGrabButton function establishes a passive grab. In the future, the pointer is
actively grabbed (as for XGrabPointer), the last-pointer-grab time is set to the time at
which the button was pressed (as transmitted in the ButtonPress event), and the
ButtonPress event is reported if all of the following conditions are true:

« The pointer is not grabbed, and the specified button is logically pressed when the
specified modifier keys are logically down, and no other buttons or modifier keys are
logically down.

o The grab_window contains the pointer.
o The confine_to window (if any) is viewable.

« A passive grab on the same button/key combination does not exist on any ancestor
of grab_window.

The interpretation of the remaining arguments is as for XGrabPointer. The active
grab is terminated automatically when the logical state of the pointer has all buttons
released (independent of the state of the logical modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physical
state if device event processing is frozen.

This request overrides all previous grabs by the same client on the same button/key
combinations on the same window. A modifiers of AnyModifier is equivalent to
issuing the grab request for all possible modifier combinations (including the combination
of no modifiers). It is not required that all modifiers specified have currently assigned
KeyCodes. A button of AnyButton is equivalent to issuing the request for all possible
buttons. Otherwise, it is not required that the specified button currently be assigned to a
physical button.

If some other client has already issued a XGrabButton with the same button/key
combination on the same window, a BadAccess error results. When using
AnyModifier or AnyButton, the request fails completely, and a BadAccess error
results (no grabs are established) if there is a conflicting grab for any combination.
XGrabButton has no effect on an active grab.

XGrabButton can generate BadCursor, BadValue, and BadWindow errors.
To ungrab a pointer button, use XUngrabButton.
XUngrabButton (display, button, modifiers, grab_window)

Display *display ;

unsigned int button;

unsigned int modifiers ;
Window grab_window ;

display Specifies the connection to the X server.

Window Manager Functions 7-11

button Specifies the pointer button that is to be released or AnyButton.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab_window Specifies the grab window.

The XUngrabButton function releases the passive button/key combination on the
specified window if it was grabbed by this client. A modifiers of AnyModifier is
equivalent to issuing the ungrab request for all possible modifier combinations, including
the combination of no modifiers. A button of AnyButton is equivalent to issuing the
request for all possible buttons. XUngrabButton has no effect on an active grab.

XUngrabButton can generate BadValue and BadWindow errors.

7.5 Keyboard Grabbing

Xlib provides functions that you can use to grab or ungrab the keyboard as well as allow
events.

For many functions in this section, you pass keymask bits. The valid keymask bits are:
ShiftMask, LockMask, ControlMask, Mod1Mask, Mod2Mask, Mod3Mask,
Mod4Mask, and Mod5Mask.

To grab the keyboard, use XGrabKeyboard.

int XGrabKeyboard (display, grab_window, owner events, pointer mode, keyboard_mode, time)
Display *display ;
Window grab_window ;
Bool owner _events ;
int. pointer_mode, keyboard_mode ;
Time time;

display Specifies the connection to the X server.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the pointer events are
to be reported as usual or reported with respect to the grab window if
selected by the event mask.

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

7-12 Window Manager Functions

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XGrabKeyboard function actively grabs control of the keyboard and generates
FocusIn and FocusOut events. Further key events are reported only to the grabbing
client. XGrabKeyboard overrides any active keyboard grab by this client. If
owner_events is False, all generated key events are reported with respect to

grab window. If owner _events is True and if a generated key event would normally be
reported to this client, it is reported normally; otherwise, the event is reported with respect
to the grab_window. Both KeyPress and KeyRelease events are always reported,
independent of any event selection made by the client.

If the keyboard_mode argument is GrabModeAsync, keyboard event processing
continues as usual. If the keyboard is currently frozen by this client, then processing of
keyboard events is resumed. If the keyboard mode argument is GrabModeSync, the
state of the keyboard (as seen by client applications) appears to freeze, and the X server
generates no further keyboard events until the grabbing client issues a releasing
XAllowEvents call or until the keyboard grab is released. Actual keyboard changes are
not lost while the keyboard is frozen; they are simply queued in the server for later
processing.

If pointer_mode is GrabModeAsync, pointer event processing is unaffected by activation
of the grab. If pointer_mode is GrabModeSync, the state of the pointer (as seen by
client applications) appears to freeze, and the X server generates no further pointer events
until the grabbing client issues a releasing XAllowEvents call or until the keyboard
grab is released. Actual pointer changes are not lost while the pointer is frozen; they are
simply queued in the server for later processing.

If the keyboard is actively grabbed by some other clicnt, XGrabKeyboard fails and
returns AlreadyGrabbed. If grab_window is not viewable, it fails and returns
GrabNotViewable. If the keyboard is frozen by an active grab of another client, it fails
and returns GrabFrozen. If the specified time is earlier than the last-keyboard-grab
time or later than the current X server time, it fails and returns GrabInvalidTime.
Otherwise, the last-keyboard-grab time is set to the specified time (CurrentTime is
replaced by the current X server time).

XGrabKeyboard can generate BadValue and BadWindow errors.
To ungrab the keyboard, use XUngrabKeyboard.
XUngrabKeyboard (display, time)

Display *display;
Time time;

display Specifies the connection to the X server.

Window Manager Functions 7-13

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XUngrabKeyboard function releases the keyboard and any queued events if this
client has it actively grabbed from either XGrabKeyboard or XGrabKey.
XUngrabKeyboard does not release the keyboard and any queued events if the
specified time is earlier than the last-keyboard-grab time or is later than the current X
server time. It also generates FocusIn and FocusOut events. The X server
automatically performs an UngrabKeyboard request if the event window for an active
keyboard grab becomes not viewable.

To passively grab a single key of the keyboard, use XGrabKey.

XGrabKey (display, keycode, modifiers, grab window, owner events, pointer_mode,
keyboard_mode) -
Display *display;
int keycode ;
unsigned int modifiers ;
Window grab_window ;
Bool owner events;
int pointer_ mode, keyboard_mode ;

display Specifies the connection to the X server.

keycode Specifies the KeyCode or AnyKey.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the pointer events are

to be reported as usual or reported with respect to the grab window if
selected by the event mask.

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

The XGrabKey function establishes a passive grab on the keyboard. In the future, the
keyboard is actively grabbed (as for XGrabKeyboard), the last-keyboard-grab time is
set to the time at which the key was pressed (as transmitted in the KeyPress event), and
the KeyPress event is reported if all of the following conditions are true:

« The keyboard is not grabbed and the specified key (which can itself be a modifier
key) is logically pressed when the specified modifier keys are logically down, and no
other modifier keys are logically down.

7-14 Window Manager Functions

« Either the grab_window is an ancestor of (or is) the focus window, or the
grab_window is a descendant of the focus window and contains the pointer.

e A passive grab on the same key combination does not exist on any ancestor of
grab_window.

The interpretation of the remaining arguments is as for XGrabKeyboard. The active
grab is terminated automatically when the logical state of the keyboard has the specified
key released (independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physical
state if device event processing is frozen.

A modifiers argument of AnyModifier is equivalent to issuing the request for all
possible modifier combinations (including the combination of no modifiers). It is not
required that all modifiers specified have currently assigned KeyCodes. A keycode
argument of AnyKey is equivalent to issuing the request for all possible KeyCodes.
Otherwise, the specified keycode must be in the range specified by min_keycode and
max_keycode in the connection setup, or a BadValue error results.

If some other client has issued a XGrabKey with the same key combination on the same
window, a BadAccess error results. When using AnyModifier or AnyKey, the
request fails completely, and a BadAccess error results (no grabs are established) if
there is a conflicting grab for any combination.

XGrabKey can generate BadAccess, BadValue, and BadWindow errors.
To ungrab a key, use XUngrabKey.

XUngrabKey (display, keycode, modifiers, grab_window)
Display *display;
int keycode;
unsigned int modifiers ;
Window grab_window ;

display Specifies the connection to the X server.
keycode Specifies the KeyCode or AnyKey.
modifiers Specifies the set of keymasks or AnyModifier. The mask is the

bitwise inclusive OR of the valid keymask bits.
grab_window Specifies the grab window.

The XUngrabKey function releases the key combination on the specified window if it
was grabbed by this client. It has no effect on an active grab. A modifiers of
AnyModifier is equivalent to issuing the request for all possible modifier combinations
(including the combination of no modifiers). A keycode argument of AnyKey is
equivalent to issuing the request for all possible key codes.

Window Manager Functions 7-15

XUngrabKey can generate BadValue and BadWindow errors.

To allow further events to be processed when the device has been frozen, use
XAllowEvents.

XAllowEvents (display, event_mode, time)
Display *display ;
int event_mode;
Time time;

display Specifies the connection to the X server.

event mode Specifies the event mode. You can pass AsyncPointer,
SyncPointer, AsyncKeyboard, SyncKeyboard,
ReplayPointer, ReplayKeyboard, AsyncBoth, or SyncBoth.

time) Specifies the time. You can pass either a timestamp or CurrentTime.

The XAllowEvents function releases some queued events if the client has caused a
device to freeze. It has no effect if the specified time is earlier than the last-grab time of
the most recent active grab for the client or if the specified time is later than the current X
server time. Depending on the event_mode argument, the following occurs:

AsyncPointer If the pointer is frozen by the client, pointer event processing continues
usual. If the pointer is frozen twice by the client on behalf of two sepa
grabs, AsyncPointer thaws for both. AsyncPointer hasno eff
the pointer is not frozen by the client, but the pointer need not be grab
the client.

SyncPointer If the pointer is frozen and actively grabbed by the client, pointer event
processing continues as usual until the next ButtonPress or
ButtonRelease event is reported to the client. At this time, the poi
again appears to freeze. However, if the reported event causes the poi
grab to be released, the pointer does not freeze. SyncPointer has
effect if the pointer is not frozen by the client or if the pointer is not gr:
by the client.

ReplayPointer If the pointer is actively grabbed by the client and is frozen as the resul
event having been sent to the client (either from the activation of a
XGrabButton or from a previous XAllowEvents with mode
SyncPointer but not from a XGrabPointer), the pointer grab is
released and that event is completely reprocessed. This time, however.
function ignores any passive grabs at or above (towards the root of) the
grab_window of the grab just released. The request has no effect if the
pointer is not grabbed by the client or if the pointer is not frozen as the
of an event.

7-16 Window Manager Functions

AsyncKeyboard

SyncKeyboard

ReplayKeyboard

SyncBoth

AsyncBoth

If the keyboard is frozen by the client, keyboard event processing continux
as usual. If the keyboard is frozen twice by the client on behalf of two
separate grabs, AsyncKeyboard thaws for both. AsyncKeyboardl
no effect if the keyboard is not frozen by the client, but the keyboard need
not be grabbed by the client.

If the keyboard is frozen and actively grabbed by the client, keyboard evei
processing continues as usual until the next KeyPress or KeyReleas:
event is reported to the client. At this time, the keyboard again appears t«
freeze. However, if the reported event causes the keyboard grab to be
released, the keyboard does not freeze. SyncKeyboard has no effect i
the keyboard is not frozen by the client or if the keyboard is not grabbed |
the client.

If the keyboard is actively grabbed by the client and is frozen as the result
an event having been sent to the client (either from the activation of a
XGrabKey or from a previous XAllowEvents with mode
SyncKeyboard but not from a XGrabKeyboard), the keyboard grab
released and that event is completely reprocessed. This time, however, th
function ignores any passive grabs at or above (towards the root of) the
grab_window of the grab just released. The request has no effect if the
keyboard is not grabbed by the client or if the keyboard is not frozen as tt
result of an event.

If both pointer and keyboard are frozen by the client, event processing fo1
both devices continues as usual until the next ButtonPress,
ButtonRelease, KeyPress, or KeyRelease event is reported to tl
client for a grabbed device (button event for the pointer, key event for the
keyboard), at which time the devices again appear to freeze. However, if t
reported event causes the grab to be released, then the devices do not fre:
(but if the other device is still grabbed, then a subsequent event for it will
cause both devices to freeze). SyncBoth has no effect unless both point
and keyboard are frozen by the client. If the pointer or keyboard is froze:
twice by the client on behalf of two separate grabs, SyncBoth thaws for
both (but a subsequent freeze for SyncBoth will only freeze each devic
once).

If the pointer and the keyboard are frozen by the client, event processing
both devices continues as usual. If a device is frozen twice by the client o1
behalf of two separate grabs, AsyncBoth thaws for both. AsyncBot
has no effect unless both pointer and keyboard are frozen by the client.

Window Manager Functions 7-17

AsyncPointer, SyncPointer, and ReplayPointer have no effect on the
processing of keyboard events. AsyncKeyboard, SyncKeyboard, and
ReplayKeyboard have no effect on the processing of pointer events. It is possible for
both a pointer grab and a keyboard grab (by the same or different clients) to be active
simultaneously. If a device is frozen on behalf of either grab, no event processing is
performed for the device. It is possible for a single device to be frozen because of both
grabs. In this case, the freeze must be released on behalf of both grabs before events can
again be processed.

XAllowEvents can generate a BadValue error.

7.6 Server Grabbing

Xlib provides functions that you can use to grab and ungrab the server. These functions
can be used to control processing of output on other connections by the window system
server. While the server is grabbed, no processing of requests or close downs on any other
connection will occur. A client closing its connection automatically ungrabs the server.
Although grabbing the server is highly discouraged, it is sometimes necessary.

To grab the server, use XGrabServer.
XGrabServer (display)
Display *display ;
display Specifies the connection to the X server.

The XGrabServer function disables processing of requests and close downs on all other
connections than the one this request arrived on. You should not grab the X server any
more than is absolutely necessary.

To ungrab the server, use XUngrabServer.
XUngrabServer (display)

Display *display;
display Specifies the connection to the X server.

The XUngrabServer function restarts processing of requests and close downs on other
connections. You should avoid grabbing the X server as much as possible.

7-18 Window Manager Functions

7.7 Miscellaneous Control Functions

This section discusses how to:
o Control the input focus
« Control the pointer
« Kill clients

7.7.1 Controlling Input Focus

Xlib provides functions that you can use to move the pointer position as well as to set and
get the input focus.

To move the pointer to an arbitrary point on the screen, use XWarpPointer.

XWarpPointer (display, src_w, dest w, src x, src_y, src_width, src_height, dest x,
dest y)
Display *display ;
Window src_ w, dest w;
int src x, src y;
unsigned int src_width, src_height;
int dest x, dest y;

display Specifies the connection to the X server.

src_w Specifies the source window or None.

dest_w Specifies the destination window or None.

src_x

src_y

src_width

src_height Specify a rectangle in the source window.

dest x

dest_y Specify the x and y coordinates within the destination window.

If dest_w is None, XWarpPointer moves the pointer by the offsets (dest_x, dest_y)
relative to the current position of the pointer. If dest_w is a window, XWarpPointer
moves the pointer to the offsets (dest_x, dest_y) relative to the origin of dest_w. However,
if src_w is a window, the move only takes place if the specified rectangle src_w contains the
pointer.

Window Manager Functions 7-19

The src_x and src_y coordinates are relative to the origin of src_w. If src helght is zero, it
is replaced with the current hclght of src_w minus src_y. If src “width is zero, it is replaced
with the current width of src_w minus src_x.

There is seldom any reason for calling this function. The pointer should normally be left to
the user. If you do use this function, however, it generates events just as if the user had
instantaneously moved the pointer from one position to another. Note that you cannot use
XWarpPointer to move the pointer outside the confine_to window of an active pointer
grab. An attempt to do so will only move the pointer as far as the closest edge of the
confine_to window.

XWarpPointer can generate a BadWindow error.
To set the input focus, use XSetInputFocus.

XSetInputFocus (display, focus, revert_to, time)
Display *display;
Window focus ;
int revert to;
Time time;

display Specifies the connection to the X server.
focus Specifies the window, PointerRoot, or None.

revert_to Specifies where the input focus reverts to if the window becomes not
viewable. You can pass RevertToParent, RevertToPointerRoot,
or RevertToNone.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XSetInputFocus function changes the input focus and the last-focus-change time.
It has no effect if the specified time is earlier than the current last-focus-change time or is
later than the current X server time. Otherwise, the last-focus-change time is set to the
specified time (CurrentTime is replaced by the current X server time).
XSetInputFocus causes the X server to generate FocusIn and FocusOut events.

Depending on the focus argument, the following occurs:

o If focus is None, all keyboard events are discarded until a new focus window is set,
and the revert_to argument is ignored.

« If focus is a window, it becomes the keyboard’s focus window. If a generated
keyboard event would normally be reported to this window or one of its inferiors, the
event is reported as usual. Otherwise, the event is reported relative to the focus
window.

7-20 Window Manager Functions

e If focus is PointerRoot, the focus window is dynamically taken to be the root
window of whatever screen the pointer is on at each keyboard event. In this case, the
revert_to argument is ignored.

The specified focus window must be viewable at the time XSetInputFocus is called, or
a BadMatch error results. If the focus window later becomes not viewable, the X server
evaluates the revert_to argument to determine the new focus window as follows:

o If revert_to is RevertToParent, the focus reverts to the parent (or the closest
viewable ancestor), and the new revert_to value is taken to be RevertToNone.

o If revert_to is RevertToPointerRoot or RevertToNone, the focus reverts to
PointerRoot or None, respectively. When the focus reverts, the X server
generates FocusIn and FocusOut events, but the last-focus-change time is not
affected.

XSetInputFocus can generate BadMatch, BadValue, and BadWindow errors.
To obtain the current input focus, use XGetInputFocus.
XGetInputFocus (display, focus_return, revert_to_retum)

Display *display;

Window *focus return ;
int *revert_to_retum;

display Specifies the connection to the X server.
focus_return Returns the focus window, PointerRoot, or None.
revert_to_return Returns the current focus state (RevertToParent,

RevertToPointerRoot, or RevertToNone).

The XGetInputFocus function returns the focus window and the current focus state.

7.7.2 Killing Clients

Xlib provides functions that you can use to control the lifetime of resources owned by a
client or to cause the connection to a client to be destroyed.

To change a client’s close-down mode, use XSetCloseDownMode.
XSetCloseDownMode (display, close_mode)

Display *display;

int close_mode ;

display Specifies the connection to the X server.

close_mode Specifies the client close-down mode. You can pass DestroyAll,
RetainPermanent, or RetainTemporary.

Window Manager Functions 7-21

The XSetCloseDownMode defines what will happen to the client’s resources at
connection close. A connection starts in DestroyAll mode. For information on what
happens to the client’s resources when the close_mode argument is RetainPermanent
or RetainTemporary, see section 2.6.

XSetCloseDownMode can generate a BadValue error.
To destroy a client, use XKillClient.
XKillClient (display, resource)

Display *display;
XID resource ;

display Specifies the connection to the X server.
resource Specifies any resource associated with the client that you want to destroy or
AllTemporary.

The XKillClient function forces a close-down of the client that created the resource if
a valid resource is specified. If the client has already terminated in either
RetainPermanent or RetainTemporary mode, all of the client’s resources are
destroyed. If Al1Temporary is specified, the resources of all clients that have
terminated in RetainTemporary are destroyed (see section 2.6). This permits
implementation of window manager facilities that aid debugging. A client can set its
close-down mode to RetainTemporary. If the client then crashes, its windows would
not be destroyed. The programmer can then inspect the application’s window tree and use
the window manager to destroy the zombie windows.

XKillClient can generate a BadValue error.

7.8 Keyboard and Pointer Settings

Xlib provides functions that you can use to change the keyboard control, obtain a list of the
auto-repeat keys, turn keyboard auto-repeat on or off, ring the bell, set or obtain the
pointer button or keyboard mapping, and obtain a bit vector for the keyboard.

This section discusses the user-preference options of bell, key click, pointer behavior, and
so on. The default values for many of these functions are determined by command line
arguments to the X server and, on UNIX-based systems, are typically set in the
/etc/ttys file. Not all implementations will actually be able to control all of these
parameters.

The XChangeKeyboardControl function changes control of a keyboard and operates
on a XKeyboardControl structure:

/* Mask bits for ChangeKeyboardControl */

7-22 Window Manager Functions

#define
#define
#define
#define
#define
#define
#define
#define

/* Values */

typedef struct {
int key_click_percent;
int bell_percent;
int bell_pitch;
int bell _duration;
int led;
int led_mode;
int key;
int auto_repeat_mode;

} XKeyboardControl;

KBKeyClickPercent
KBBellPercent
KBBellPitch
KBBellDuration
KBLed

KBLedMode

KBKey
KBAutoRepeatMode

(1L< <0)
(1L<<1)
(1L< <2)
(1L<<3)
(1L<<4)
(1L< <5)
(1L< <6)
(IL<<7)

/* LedModeOn, LedModeQff */

/* AutoRepeatModeOff, AutoRepeatModeOn,
AutoRepeatModeDefault */

The key_click_percent member sets the volume for key clicks between 0 (off) and 100
(loud) inclusive, if possible. A setting of -1 restores the default. Other negative values

generate a BadValue error.

The bell_percent sets the base volume for the bell between 0 (off) and 100 (loud) inclusive,
if possible. A setting of -1 restores the default. Other negative values generate a
BadValue error. The bell_pitch member sets the pitch (specified in Hz) of the bell, if
possible. A setting of -1 restores the default. Other negative values generate a
BadValue error. The bell_duration member sets the duration of the bell specified in
milliseconds, if possible. A setting of -1 restores the default. Other negative values

generate a BadValue error.

If both the led_mode and led members are specified, the state of that LED is changed, if
possible. The led |_mode member can be set to LedModeOn or LedModeOff. If only
led_raode is specified, the state of all LEDs are changed, if possible. At most 32 LEDs
numbered from one are supported. No standard interpretation of LEDs is defined. If led
is specified without led_mode, a BadMatch error results.

Window Manager Functions 7-23

If both the auto_repeat_mode and key members are specified, the auto_repeat_mode of
that key is changed (according to AutoRepeatModeOn, AutoRepeatModeOff, or
AutoRepeatModeDefault), if possible. If only auto_repeat_mode is specified, the
global auto_repeat_mode for the entire keyboard is changed, if possible, and does not
affect the per key settings. If a key is specified without an auto_repeat_mode, a
BadMatch error results. Each key has an individual mode of whether or not it should
auto-repeat and a default setting for the mode. In addition, there is a global mode of
whether auto-repeat should be enabled or not and a default setting for that mode. When
global mode is AutoRepeatModeOn, keys should obey their individual auto-repeat
modes. When global mode is AutoRepeatModeOff, no keys should auto-repeat. An
auto-repeating key generates alternating KeyPress and KeyRelease events. When a
key is used as a modifier, it is desirable for the key not to auto-repeat, regardless of its
auto-repeat setting.

A bell generator connected with the console but not directly on a keyboard is treated as if
it were part of the keyboard. The order in which controls are verified and altered is
server-dependent. If an error is generated, a subset of the controls may have been altered.

XChangeKeyboardControl (display, value mask, values)

Display *display ;

unsigned long value_mask;

XKeyboardControl *values;
display Specifies the connection to the X server.
value_mask Specifies one value for each bit set to 1 in the mask.

values Specifies which controls to change. This mask is the bitwise inclusive OR
of the valid control mask bits.

The XChangeKeyboardControl function controls the keyboard characteristics
defined by the XKeyboardControl structure. The value_mask argument specifies
which values are to be changed.

XChangeKeyboardControl can gencrate BadMatch and BadValue errors.
To obtain the current control values for the keyboard, use XGetKeyboardControl.
XGetKeyboardControl (display, values_return)

Display *display ;

XKeyboardState *values_return;

display Specifies the connection to the X server.

values_return Returns the current keyboard controls in the specified
XKeyboardState structure.

7-24 Window Manager Functions

The XGetKeyboardControl function returns the current control values for the
keyboard to the XKeyboardState structure.

typedef struct {
int key click _percent;
int bell_percent;
unsigned int bell pitch, bell_duration;
unsigned long led_mask;
int global_auto_repeat;
char auto_repeats[32];
} XKeyboardState;

For the LEDs, the least-significant bit of led_mask corresponds to LED one, and each bit
set to 1in led_mask indicates an LED that is s 1it. The global_auto_repeat member can be
set to AutoRepeatModeOn or AutoRepeatModeOff. The auto _repeats member is

a bit vector. Each bit set to 1 indicates that auto-repeat is enabled for the corresponding
key. The vector is represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to
8N + 7 with the least-significant bit in the byte representing key 8N.

To turn on keyboard auto-repeat, use XAutoRepeatOn.
XAutoRepeatOn (display)

Display *display;
display Specifies the connection to the X server.

The XAutoRepeatOn function turns on auto-repeat for the keyboard on the specified
display.

To turn off keyboard auto-repeat, use XAutoRepeatOff.
XAutoRepeatOff (display)

Display *display;
display Specifies the connection to the X server.

The XAutoRepeatO£f function turns off auto-repeat for the keyboard on the specified
display.
To ring the bell, use XBell.
XBell(display, percent)
Display *display;
int percent;
display Specifies the connection to the X server.

percent Specifies the volume for the bell, which can range from -100 to 100 inclusive.

Window Manager Functions 7-25

The XBell function rings the bell on the keyboard on the specified display, if possible.
The specified volume is relative to the base volume for the keyboard. If the value for the
percent argument is not in the range -100 to 100 inclusive, a BadValue error results.
The volume at which the bell rings when the percent argument is nonnegative is:

base - [(base * percent) / 100] + percent
The volume at which the bell rings when the percent argument is negative is:
base + [(base * percent) / 100]
To change the base volume of the bell, use XChangeKeyboardControl.
XBell can generate a BadValue error.
To obtain a bit vector that describes the state of the keyboard, use XQueryKeymap.
XQueryKeymap (display, keys_retum)
Display *display;
char keys_retun[32];
display Specifies the connection to the X server.

keys_return Returns an array of bytes that identifies which keys are pressed down.
Each bit represents one key of the keyboard.

The XQueryKeymap function returns a bit vector for the logical state of the keyboard,
where each bit set to 1 indicates that the corresponding key is currently pressed down. The
vector is represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to 8N + 7
with the least-significant bit in the byte representing key 8N.

Note that the logical state of a device (as seen by client applications) may lag the physical
state if device event processing is frozen.

To set the mapping of the pointer buttons, use XSetPointerMapping.
int XSetPointerMapping (display, map, nmap)
Display *display;
unsigned char mapll;
int nmap;
display Specifies the connection to the X server.
map Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

7-26 Window Manager Functions

The XSetPointerMapping function sets the mapping of the pointer. If it succeeds,
the X server generates a MappingNotify event, and XSetPointerMapping

returns MappingSuccess. Elements of the list are indexed starting from one. The
length of the list must be the same as XGetPointerMapping would return, or a
BadValue error results. The index is a core button number, and the element of the list
defines the effective number. A zero element disables a button, and elements are not
restricted in value by the number of physical buttons. However, no two elements can have
the same nonzero value, or a BadValue error results. If any of the buttons to be altered
are logically in the down state, XSetPointerMapping returns MappingBusy, and
the mapping is not changed.

XSetPointerMapping can generate a BadValue error.
To get the pointer mapping, use XGetPointerMapping.

int XGetPointerMapping (display, map_return, nmap)
Display *display ;
unsigned char map retumnl[];
int nmap;

display Specifies the connection to the X server.
map return Returns the mapping list.
nmap Specifies the number of items in the mapping list.

The XGetPointerMapping function returns the current mapping of the pointer. The
list contains the mapping, starting with button 1. XGetPointerMapping returns the
number of physical buttons actually on the pointer. The nominal mapping for a pointer is
the identity mapping, where button [i] has the value i. The nmap argument specifies the
length of the array where the pointer mapping is returned, and only the first nmap
elements are returned in map_return.

To control the pointer’s interactive feel, use XChangePointerControl.

XChangePointerControl(display, do_accel, do_threshold, accel_numerator,
accel_denominator, threshold) -
Display *display ;
Bool do_accel, do_threshold ;
int accel_numerator, accel _denominator;
int threshold ;

display Specifies the connection to the X server.

do_accel Specifies a Boolean value that controls whether the values for the
accel_numerator or accel_denominator are used.

Window Manager Functions 7-27

do_threshold Specifies a Boolean value that controls whether the value for the

threshold is used.
accel_numerator Specifies the numerator for the acceleration multiplier.
accel_denominator Specifies the denominator for the acceleration multiplier.
threshold Specifies the acceleration threshold.

The XChangePointerControl function defines how the pointing device moves. The
acceleration, expressed as a fraction, is a multiplier for movement. For example, specifying
3/1 means the pointer moves three times as fast as normal. The fraction may be rounded
arbitrarily by the X server. Acceleration only takes effect if the pointer moves more than
threshold pixels at once and only applies to the amount beyond the value in the threshold
argument. Setting a value to -1 restores the default. The values of the do_accel and
do_threshold arguments must be True for the pointer values to be set, or the parameters
are unchanged. Negative values (other than -1) generate a BadValue error, as does a
zero value for the accel denominator argument.

XChangePointerControl can generate a BadValue error.
To get the current pointer parameters, use XGetPointerControl.

XGetPointerControl (display, accel numerator return, accel_denominator return ,
threshold_return)
Display *display ;
int *accel_numerator return, *accel_denominator return ;
int *threshold_retumn ;

display Specifies the connection to the X server.
accel_numerator_return Returns the numerator for the acceleration multiplier.
accel_denominator_return Returns the denominator for the acceleration multiplier.
threshold_return Returns the acceleration threshold.

The XGetPointerControl function returns the pointer’s current acceleration
multiplier and acceleration threshold.

7.9 Keyboard Encoding

Most applications will find the simple interface XLookupString, which performs
simple translation of a key event to an ASCII string, most useful. Keyboard-related
utilities are discussed in chapter 10. The following section explains how to completely
control the bindings of symbols to keys and modifiers.

7-28 Window Manager Functions

A KeyCode represents a physical (or logical) key. KeyCodes lie in the inclusive range
[8,255]. A KeyCode value carries no intrinsic information, although server implementors
may attempt to encode geometry (for example, matrix) information in some fashion so that
it can be interpreted in a server-dependent fashion. The mapping between keys and
KeyCodes cannot be changed.

A KeySym is an encoding of a symbol on the cap of a key. The set of defined KeySyms
include the ISO Latin character sets (1-4), Katakana, Arabic, Cyrillic, Greek, Technical,
Special, Publishing, APL, Hebrew, and a special miscellany of keys found on keyboards
(Return, Help, Tab, and so on). To the extent possible, these sets are derived from
international standards. In areas where no standards exist, some of these sets are derived
from Digital Equipment Corporation standards. The list of defined symbols can be found
in <X11/keysymdef.h>. Unfortunately, some C preprocessors have limits on the
number of defined symbols. If you must use KeySyms not in the Latin 1-4, Greek, and
miscellaneous classes, you may have to define a symbol for those sets. Most applications
usually only include <X11/keysym.h>, which defines symbols for ISO Latin 1-4,
Greek, and miscellaneous.

A list of KeySyms is associated with each KeyCode. The length of the list can vary with
each KeyCode. The list is intended to convey the set of symbols on the corresponding key.
By convention, if the list contains a single KeySym and if that KeySym is alphabetic and
case distinction is relevant for it, then it should be treated as equivalent to a two-element
list of the lowercase and uppercase KeySyms. For example, if the list contains the single
KeySym for uppercase A, the client should treat it as if it were a pair with lowercase a as
the first KeySym and uppercase 4 as the second KeySym.

For any KeyCode, the first KeySym in the list should be chosen as the interpretation of a
KeyPress when no modifier keys are down. The second KeySym in the list normally
should be chosen when the Shift modifier is on or when the Lock modifier is on and Lock
is interpreted as ShiftLock. When the Lock modifier is on and is interpreted as CapsLock,
it is suggested that the Shift modifier first be applied to choose a KeySym. However, if
that KeySym is lowercase alphabetic, the corresponding uppercase KeySym should be used
instead. Other interpretations of CapsLock are possible; for example, it may be viewed as
equivalent to ShiftLock, but only applying when the first KeySym is lowercase alphabetic
and the second KeySym is the corresponding uppercase alphabetic. No interpretation of
KeySyms beyond the first two in a list is suggested here. No spatial geometry of the
symbols on the key is defined by their order in the KeySym list, although a geometry might
be defined on a vendor-specific basis. The X server does not use the mapping between
KeyCodes and KeySyms. Rather, it stores it merely for reading and writing by clients.

To obtain the legal KeyCodes for a display, use XDisplayKeycodes.

Window Manager Functions 7-29

XDisplayKeycodes (display, min_keycodes_return, max_keycodes_retumn)
Display *display ;
int *min_keycodes return, max_keycodes_return ;

display Specifies the connection to the X server.
min_keycodes_return Returns the minimum number of KeyCodes.
max_keycodes_return Returns the maximum number of KeyCodes.

The XDisplayKeycodes function returns the min-keycodes and max-keycodes
supported by the specified display. The minimum number of KeyCodes returned is never
less than 8, and the maximum number of KeyCodes returned is never greater than 255.
Not all KeyCodes in this range are required to have corresponding keys.

To obtain the symbols for the specified KeyCodes, use XGetKeyboardMapping.

KeySym *XGetKeyboardMapping(display, first_keycode, keycode count,
keysyms_per_keycode_retum)
Display *display ;
KeyCode first_keycode;
int keycode count;
int *keysyms_per keycode_retum ;

display Specifies the connection to the X server.

first_keycode Specifies the first KeyCode that is to be returned.

keycode_count Specifies the number of KeyCodes that are to be
returned.

keysyms_per_keycode_return Returns the number of KeySyms per KeyCode.

The XGetKeyboardMapping function returns the symbols for the specified number of
KeyCodes starting with first_keycode. The value specified in first_keycode must be
greater than or equal to min_keycode as returned by XDisplayKeycodes, or a
BadValue error results. In addition, the following expression must be less than or equal
to max_keycode as returned by XDisplayKeycodes:

first_keycode + keycode_count - 1

If this is not the case, a BadValue error results. The number of elements in the KeySyms
list is:

keycode_count. * keysyms_per keycode_ return

7-30 Window Manager Functions

KeySym number N, counting from zero, for KeyCode K has the following index in the list,
counting from zero:

(K - first_code) * keysyms_per_code_return + N

The X server arbitrarily chooses the keysyms_per_keycode_return value to be large
enough to report all requested symbols. A special KeySym value of NoSymbol is used to
fill in unused elements for individual KeyCodes. To free the storage returned by
XGetKeyboardMapping, use XFree.

XGetKeyboardMapping can generate a BadValue error.
To change the keyboard mapping, use XChangeKeyboardMapping.

XChangeKeyboardMapping(display, first_keycode, keysyms_per keycode, keysyms, num_codes)
Display *display ;
int first_keycode ;
int keysyms_per keycode ;
KeySym *keysyms ;
int num_codes ;

display Specifies the connection to the X server.

first_keycode Specifies the first KeyCode that is to be changed.
keysyms_per_keycode Specifies the number of KeySyms per KeyCode.

keysyms Specifies a pointer to an array of KeySyms.

num_codes Specifies the number of KeyCodes that are to be changed.

The XChangeKeyboardMapping function defines the symbols for the specified
number of KeyCodes starting with first_keycode. The symbols for KeyCodes outside this
range remain unchanged. The number of elements in keysyms must be:

num_codes * keysyms_per_keycode

The specified first_keycode must be greater than or equal to min_keycode returned by
XDisplayKeycodes, or a BadValue error results. In addition, the following
expression must be less than or equal to max_keycode as returned by
XDisplayKeycodes, or a BadValue error results:

first_keycode + num_codes - 1

KeySym number N, counting from zero, for KeyCode K has the following index in
keysyms, counting from zero:

(K - first_keycode) * keysyms_per_keycode + N

Window Manager Functions 7-31

The specified keysyms_per_keycode can be chosen arbitrarily by the client to be large
enough to hold all desired symbols. A special KeySym value of NoSymbol should be used
to fill in unused elements for individual KeyCodes. It is legal for NoSymbo1l to appear in
nontrailing positions of the effective list for a KeyCode. XChangeKeyboardMapping
generates a MappingNotify event.

There is no requirement that the X server interpret this mapping. It is merely stored for
reading and writing by clients.

XChangeKeyboardMapping can generate BadAlloc and BadValue errors.
The next four functions make use of the XModifierKeymap data structure, which

contains;

typedef struct {
int max_keypermod; /* This server's max number of keys per modifier */
KeyCode *modifiermap; /* An 8 by max_keypermod array of the modifiers */
} XModifierKeymap;

To create an XModifierKeymap structure, use XNewModifiermap.
XModifierKeymap *XNewModifiermap(max keys_per mod)

int max keys per mod;

max_keys_per mod Specifies the number of KeyCode entries preallocated to the
modifiers in the map.

The XNewModifiermap function returns a pointer to XModifierKeymap structure
for later use.

To add a new entry to an XModifierKeymap structure, use
XInsertModifiermapEntry.

XModifierKeymap *XInsertModifiermapEntry(modmap, keycode_entry, modifier)
XModifierKeymap *modmap ;
KeyCode keycode_entry ;
int modifier;
modmap Specifies a pointer to the XModifierKeymap structure.
keycode_entry Specifies the KeyCode.
modifier Specifies the modifier.

The XInsertModifiermapEntry function adds the specified KeyCode to the set that
controls the specified modifier and returns the resulting XModifierKeymap structure
(expanded as needed).

7-32 Window Manager Functions

To delete an entry from an XModifierKeymap structure, use
XDeleteModifiermapEntry.

XModifierKeymap *XDeleteModifiermapEntry(modmap, keycode entry, modifier)
XModifierKeymap *modmap ;
KeyCode keycode_entry ;
int modifier;
modmap Specifies a pointer to the XModifierKeymap structure.
keycode_entry Specifies the KeyCode.
modifier Specifies the modifier.

The XDeleteModifiermapEntry function deletes the specified KeyCode from the
set that controls the specified modifier and returns a pointer to the resulting
XModifierKeymap structure.

To destroy an XModifierKeymap structure, use XFreeModifiermap.
XFreeModifiermap(modmap)

XModifierKeymap *modmap;
modmap Specifies a pointer to the XModifierKeymap structure.
The XFreeModifiermap function frees the specified XModifierKeymap structure.
To set the KeyCodes to be used as modifiers, use XSetModifierMapping.
int XSetModifierMapping(display, modmap)

Display *display ;

XModifierKeymap *modmap ;
display Specifies the connection to the X server.
modmap Specifies a pointer to the XModifierKeymap structure.

The XSetModifierMapping function specifies the KeyCodes of the keys (if any) that
are to be used as modifiers. If it succeeds, the X server generates a MappingNotify
event, and XSetModifierMapping returns MappingSuccess. X permits at most
eight modifier keys. If more than eight are specified in the XModifierKeymap
structure, a BadLength error results.

The modifiermap member of the XModifierKeymap structure contains eight sets of
max_keypermod KeyCodes, one for each modifier in the order Shift, Lock,
Control, Modl, Mod2, Mod3, Mod4, and Mod5. Only nonzero KeyCodes have
meaning in each set, and zero KeyCodes are ignored. In addition, all of the nonzero
KeyCodes must be in the range specified by min_keycode and max_keycode in the

Window Manager Functions 7-33

Display structure, or a BadValue error results. No KeyCode may appear twice in the
entire map, or a BadValue error results.

An X server can impose restrictions on how modifiers can be changed, for example, if
certain keys do not generate up transitions in hardware, if auto-repeat cannot be disabled
on certain keys, or if multiple modifier keys are not supported. If some such restriction is
violated, the status reply is MappingFailed, and none of the modifiers are changed. If
the new KeyCodes specified for a modifier differ from those currently defined and any
(current or new) keys for that modifier are in the logically down state,
XSetModifierMapping returns MappingBusy, and none of the modifiers is
changed.

XSetModifierMapping can generate BadAlloc and BadValue errors.
To obtain the KeyCodes used as modifiers, use XGetModifierMapping.

XModifierKeymap *XGetModifierMapping/(display)
Display *display ;

display Specifies the connection to the X server.

The XGetModifierMapping function returns a pointer to a newly created
XModifierKeymap structure that contains the keys being used as modifiers. The
structure should be freed after use by calling XFreeModifiermap. If only zero values
appear in the set for any modifier, that modifier is disabled.

7.10 Screen Saver Control

Xlib provides functions that you can use to set, force, activate, or reset the screen saver and
to obtain the current screen saver values.

To set the screen saver, use XSetScreenSaver.,

XSetScreenSaver (display, timeout, interval, prefer blanking, allow_exposures)
Display *display ;
int timeout, interval ;
int prefer blanking;
int allow_exposures ;

display Specifies the connection to the X server.
timeout Specifies the timeout, in seconds, until the screen saver turns on.
interval Specifies the interval between screen saver alterations.

7-34 Window Manager Functions

prefer_blanking Specifies how to enable screen blanking. You can pass
DontPreferBlanking, PreferBlanking, or
DefaultBlanking.

allow_exposures Specifies the screen save control values. You can pass
DontAllowExposures, AllowExposures, or
DefaultExposures.

Timeout and interval are specified in seconds. A timeout of 0 disables the screen saver,
and a timeout of -1 restores the default. Other negative values generate a BadValue
error. If the timeout value is nonzero, XSetScreenSaver enables the screen saver.
An interval of 0 disables the random-pattern motion. If no input from devices (keyboard,
mouse, and so on) is generated for the specified number of timeout seconds once the
screen saver is enabled, the screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video blanking, the
screen simply goes blank. Otherwise, if either exposures are allowed or the screen can be
regenerated without sending Expose events to clients, the screen is tiled with the root
window background tile randomly re-origined each interval minutes. Otherwise, the
screens’ state do not change, and the screen saver is not activated. The screen saver is
deactivated, and all screen states are restored at the next keyboard or pointer input or at
the next call to XForceScreenSaver with mode ScreenSaverReset.

If the server-dependent screen saver method supports periodic change, the interval
argument serves as a hint about how long the change period should be, and zero hints that
no periodic change should be made. Examples of ways to change the screen include
scrambling the colormap periodically, moving an icon image around the screen
periodically, or tiling the screen with the root window background tile, randomly re-
origined periodically.

XSetScreenSaver can generate a BadValue error.
To force the screen saver on or off, use XForceScreenSaver.
XForceScreenSaver (display, mode)

Display *display;

int mode;

display Specifies the connection to the X server.

mode Specifies the mode that is to be applied. You can pass
ScreenSaverActive or ScreenSaverReset.

Window Manager Functions 7-35

If the specified mode is ScreenSaverActive and the screen saver currently is
deactivated, XForceScreenSaver activates the screen saver even if the screen saver
had been disabled with a timeout of zero. If the specified mode is ScreenSaverReset
and the screen saver currently is enabled, XForceScreenSaver deactivates the screen
saver if it was activated, and the activation timer is reset to its initial state (as if device
input had been received).

XForceScreenSaver can generate a BadValue error.
To activate the screen saver, use XActivateScreenSaver.
XActivateScreenSaver (display)

Display *display;
display Specifies the connection to the X server.
To reset the screen saver, use XResetScreenSaver.
XResetScreenSaver (display)

Display *display ;
display Specifies the connection to the X server.
To get the current screen saver values, use XGetScreenSaver.
XGetScreenSaver (display, timeout return, interval_return, prefer blanking retumn ,

allow_exposures_return)
Display *display ;
int *timeout_return, *interval_return ;

int *prefer_blanking return ;
int *allow_exposures return ;

display Specifies the connection to the X server.

timeout_return Returns the timeout, in minutes, until the screen saver turns
on.

interval_return Returns the interval between screen saver invocations.

prefer_blanking return Returns the current screen blanking preference
(DontPreferBlanking, PreferBlanking, or
DefaultBlanking).

allow_exposures_return Returns the current screen save control value
(DontAllowExposures, AllowExposures, or
DefaultExposures).

7-36 Window Manager Functions

7.11 Controlling Host Access

This section discusses how to:
o Add, get, or remove hosts from the access control list
« Change, enable, or disable access

X does not provide any protection on a per-window basis. If you find out the resource ID
of a resource, you can manipulate it. To provide some protection, however, connections
are permitted only from machines you trust. This is adequate on single-user workstations
but breaks down on timesharing machines. Although provisions exist in the X protocol for
proper connection authentication, the lack of a standard authentication server leaves host-
level access control as the only common mechanism.

The initial set of hosts allowed to open connections typically consists of:
o The host the window system is running on.

¢ On UNIX-based systems, each host is listed in .PN /etc/X?2.hosts; ? indicates the
display number. This file consists of host names separated by newlines. DECnet
nodes must terminate in :: to tell them from Internet hosts.

If a host is not in the access control list when the access control mechanism is enabled and
if the host attempts to establish a connection, the server refuses the connection. To change
the access list, the client must reside on the same host as the server.

Servers also can implement other access control policies in addition to or in place of this
host access facility. See “X Window System Protocol” for further information.

7.11.1 Adding, Getting, or Removing Hosts

Xlib has functions for adding, getting, or removing hosts from the access control list. Host
access control functions use the XHostAddress structure, which contains:

typedef struct {

int family; /* for example FamilyInternet */
int length; /% length of address, in bytes */
char *address; /* pointer to where to find the address */

} XHostAddress;

The family member specifies which protocol address family to use (for example, TCP/IP
or DECnet) and can be FamilyInternet, FamilyDECnet, or FamilyChaos.
The length member specifies the length of the address in bytes. The adiress member
specifies a pointer to the address.

Window Manager Functions 7-37

For TCP/IP, the address should be in network byte order. For the DECnet family, the
server performs no automatic swapping on the address bytes. A Phase IV address is two
bytes long, The first byte contains the least-significant eight bits of the node number. The
second byte contains the most-significant two bits of the node number in the least-
significant two bits of the byte and the area in the most-significant six bits of the byte.

To add a single host, use XAddHost.
XAddHost (display, host)
Display *display ;
XHostAddress *host;
display Specifies the connection to the X server.
host Specifies the host that is to be added.

The XAddHost function adds the named host to the access control list for that display. A
BadAccess error results if the server and the client issuing the command are not the
same host.

XAddHost can generate BadAccess and BadValue errors.
To add multiple hosts at one time, use XAddHosts.
XAddHosts (display, hosts, num_hosts)
Display *display ;
XHostAddress *hosts;
int num_hosts;
display Specifies the connection to the X server.
hosts Specifies each host that is to be added.

num_hosts Specifies the number of hosts.

The XAddHosts function adds each specified host to the access control list for that
display. The server must be on the same host as the client issuing the command, or a
BadAccess error results.

XAddHosts can generate BadAccess and BadValue errors.
To obtain a host list, use XListHosts.
XHostAddress *XListHosts (display, nhosts_return, state_return)

Display *display ;

int *nhosts_return ;
Bool *state return ;

display Specifies the connection to the X server.

7-38 Window Manager Functions

nhosts_return Returns the number of hosts currently in the access control list.
state_return Returns the state of the access control.

The XListHosts function returns the current access control list as well as whether the
use of the list at connection setup was enabled or disabled. XListHosts allows a
program to find out what machines can connect. It also returns a pointer to a list of host
structures allocated by the function. Free this memory when not needed by calling XFree.

To remove a single host, use XRemoveHost.
XRemoveHost (display, host)

Display *display;

XHostAddress *host;
display Specifies the connection to the X server.
host Specifies the host that is to be removed.

The XRemoveHost function removes the specified host from the access control list for
that display. The server must be on the same host as the client process, or a BadAccess
error results. If you remove your machine from the access list, you can no longer connect
to that server, and this cannot be reversed unless you reset the server.

XRemoveHost can generate BadAccess and BadValue errors.
To remove multiple hosts at one time, use XRemoveHosts.
XRemoveHosts (display, hosts, num_hosts)

Display *display;

XHostAddress *hosts ;

int num_hosts ;
display Specifies the connection to the X server.
hosts Specifies each host that is to be removed.

num_hosts Specifies the number of hosts.

The XRemoveHosts function operates under the same constraints as the
XRemoveHosts function, and can generate the same errors.

7.11.2 Changing, Enabling, or Disabling Access Control

Xlib provides functions that you can use to enable, disable, or change access control.

For these functions to execute successfully, the client application must reside on the same
host as the X server.

To change access control, use XSetAccessControl,

Window Manager Functions 7-39

XSetAccessControl (display, mode)
Display *display ;
int mode;
display Specifies the connection to the X server.

mode Specifies the mode. You can pass EnableAccess or DisableAccess.

The XSetAccessControl function either enables or disables the use of the access
control list at each connection setup.

XSetAccessControl can generate BadAccess and BadValue errors.
To enable access control, use XEnableAccessControl.
XEnableAccessControl (display)

Display *display ;
display Specifies the connection to the X server.

The XEnableAccessControl function enables the use of the access control list at
each connection setup.

XEnableAccessControl can generate a BadAccess error.
To disable access control, use XDisableAccessControl.
XDisableAccessControl (display)

Display *display;
display Specifies the connection to the X server.

The XDisableAccessControl function disables the use of the access control list at
each connection setup.

XDisableAccessControl can generate a BadAccess error.

7-40 Window Manager Functions

Events and Event-Handling Functions 8

A client application communicates with the X server through the connection you establish
with the XOpenDisplay function. A client application sends requests to the X server
over this connection. These requests are made by the Xlib functions that are called in the
client application. Many Xlib functions cause the X server to generate events, and the
user’s typing or moving the pointer can generate events asynchronously. The X server
returns events to the client on the same connection.

This chapter begins with a discussion of the following topics associated with events:
« Event types
o Event structures
o Event mask
 Event processing
It then discusses the Xlib functions you can use to:
« Select events
» Handle the output buffer and the event queue
« Select events from the event queue
e Send and get events

o Handle error events

NOTE

Some toolkits use their own event-handling functions and do not
allow you to interchange these event-handling functions with those in
Xlib. For further information, see the documentation supplied with
the toolkit.

Events and Event-Handling Functions 8-1

Most applications simply are event loops: they wait for an event, decide what to do with it,
execute some amount of code that results in changes to the display, and then wait for the
next event,

8.1 Event Types

An event is data generated asynchronously by the X server as a result of some device
activity or as side effects of a request sent by an Xlib function. Device-related events
propagate from the source window to ancestor windows until some client application has
selected that event type or until the event is explicitly discarded. The X server generally
sends an event to a client application only if the client has specifically asked to be informed
of that event type, typically by setting the event-mask attribute of the window. The mask
can also be set when you create a window or by changing the window’s event-mask. You
can also mask out events that would propagate to ancestor windows by manipulating the
do-not-propagate mask of the window’s attributes. However, MappingNotify events
are always sent to all clients.

An event type describes a specific event generated by the X server. For each event type, a
corresponding constant name is defined in <X11/X.h>, which is used when referring to
an event type. The following table lists the event category and its associated event type or
types. The processing associated with these events is discussed in section 8.4.

8-2 Events and Event-Handling Functi~ns

Event Category

Event Type

Keyboard events
Pointer events

Window crossing events
Input focus events

Keymap state notification
event

Exposure events

Structure control events

Window state notification
events

Colormap state notification

event

Client communication events

KeyPress, KeyRelease

ButtonPress, ButtonRelease, MotionNotify
EnterNotify, LeaveNotify

FocusIn, FocusOut

KeymapNotify

Expose, GraphicsExpose, NoExpose

CirculateRequest, ConfigureRequest,
MapRequest, ResizeRequest

CirculateNotify, ConfigureNotify,

CreateNotify, DestroyNotify, GravityNotify,

MapNotify, MappingNotify, ReparentNotify,
UnmapNotify, VisibilityNotify

ColormapNotify
ClientMessage, PropertyNotify,

SelectionClear, SelectionNotify,
SelectionRequest

8.2 Event Structures

For each event type, a corresponding structure is declared in <X11/X1ib.h>. All the
event structures have the following common members:

typedef struct {
int type;

unsigned long serial;

Bool send_event;
Display *display;
Window window;

} XAnyEvent;

/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

Events and Event-Handling Functions 8-3

The type member is set to the event type constant name that uniquely identifies it. For
example, when the X server reports a GraphicsExpose event to a client application, it
sends an XGraphicsExposeEvent structure with the type member set to
GraphicsExpose. The display member is set to a pointer to the display the event was
read on. The send_event member is set to True if the event came from a SendEvent
protocol request. The serial member is set from the serial number reported in the
protocol but expanded from the 16-bit least-significant bits to a full 32-bit value. The
window member is set to the window that is most useful to toolkit dispatchers.

The X server can send events at any time in the input stream. Xlib stores any events
received while waiting for a reply in an event queue for later use. Xlib also provides
functions that allow you to check events in the event queue (see section 8.7).

In addition to the individual structures declared for each event type, the XEvent structure
is a union of the individual structures declared for each event type. Depending on the type,
you should access members of each event by using the XEvent union.

typedef union _XEvent {
int type; /* must not be changed */
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoEiposeEvent Xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
¥ConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;
long pad[24];

} XEvent;

8-4 Events and Event-Handling Functions

An XEvent structure’s first entry always is the type member, which is set to the event
type. The second member always is the serial number of the protocol request that
generated the event. The third member always is send_event, which is a Bool that
indicates if the event was sent by a different client. The fourth member always is a display,
which is the display that the event was read from. Except for keymap events, the fifth
member always is a window, which has been carefully selected to be useful to toolkit
dispatchers. To avoid breaking toolkits, the order of these first five entries is not to
change. Most events also contain a time member, which is the time at which an event
occurred. In addition, a pointer to the generic event must be cast before it is used to
access any other information in the structure.

8.3 Event Masks

Clients select event reporting of most events relative to a window. To do this, pass an
event mask to an Xlib event-handling function that takes an event_mask argument. The
bits of the event mask are defined in <X11/X.h>. Each bit in the event mask maps to
an event mask name, which describes the event or events you want the X server to return
to a client application.

Unless the client has specifically asked for them, most events are not reported to clients
when they are generated. Unless the client suppresses them by setting graphics-exposures
in the GC to False, GraphicsExpose and NoExpose are reported by default as a
result of XCopyPlane and XCopyArea. SelectionClear,

SelectionRequest, SelectionNotify, or ClientMessage cannot be

masked. Selection related events are only sent to clients cooperating with selections (see
section 4.4). When the keyboard or pointer mapping is changed, MappingNotify is
always sent to clients.

The following table lists the event mask constants you can pass to the event_mask
argument and the circumstances in which you would want to specify the event mask:

Events and Event-Handling Functions 8-5

Event Mask

Circumstances

NoEventMask
KeyPressMask
KeyReleaseMask
ButtonPressMask
ButtonReleaseMask
EnterWindowMask
LeaveWindowMask
PointerMotionMask
PointerMotionHintMask
ButtonlMotionMask
Button2MotionMask
Button3MotionMask
Button4MotionMask
Button5MotionMask
ButtonMotionMask
KeymapStateMask
ExposureMask
VisibilityChangeMask
StructureNotifyMask
ResizeRedirectMask
SubstructureNotifyMask
SubstructureRedirectMask
FocusChangeMask
PropertyChangeMask
ColormapChangeMask
OwnerGrabButtonMask

No events wanted

Keyboard down events wanted
Keyboard up events wanted

Pointer button down events wanted
Pointer button up events wanted
Pointer window entry events wanted
Pointer window leave events wanted
Pointer motion events wanted
Pointer motion hints wanted
Pointer motion while button 1 down
Pointer motion while button 2 down
Pointer motion while button 3 down
Pointer motion while button 4 down
Pointer motion while button 5 down
Pointer motion while any button down

Keyboard state wanted at window entry and focus in

Any exposure wanted
Any change in visibility wanted

Any change in window structure wanted

Redirect resize of this window
Substructure notification wanted

Redirect structure requests on children

Any change in input focus wanted
Any change in property wanted
Any change in colormap wanted

Automatic grabs should activate with owner_events set to

True

8-6 Events and Event-Handling Functions

8.4 Event Processing

The event reported to a client application during event processing depends on which event
masks you provide as the event-mask attribute for a window. For some event masks, there
is a one-to-one correspondence between the event mask constant and the event type
constant. For example, if you pass the event mask ButtonPressMask, the X server
sends back only ButtonPress events. Most events contain a time member, which is the
time at which an event occurred.

In other cases, one event mask constant can map to several event type constants. For
example, if you pass the event mask SubstructureNotifyMask, the X server can
send back CirculateNotify, ConfigureNotify, CreateNotify,
DestroyNotify, GravityNotify, MapNotify, ReparentNotify, or
UnmapNotify events.

In another case, two event masks can map to one event type. For example, if you pass
either PointerMotionMask or ButtonMotionMask, the X server sends back a
MotionNotify event.

The following table lists the event mask, its associated event type or types, and the
structure name associated with the event type. Some of these structures actually are
typedefs to a generic structure that is shared between two event types. Note that N.A.
appears in columns for which the information is not applicable.

Event Mask Event Type Structure Generic Structure
ButtonMotionMask MotionNotify XPointerMovedEvent XMotionEvent
Button1MotionMask

Button2MotionMask

Button3MotionMask

ButtondMotionMask

Button5MotionMask

ButtonPressMask ButtonPress XButtonPressedEvent XButtonEvent
ButtonReleaseMask ButtonRelease XButtonReleasedEvent XButtonEvent
ColormapChangeMask ColormapNotify XColormapEvent

EnterWindowMask EnterNotify XEnterWindowEvent XCrossingEvent
LeaveWindowMask LeaveNotify XLeaveWindowEvent XCrossingEvent
ExposureMask Expose XExposecEvent

Events and Event-Handling Functions 8-7

GCGraphicsExposures in GC

FocusChangeMask

KeymapStateMask

KeyPressMask
KeyReleaseMask

OwnerGrabButtonMask

PointerMotionMask
PointerMotionHintMask

PropertyChangeMask
ResizeRedirectMask

StructureNotifyMask

SubstructureNotifyMask

SubstructureRedirectMask

NA.
NA.
NA.
N.A.
NA.

GraphicsExpose
NoExpose

Focusln
FocusOut

KeymapNotify

KeyPress
KeyRelease

NA.

MotionNotify
NA.

PropertyNotify
ResizeRequest

CirculateNotify
ConfigureNotify
DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify

CirculateNotify
ConfigureNotify
CreateNotify
DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify

CirculateRequest

ConfigureRequest

MapRequest

ClientMessage
MappingNotify
SelectionClear
SelectionNotify

SelectionRequest

8-8 Events and Event-Handling Functions

XGraphicsExposeEvent
XNoExposeEvent

XFocusInEvent
XFocusOutEvent

XKeymapEvent

XKeyPressedEvent
XKeyReleasedEvent

NA.

XPointerMovedEvent
NA.

XPropertyEvent
XResizeRequestEvent

XCirculateEvent
XConfigureEvent
XDestroyWindowEvent
XGravityEvent
XMapEvent
XReparentEvent
XUnmapEvent

XCirculateEvent
XConfigureEvent
XCreateWindowEvent
XDestroyWindowEvent
XGravityEvent
XMapEvent
XReparentEvent
XUnmapEvent

XCirculateRequestEvent

XConfigureRequestEvent

XMapRequestEvent
XClientMessageEvent
XMappingEvent
XSelectionClearEvent
XSelectionEvent

XSelectionRequestEvent

XFocusChangeEvent
XFocusChangeEvent

XKeyEvent
XKeyEvent

XMotionEvent

VisibilityChangeMask VisibilityNotify XVisibilityEvent

The sections that follow describe the processing that occurs when you select the
different event masks. The sections are organized according to these processing
categories:

o Keyboard and pointer events

o Window crossing events

« Input focus events

o Keymap state notification events

o Exposure events

» Window state notification events

o Structure control events

o Colormap state notification events

o Client communication events

8.4.1 Keyboard and Pointer Events
This section discusses:
« Pointer button events

« Keyboard and pointer events

Pointer Button Events
The following describes the event processing that occurs when a pointer button press is
processed with the pointer in some window w and when no active pointer grab is in

progress.

The X server searches the ancestors of w from the root down, looking for a passive grab to
activate. If no matching passive grab on the button exists, the X server automatically starts
an active grab for the client receiving the event and sets the last-pointer-grab time to the
current server time. The effect is essentially equivalent to an XGrabButton with these
client passed arguments:

Events and Event-Handling Functions 8-9

Argument Value

w The event window

event_mask The client’s selected pointer events on the event window

pointer_ mode GrabModeAsync

keyboard_mode GrabModeAsync

owner_events True, if the client has selected OwnerGrabButtonMask
on the event window, otherwise False

confine_to None

cursor None

The active grab is automatically terminated when the logical state of the pointer has all
buttons released. Clients can modify the active grab by calling XUngrabPointer and
XChangeActivePointerGrab.

Keyboard and Pointer Events

This section discusses the processing that occurs for the keyboard events KeyPress and
KeyRelease and the pointer events ButtonPress, ButtonRelease, and
MotionNotify. For information about the keyboard event-handling utilities, see
chapter 10.

The X server reports KeyPress or KeyRelease events to clients wanting information
about keys that logically change state. Note that these events are generated for all keys,
even those mapped to modifier bits. The X server reports ButtonPress or
ButtonRelease events to clients wanting information about buttons that logically
change state.

The X server reports MotionNotify events to clients wanting information about when
the pointer logically moves. The X server generates this event whenever the pointer is
moved and the pointer motion begins and ends in the window. The granularity of
MotionNotify events is not guaranteed, but a client that selects this event type is
guaranteed to receive at least one event when the pointer moves and then rests.

The generation of the logical changes lags the physical changes if device event processing is
frozen.

To receive KeyPress, KeyRelease, ButtonPress, and ButtonRelease events,
set KeyPressMask, KeyReleaseMask, ButtonPressMask, and
ButtonReleaseMask bits in the event-mask attribute of the window.

To receive MotionNotify events, set one or more of the following event masks bits in
the event-mask attribute of the window.

8-10 Events and Event-Handling Functions

e ButtonlMotionMask-ButtonSMotionMask

The client application receives MotionNotify events only when one or more of
the specified buttons is pressed.

e ButtonMotionMask

The client application receives MotionNotify events only when at least one
button is pressed.

¢ PointerMotionMask

The client application receives MotionNotify events independent of the state of
the pointer buttons.

e PointerMotionHint

If PointerMotionHintMask is selected, the X server is free to send only one
MotionNotify event (with the is_hint member of the XPointerMovedEvent
structure set to NotifyHint) to the client for the event window, until either the
key or button state changes, the pointer leaves the event window, or the client calls
XQueryPointer or XGetMotionEvents. The server still may send
MotionNotify events without is_hint set to NotifyHint.

The source of the event is the viewable window that the pointer is in. The window used by
the X server to report these events depends on the window’s position in the window
hierarchy and whether any intervening window prohibits the generation of these events.
Starting with the source window, the X server scarches up the window hierarchy until it
locates the first window specified by a client as having an interest in these events. If one of
the intervening windows has its do-not-propagate-mask set to prohibit generation of the
event type, the events of those types will be suppressed. Clients can modify the actual
window used for reporting by performing active grabs and, in the case of keyboard events,
by using the focus window.

The structures for these event types contain:

Events and Event-Handling Functions 8-11

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
unsigned int button;
Bool same_screen;

} XButtonEvent;

/*
Viid
/*
/*
/*
/*
/*
/1\'
/*
/*
/¥
/*
/¥

ButtonPress or ButtonRelease */

of last request processed by server */

true if this came from a SendEvent request */
Display the event was read from */

‘'‘event’'’' window it is reported relative to */
root window that the event occurred on */
child window */

milliseconds */

pointer x, y coordinates in event window */
coordinates relative to root */

key or button mask */

detail */

same screen flag */

typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
unsigned int keycode;
Bool same_screen;
} XKeyEvent;
typedef XKeyEvent XKeyPressedEvent;
typedef XKeyEvent XKeyReleasedEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x root, y_root;
unsigned int state;
char is_hint;
Bool same_screen;

} XMotionEvent;

typedef XMotionEvent XPointerMovedEvent;

/¥
/*
/*
/%
Vi
/*
/%
/*
/*
/%
Vi
Vi
VAd

/*
/%
/*
/*
/*
Vaid
/*
/%
/*
/*
/%
/%
/%

KeyPress or KeyRelease */

of last request processed by server */

true if this came from a SendEvent request */
Display the event was read from */

‘*‘event'' window it is reported relative to */
root window that the event occurred on */
child window */

milliseconds */

pointer x, y coordinates in event window */
coordinates relative to root */

key or button mask */

detail */

same screen flag */

MotionNotify */ :

of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */
‘‘event'' window reported relative to */
root window that the event occurred on */
child window */

milliseconds */

pointer x, y coordinates in event window */
coordinates relative to root */

key or button mask */

detail */

same screen flag */

8-12 Events and Event-Handling Functions

These structures have the following common members: window, root, subwindow, time, x,
¥y, X_root, y_root, state, and same_screen. The window member is set to the window on
which the event was generated and is referred to as the event window. As long as the
conditions previously discussed are met, this is the window used by the X server to report
the event. The root member is set to the source window’s root window. The x_root and
y_root members are set to the pointer’s coordinates relative to the root window’s origin at
the time of the event.

The same_screen member is set to indicate whether the event window is on the same
screen as the root window and can be either True or False. If True, the event and
root windows are on the same screen. If False, the event and root windows are not on
the same screen.

If the source window is an inferior of the event window, the subwindow member of the
structure is set to the child of the event window that is the source member or an ancestor
of it. Otherwise, the X server sets the subwindow member to None. The time member is
set to the time when the event was generated and is expressed in milliseconds.

If the event window is on the same screen as the root window, the x and y members are set
to the coordinates relative to the event window’s origin. Otherwise, these members are set
to zero.

The state member is set to indicate the logical state of the pointer buttons and modifier
keys just prior to the event, which is the bitwise inclusive OR of one or more of the button
or modifier key masks: ButtonlMask, Button2Mask, Button3Mask,
Button4Mask, Button5Mask, ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

Each of these structures also has a member that indicates the detail. For the
XKeyPressedEvent and XKeyReleasedEvent structures, this member is called
keycode. It is set to a number that represents a physical key on the keyboard. The
keycode is an arbitrary representation for any key on the keyboard (see chapter 7).

For the XButtonPressedEvent and XButtonReleasedEvent structures, this
member is called button. It represents the pointer button that changed state and can be
the Buttonl, Button2, Button3, Button4, or Button5 value. For the
XPointerMovedEvent structure, this member is called is_hint. It can be set to
NotifyNormal or NotifyHint,

Events and Event-Handling Functions 8-13

8.4.2 Window Entry/Exit Events

This section describes the processing that occurs for the window crossing events
EnterNotify and LeaveNotify. If a pointer motion or a window hierarchy change
causes the pointer to be in a different window than before, the X server reports
EnterNotify or LeaveNotify events to clients who have selected for these events.
All EnterNotify and LeaveNotify events caused by a hierarchy change are
generated after any hierarchy event (UnmapNotify, MapNotify,
ConfigureNotify, GravityNotify, CirculateNotify) caused by that
change; however, the X protocol does not constrain the ordering of EntexrNotify and
LeaveNotify events with respect to FocusOut, VisibilityNotify, and
Expose events.

This contrasts with MotionNotify events, which are also generated when the pointer
moves but only when the pointer motion begins and ends in a single window. An
EnterNotify or LeaveNotify event also can be generated when some client
application calls XGrabPointer and XUngrabPointer,

To receive EnterNotify or LeaveNotify events, set the EnterWindowMask or
LeaveWindowMask bits of the event-mask attribute of the window.

The structure for these event types contains:

typedef struct {

int type; /* EnterNotify or LeaveNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* '‘event'’' window reported relative to */
Window root; /* root window that the event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* pointer x, y coordinates in event window */
int x_root, y_root; /* coordinates relative to root */
int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab ¥/
int detail;

/%

* NotifyAncestor, NotifyVirtual, NotifyInferior,
* NotifyNonlinear,NotifyNonlinearVirtual

*/
Bool same_screen; /* same screen flag */
Bool focus; /* boolean focus */
unsigned int state; /* key or button mask */

} XCrossingEvent;
typedef XCrossingEvent XEnterWindowEvent;
typedef XCrossingEvent XLeaveWindowEvent;

8-14 Events and Event-Handling Functions

The window member is set to the window on which the EnterNotify or
LeaveNotify event was generated and is referred to as the event window. This is the
window used by the X server to report the event, and is relative to the root window on
which the event occurred. The root member is set to the root window of the screen on
which the event occurred.

For a LeaveNotify event, if a child of the event window contains the initial position of
the pointer, the subwindow component is set to that child. Otherwise, the X server sets the
subwindow member to None. For an EnterNotify event, if a child of the event
window contains the final pointer position, the subwindow component is set to that child or
None.

The time member is set to the time when the event was generated and is expressed in
milliseconds. The x and y members are set to the coordinates of the pointer position in the
event window. This position is always the pointer’s final position, not its initial position. If
the event window is on the same screen as the root window, x and y are the pointer
coordinates relative to the event window’s origin. Otherwise, x and y are set to zero. The
x_root and y_root members are set to the pointer’s coordinates relative to the root
window’s origin at the time of the event.

The same_screen member is set to indicate whether the event window is on the same
screen as the root window and can be either True or False. If True, the event and
root windows are on the same screen. If False, the event and root windows are not on
the same screen.

The focus member is set to indicate whether the event window is the focus window or an
inferior of the focus window. The X server can set this member to either True or
False. If True, the event window is the focus window or an inferior of the focus
window. If False, the event window is not the focus window or an inferior of the focus
window.

The state member is set to indicate the state of the pointer buttons and modifier keys just
prior to the event. The X server can set this member to the bitwise inclusive OR of one or
more of the button or modifier key masks: ButtonlMask, Button2Mask,
Button3Mask, Button4Mask, Button5Mask, ShiftMask, LockMask,
ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

The mode member is set to indicate whether the events are normal events, pseudo-motion
events when a grab activates, or pseudo-motion events when a grab deactivates. The X
server can set this member to NotifyNormal, NotifyGrab, or NotifyUngrab.

The detail member is set to indicate the notify detail and can be NotifyAncestor,
NotifyVirtual, NotifyInferior, NotifyNonlinear, or
NotifyNonlinearVirtual.

Events and Event-Handling Functions 8-15

Normal Entry/Exit Events

EnterNotify and LeaveNotify events are generated when the pointer moves from
one window to another window. Normal events are identified by XEnterWindowEvent
or XLeaveWindowEvent structures whose mode member is set to NotifyNormal.

¢ When the pointer moves from window A to window B and A is an inferior of B, the
X server does the following:

« It generates a LeaveNotify event on window A, with the detail member of
the XLeaveWindowEvent structure set to NotifyAncestor.

o It generates a LeaveNotify event on each window between window A and
window B, exclusive, with the detail member of each XLeaveWindowEvent
structure set to NotifyVirtual.

o It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyInferior.

» When the pointer moves from window A to window B and B is an inferior of A, the
X server does the following:

« It generates a LeaveNotify event on window A, with the detail member of
the XLeaveWindowEvent structure set to NotifyInferior.

o It generates an EnterNotify event on each window between window A and
window B, exclusive, with the detail member of each XEnterWindowEvent
structure set to NotifyVirtual.

o It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyAncestor.

» When the pointer moves from window A to window B and window C is their least
common ancestor, the X server does the following:

o It generates a LeaveNotify event on window A, with the detail member of
the XLeaveWindowEvent structure set to NotifyNonlinear.

o It generates a LeaveNotify event on each window between window A and
window C, exclusive, with the detail member of each XLeaveWindowEvent
structure set to NotifyNonlinearVirtual.

o It generates an EnterNotify event on each window between window C and
window B, exclusive, with the detail member of each XEnterWindowEvent
structure set to NotifyNonlinearVirtual.

o It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyNonlinear.

8-16 Events and Event-Handling Functions

¢ When the pointer moves from window A to window B on different screens, the X
server does the following:

o It generates a LeaveNotify event on window A, with the detail member of
the XLeaveWindowEvent structure set to NotifyNonlinear.

o If window A is not a root window, it generates a LeaveNotify event on each
window above window A up to and including its root, with the detail membcr of
each XLeaveWindowEvent structure set to
NotifyNonlinearVirtual.

o If window B is not a root window, it generates an EnterNotify event on
each window from window B’s root down to but not including window B, with
the detail member of cach XEnterWindowEvent structure set to
NotifyNonlinearVirtual.

o It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyNonlinear.

Grab and Ungrab Entry/Exit Events

Pseudo-motion mode EnterNotify and LeaveNotify events are generated when a
pointer grab activates or deactivates. Events in which the pointer grab activates are
identified by XEnterWindowEvent or XLeaveWindowEvent structures whose
mode member is set to NotifyGrab. Events in which the pointer grab deactivates are
identified by XEnterWindowEvent or XLeaveWindowEvent structures whose
mode member is set to NotifyUngrab (see XGrabPointer).

» When a pointer grab activates after any initial warp into a confine_to window and
before generating any actual ButtonPress event that activates the grab, G is the
grab_window for the grab, and P is the window the pointer is in, the X server does
the following:

o It generates EnterNotify and LeaveNotify events (see section 8.4.2.1)
with the mode members of the XEnterWindowEvent and
XLeaveWindowEvent structures set to NotifyGrab. These events are
generated as if the pointer were to suddenly warp from its current position in P
to some position in G. However, the pointer does not warp, and the X server
uses the pointer position as both the initial and final positions for the events.

o When a pointer grab deactivates after generating any actual ButtonRelease
event that deactivates the grab, G is the grab_window for the grab, and P is the
window the pointer is in, the X server does the following:

Events and Event-Handling Functions 8-17

o It generates EnterNotify and LeaveNotify events (see section 8.4.2.1)
with the mode members of the XEnterWindowEvent and
XLeaveWindowEvent structures set to NotifyUngrab. These events are
generated as if the pointer were to suddenly warp from some position in G to its
current position in P. However, the pointer does not warp, and the X server
uses the current pointer position as both the initial and final positions for the
events.

8.4.3 Input Focus Events

This section describes the processing that occurs for the input focus events FocusIn and
FocusOut. The X server can report FocusIn or FocusOut events to clients wanting
information about when the input focus changes. The keyboard is always attached to some
window (typically, the root window or a top-level window), which is called the focus
window. The focus window and the position of the pointer determine the window that
receives keyboard input. Clients may need to know when the input focus changes to
control highlighting of areas on the screen.

To receive FocusIn or FocusOut events, set the FocusChangeMask bit in the
event-mask attribute of the window.

The structure for these event types contains:

typedef struct {

int type; /* FocusIn or FocusOut */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* window of event */
int mode; /% NotifyNormal, NotifyGrab, NotifyUngrab */
int detail;
/*

* NotifyAncestor, NotifyVirtual, NotifyInferior,
* NotifyNonlinear,NotifyNonlinearVirtual, NotifyPointer
* NotifyPointerRoot, NotifyDetailNone
*/
} XFocusChangeEvent;
typedef XFocusChangeEvent XFocusInEvent;
typedef XFocusChangeEvent XFocusOutEvent;

The window member is set to the window on which the FocusIn or FocusQut event
was generated. This is the window used by the X server to report the event. The mode
member is set to indicate whether the focus events are normal focus events, focus events
while grabbed, focus events when a grab activates, or focus events when a grab deactivates.

8-18 Events and Event-Handling Functions

The X server can set the mode member to NotifyNormal, NotifyWhileGrabbed,
NotifyGrab, or NotifyUngrab.

All FocusOut events caused by a window unmap are generated after any
UnmapNotify event; however, the X protocol does not constrain the ordering of
FocusOut events with respect to generated EnterNotify, LeaveNotify,
VisibilityNotify, and Expose events.

Depending on the event mode, the detail member is set to indicate the notify detail and
canbe NotifyAncestor, NotifyVirtual, NotifyInferior,
NotifyNonlinear, NotifyNonlinearVirtual, NotifyPointer,
NotifyPointerRoot, or NotifyDetailNone.

Normal Focus Events and Focus Events While Grabbed

Normal focus events are identified by XFocusInEvent or XFocusOutEvent
structures whose mode member is set to NotifyNormal. Focus events while grabbed
are identified by XFocusInEvent or XFocusOutEvent structures whose mode
member is set to NotifyWhileGrabbed. The X server processes normal focus and
focus events while grabbed according to the following:

o When the focus moves from window A to window B, A is an inferior of B, and the
pointer is in window P, the X server does the following:

e It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyAncestor.

o It generates a FocusOut event on each window between window A and
window B, exclusive, with the detail member of each XFocusOutEvent
structure set to NotifyVirtual.

o It generates a FocusIn event on window B, with the detail member of the
XFocusOutEvent structure set to NotifyInferior.

o If window P is an inferior of window B but window P is not window A or an
inferior or ancestor of window A, it generates a FocusIn event on each
window below window B, down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

e When the focus moves from window A to window B, B is an inferior of A, and the
pointer is in window P, the X server does the following:

 If window P is an inferior of window A but P is not an inferior of window B or
an ancestor of B, it generates a FocusOut event on each window from
window P up to but not including window A, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

Events and Event-Handling Functions 8-19

8-20

o It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyInferior.

o It generates a FocusIn event on each window between window A and window
B, exclusive, with the detail member of each XFocusInEvent structure set to
NotifyVirtual.

o It generates a FocusIn event on window B, with the detail member of the
XFocusInEvent structure set to NotifyAncestor.

When the focus moves from window A to window B, window C is their least
common ancestor, and the pointer is in window P, the X server does the following:

o If window P is an inferior of window A, it generates a FocusOut event on
each window from window P up to but not including window A, with the detail
member of the XFocusOutEvent structure set to NotifyPointer.

« It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

« It generates a FocusOut event on each window between window A and
window C, exclusive, with the detail member of each XFocusOutEvent
structure set to NotifyNonlinearVirtual.

o It generates a FocusIn event on each window between C and B, exclusive,
with the detail member of each XFocusInEvent structure set to
NotifyNonlinearVirtual.

o It generates a FocusIn event on window B, with the detail member of the
XFocusInEvent structure set to NotifyNonlinear.

o If window P is an inferior of window B, it generates a FocusIn event on each
window below window B down to and including window P, with the detail
member of the XFocusInEvent structure set to NotifyPointer.

When the focus moves from window A to window B on different screens and the
pointer is in window P, the X server does the following:

o If window P is an inferior of window A, it generates a FocusOut event on
each window from window P up to but not including window A, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

o It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

Events and Event-Handling Functions

o If window A is not a root window, it generates a FocusOut event on each
window above window A up to and including its root, with the detail member of
each XFocusOutEvent structure set to NotifyNonlinearVirtual.

« If window B is not a root window, it generates a FocusIn event on each
window from window B’s root down to but not including window B, with the
detail member of each XFocusInEvent structure set to
NotifyNonlinearVirtual.

e It generates a FocusIn event on window B, with the detail member of each
XFocusInEvent structure set to NotifyNonlinear.

e If window P is an inferior of window B, it generates a FocusIn event on each
window below window B down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

o When the focus moves from window A to PointerRoot (events sent to the
window under the pointer) or None (discard), and the pointer is in window P, the X
server does the following:

o If window P is an inferior of window A, it generates a FocusOut event on
each window from window P up to but not including window A, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

e It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

« If window A is not a root window, it generates a FocusOut event on each
window above window A up to and including its root, with the detail member of
each XFocusOutEvent structure set to NotifyNonlinearVirtual.

« It generates a FocusIn event on the root window of all screens, with the detail
member of each XFocusInEvent structure set to NotifyPointerRoot
(or NotifyDetailNone).

o If the new focus is PointerRoot, it generates a FocusIn event on each
window from window P’s root down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

o When the focus moves from PointerRoot (events sent to the window under the
pointer) or None to window A, and the pointer is in window P, the X server does
the following:

« If the old focus is PointerRoot, it generates a FocusOut event on each

window from window P up to and including window P’s root, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

Events and Event-Handling Functions 8-21

o It generates a FocusOut event on all root windows, with the detail member of
each XFocusOutEvent structure set to NotifyPointerRoot (or
NotifyDetailNone).

o If window A is not a root window, it generates a FocusIn event on each
window from window A’s root down to but not including window A, with the
detail member of each XFocusInEvent structure set to
NotifyNonlinearVirtual.

o It generates a FocusIn event on window A, with the detail member of the
XFocusInEvent structure set to NotifyNonlinear.

o If window P is an inferior of window A, it generates a FocusIn event on each
window below window A down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

e When the focus moves from PointerRoot (events sent to the window under the
pointer) to None (or vice versa), and the pointer is in window P, the X server does
the following;

o If the old focus is PointerRoot, it generates a FocusOut event on each
window from window P up to and including window P’s root, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

« It generates a FocusOut event on all root windows, with the detail member of
each XFocusOutEvent structure set to either NotifyPointerRoot or
NotifyDetailNone.

o It generates a FocusIn event on all root windows, with the detail member of
each XFocusInEvent structure set to NotifyDetailNone or
NotifyPointerRoot.

o If the new focus is PointerRoot, it generates a FocusIn event on each
window from window P’s root down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

Focus Events Generated by Grabs

Focus events in which the keyboard grab activates are identified by XFocusInEvent or
XFocusOutEvent structures whose mode member is set to NotifyGrab. Focus
events in which the keyboard grab deactivates are identified by XFocusInEvent or
XFocusOutEvent structures whose mode member is set to NotifyUngrab (see
XGrabKeyboard).

8-22 Events and Event-Handling Functions

o When a keyboard grab activates before generating any actual KeyPress event that
activates the grab, G is the grab_window, and F is the current focus, the X server
does the following:

o It generates FocusIn and FocusOut events, with the mode members of the
XFocusInEvent and XFocusOutEvent structures set to NotifyGrab.
These events are generated as if the focus were to change from F to G.

o When a keyboard grab deactivates after generating any actual KeyRelease event
that deactivates the grab, G is the grab_window, and F is the current focus, the X
server does the following;

o It generates FocusIn and FocusOut events, with the mode members of the
XFocusInEvent and XFocusOutEvent structures set to
NotifyUngrab. These events are generated as if the focus were to change
from Gto F.

8.4.4 Key Map State Notification Events

The X server can report KeymapNotify events to clients that want information about
changes in their keyboard state.

To receive KeymapNotify events, set the KeymapStateMask bit in the event-mask
attribute of the window. The X server generates this event immediately after every
EnterNotify and FocusIn event.

The structure for this event type contains:

/* generated on EnterWindow and FocusIn when KeymapState selected */
typedef struct {

int type; /* KeymapNotify */

unsigned long serial; /* # of last request processed by server */

Bool send event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
char key vector([32];
} XKeymapEvent;

The window member is not used but is present to aid some toolkits. The key_vector
member is set to the bit vector of the keyboard. Each bit set to 1 indicates that the
corresponding key is currently pressed. The vector is represented as 32 bytes. Byte N
(from 0) contains the bits for keys 8N to 8N + 7 with the least-significant bit in the byte
representing key 8N.

Events and Event-Handling Functions 8-23

8.4.5 Exposure Events

The X protocol does not guarantee to preserve the contents of window regions when the
windows are obscured or reconfigured. Some implementations may preserve the contents
of windows. Other implementations are free to destroy the contents of windows when
exposed. X expects client applications to assume the responsibility for restoring the
contents of an exposed window region. (An exposed window region describes a formerly
obscured window whose region becomes visible.) Therefore, the X server sends Expose
events describing the window and the region of the window that has been exposed. A
naive client application usually redraws the entire window. A more sophisticated client
application redraws only the exposed region.

Expose Events

The X server can report Expose events to clients wanting information about when the
contents of window regions have been lost. The circumstances in which the X server
generates Expose events are not as definite as those for other events. However, the X
server never generates Expose events on windows whose class you specified as
InputOnly. The X server can generate Expose events when no valid contents are
available for regions of a window and either the regions are visible, the regions are
viewable and the server is (perhaps newly) maintaining backing store on the window, or
the window is not viewable but the server is (perhaps newly) honoring the window’s
backing-store attribute of Always or WhenMapped. The regions decompose into an
(arbitrary) set of rectangles, and an Expose event is generated for each rectangle. For
any given window, the X server guarantees to report contiguously all of the regions
exposed by some action that causes Expose events, such as raising a window.

To receive Expose events, set the ExposureMask bit in the event-mask attribute of
the window.

The structure for this event type contains:

typedef struct {

int type; /* Expose */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;

int x, y;

int width, height;

int count; /* if nonzero, at least this many more */

} XExposeEvent;

8-24 Events and Event-Handling Functions

The window member is set to the exposed (damaged) window. The x and y members are
set to the coordinates relative to the window’s origin and indicate the upper-left corner of
the rectangle. The width and height members are set to the size (extent) of the rectangle.
The count member is set to the number of Expose events that are to follow. If count is
zero, no more Expose events follow for this window. However, if count is nonzero, at
least that number of Expose events (and possibly more) follow for this window. Simple
applications that do not want to optimize redisplay by distinguishing between subareas of
its window can just ignore all Expose events with nonzero counts and perform full
redisplays on events with zero counts.

GraphicsExpose and NoExpose Events

The X server can report GraphicsExpose events to clients wanting information about
when a destination region could not be computed during certain graphics requests:
XCopyArea or XCopyPlane. The X server generates this event whenever a
destination region could not be computed due to an obscured or out-of-bounds source
region. In addition, the X server guarantees to report contiguously all of the regions
exposed by some graphics request (for example, copying an area of a drawable to a
destination drawable).

The X server generates a NoExpose event whenever a graphics request that might
produce a GraphicsExpose event does not produce any. In other words, the client is
really asking for a GraphicsExpose event but instead receives a NoExpose event.

To reccive GraphicsExpose or NoExpose events, you must first set the graphics-
exposure attribute of the graphics context to True. You also can set the graphics-expose
attribute when creating a graphics context using XCreateGC or by calling
XSetGraphicsExposures.

The structures for these event types contain:

typedef struct {

int type; /* GraphicsExpose */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Drawable drawable;

int x, y;

int width, height;

int count; /% if nonzero, at least this many more */

int major_code; /* core is CopyArea or CopyPlane */

int minor_code; /* not defined in the core */

} XGraphicsExposeEvent;

Events and Event-Handling Functions 8-25

typedef struct {

int type; /* NoExpose ¥/

unsigned long serial; /* # of last request processed by server */
Bool send_event; /%* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Drawable drawable;

int major_code; /* core is CopyArea or CopyPlane */

int minor_code; /* not defined in the core */

} XNoExposeEvent;

Both structures have these common members: drawable, major_code, and minor_code.
The drawable member is set to the drawable of the destination region on which the
graphics request was to be performed. The major_code member is set to the graphics
request initiated by the client and can be either X_CopyArea or X_CopyPlane. Ifitis
X_CopyArea, a call to XCopyArea initiated the request. Ifitis X _CopyPlane, a call
to XCopyP1lane initiated the request. These constants are defined in
<X11/Xproto.h>. The minor_code member, like the major_code member, indicates
which graphics request was initiated by the client. However, the minor_code member is not
defined by the core X protocol and will be zero in these cases, although it may be used by
an extension.

The XGraphicsExposeEvent structure has these additional members: x, y, width,
height, and count. The x and y members are set to the coordinates relative to the
drawable’s origin and indicate the upper-left corner of the rectangle. The width and height
members are set to the size (extent) of the rectangle. The count member is set to the
number of GraphicsExpose events to follow. If count is zero, no more
GraphicsExpose events follow for this window. However, if count is nonzero, at least
that number of GraphicsExpose events (and possibly more) are to follow for this
window.

8.4.6 Window State Change Events

The following sections discuss:

e CirculateNotify events

ConfigureNotify events

o CreateNotify events

DestroyNotify events

GravityNotify events

MapNotify events

MappingNotify events

8-26 Events and Event-Handling Functions

» ReparentNotify events
e UnmapNotify events

e VisibilityNotify events

CirculateNotify Events

The X server can report CirculateNotify events to clients wanting information
about when a window changes its position in the stack. The X server generates this event
type whenever a window is actually restacked as a result of a client application calling
XCirculateSubwindows, XCirculateSubwindowsUp, or
XCirculateSubwindowsDown,

To receive CirculateNotify events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of the parent window (in which case, circulating any child generates
an event).

The structure for this event type contains:

typedef struct {

int type; /* CirculateNotify */

unsigned long serial; /* # of last request processed by server */
Bool send_event; /%* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

int place; /* PlaceOnTop, PlaceOnBottom */
} XCirculateEvent;

The event member is set either to the restacked window or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. The window
member is set to the window that was restacked. The place member is set to the window’s
position after the restack occurs and is either PlaceOnTop or PlaceOnBottom. Ifit
is PlaceOnTop, the window is now on top of all siblings. If it is PlaceOnBottom, the
window is now below all siblings.

ConfigureNotify Events

The X server can report ConfigureNotify events to clients wanting information

about actual changes to a window’s state, such as size, position, border, and stacking order.
The X server generates this event type whenever one of the following configure window
requests made by a client application actually completes:

o A window’s size, position, border, or stacking order is reconfigured by calling
XConfigureWindow.

Events and Event-Handling Functions §-27

« The window’s position in the stacking order is changed by calling XLowerWindow,
XRaiseWindow, or XRestackWindows.

¢ A window is moved by calling XMoveWindow.
o A window’s size is changed by calling XResizeWindow.
o A window’s size and location is changed by calling XMoveResizeWindow.

« A window is mapped and its position in the stacking order is changed by calling
XMapRaised.

« A window’s border width is changed by calling XSetWindowBorderWidth.

To receive ConfigureNotify events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of the parent window (in which case, configuring any child generates
an event).

The structure for this event type contains:

typedef struct {

int type; /* ConfigureNotify */

unsigned long serial; /* # of last request processed by server */
Bool send_event; /%* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

int x, y;

int width, height;

int border_width;

Window above;

Bool override_redirect;
} XConfigureEvent;

The event member is set either to the reconfigured window or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. The window
member is set to the window whose size, position, border, or stacking order was changed.

The x and y members are set to the coordinates relative to the parent window’s origin and
indicate the position of the upper-left outside corner of the window. The width and height
members are set to the inside size of the window, not including the border. The
border_width member is set to the width of the window’s border, in pixels.

The above member is set to the sibling window and is used for stacking operations. If the
X server sets this member to None, the window whose state was changed is on the bottom
of the stack with respect to sibling windows. However, if this member is set to a sibling
window, the window whose state was changed is placed on top of this sibling window.

8-28 Events and Event-Handling Functions

The override_redirect member is set to the override-redirect attribute of the window.
Window manager clients normally should ignore this window if the override_redirect
member is True.

CreateNotify Events

The X server can report CreateNotify events to clients wanting information about
creation of windows. The X server generates this event whenever a client application
creates a window by calling XCreateWindow or XCreateSimpleWindow.

To receive CreateNotify events, set the SubstructureNotifyMask bit in the
event-mask attribute of the window. Creating any children then generates an event.

The structure for the event type contains:

typedef struct {

int type; /% CreateNotify */

unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window parent; /* parent of the window */

Window window; /* window id of window created */

int x, y; /* window location */

int width, height; /* size of window */

int border width; /* border width */

Bool override_redirect; /* creation should be overridden */

} XCreateWindowEvent;

The parent member is set to the created window’s parent. The window member specifies
the created window. The x and y members are set to the created window’s coordinates
relative to the parent window’s origin and indicate the position of the upper-left outside
corner of the created window. The width and height members are set to the inside size of
the created window (not including the border) and are always nonzero. The border_width
member is set to the width of the created window’s border, in pixels. The
override_redirect member is set to the override-redirect attribute of the window. Window
manager clients normally should ignore this window if the override_redirect member is
True.

DestroyNotify Events

The X server can report DestroyNotify events to clients wanting information about
which windows are destroyed. The X server generates this event whenever a client
application destroys a window by calling XDestroyWindow or
XDestroySubwindows.

Events and Event-Handling Functions 8-29

The ordering of the DestroyNotify events is such that for any given window,
DestroyNotify is generated on all inferiors of the window before being generated on
the window itself. The X protocol does not constrain the ordering among siblings and
across subhierarchies.

To receive DestroyNotify events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of the parent window (in which case, destroying any child generates
an event).

The structure for this event type contains:

typedef struct {

int type; /* DestroyNotify */

unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from %/

Window event;
Window window;
} XDestroyWindowEvent;

The event member is set either to the destroyed window or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. The window
member is set to the window that is destroyed.

GravityNotify Events

The X server can report GravityNotify events to clients wanting information about
when a window is moved because of a change in the size of its parent. The X server
generates this event whenever a client application actually moves a child window as a result
of resizing its parent by calling XConfigureWindow, XMoveResizeWindow, or
XResizeWindow.

To receive GravityNotify events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of the parent window (in which case, any child that is moved because
its parent has been resized generates an event).

The structure for this event type contains:

8-30 Events and Event-Handling Functions

typedef struct {

int type; /* GravityNotify */

unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;
Window window;
int x, vy;

} XGravityEvent;

The event member is set either to the window that was moved or to its parent, depending
on whether StructureNotify or SubstructureNotify was selected. The
window member is set to the child window that was moved. The x and y members are set
to the coordinates relative to the new parent window’s origin and indicate the position of
the upper-left outside corner of the window.

MapNotify Events

The X server can report MapNotify events to clients wanting information about which
windows are mapped. The X server generates this event type whenever a client application
changes the window’s state from unmapped to mapped by calling XMapWindow,
XMapRaised, XMapSubwindows, XReparentWindow, or as a result of save-set
processing.

To receive MapNotify events, set the StructureNotifyMask bit in the event-mask
attribute of the window or the SubstructureNotifyMask bit in the event-mask
attribute of the parent window (in which case, mapping any child generates an event).

The structure for this event type contains:

typedef struct {

int type; /* MapNotify */

unsigned long serial; /* # of last request processed by server */
Bool send event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

Bool override_redirect; /* boolean, is override set... */
} XMapEvent;

The event member is set either to the window that was mapped or to its parent, depending
on whether StructureNotify or SubstructureNotify was selected. The
window member is set to the window that was mapped. The override_redirect member is
set to the override-redirect attribute of the window. Window manager clients normally
should ignore this window if the override-redirect attribute is True, because these events
usually are generated from pop-ups, which override structure control.

Events and Event-Handling Functions 8-31

MappingNotify Events

The X server reports MappingNotify events to all clients. There is no mechanism to
express disinterest in this event. The X server generates this event type whenever a client
“application successfully calls:

o XSetModifierMapping to indicate which KeyCodes are to be used as modifiers
e XChangeKeyboardMapping to change the keyboard mapping
e XSetPointerMapping to set the pointer mapping

The structure for this event type contains:

typedef struct {

int type; /* MappingNotify */

unsigned long serial; /% # of last request processed by server %/

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* unused */

int request; /* one of MappingModifier, MappingKeyboard,
MappingPointer */

int first_keycode; /% first keycode */

int count; /* defines range of change w. first_keycode*/

} XMappingEvent;

The request member is set to indicate the kind of mapping change that occurred and can
be MappingModifier, MappingKeyboard, MappingPointer. Ifitis
MappingModifier, the modifier mapping was changed. If it is MappingKeyboard,
the keyboard mapping was changed. Ifitis MappingPointer, the pointer button
mapping was changed. The first_keycode and count members are set only if the request
member was set to MappingKeyboard. The number in first_keycode represents the
first number in the range of the altered mapping, and count represents the number of
keycodes altered.

To update the client application’s knowledge of the keyboard, you should call
XRefreshKeyboardMapping.

ReparentNotify Events

The X server can report ReparentNotify events to clients wanting information about
changing a window’s parent. The X server generates this event whenever a client
application calls XReparentWindow and the window is actually reparented.

To receive ReparentNotify events, set the StructureNotifyMask bit in the
event-mask attribute of the window or the SubstructureNotifyMask bit in the
event-mask attribute of either the old or the new parent window (in which case,
reparenting any child generates an event).

The structure for this event type contains:

8-32 Events and Event-Handling Functions

typedef struct {

int type; /* ReparentNotify */

unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

Window parent;

int x, y;

Bool override_redirect;
} XReparentEvent;

The event member is set either to the reparented window or to the old or the new parent,
depending on whether StructureNotify or SubstructureNotify was selected.
The window member is set to the window that was reparented. The parent member is set
to the new parent window. The x and y members are set to the reparented window’s
coordinates relative to the new parent window’s origin and define the upper-left outer
corner of the reparented window. The override_redirect member is set to the override-
redirect attribute of the window specified by the window member. Window manager
clients normally should ignore this window if the override_redirect member is True.

UnmapNotify Events

The X server can report UnmapNotify events to clients wanting information about
which windows are unmapped. The X server generates this event type whenever a client
application changes the window’s state from mapped to unmapped.

To receive UnmapNotify events, set the StructureNotifyMask bit in the event-
mask attribute of the window or the SubstructureNotifyMask bit in the event-
mask attribute of the parent window (in which case, unmapping any child window
generates an event).

The structure for this event type contains:

typedef struct {

int type; /* UnmapNotify */

unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

Bool from configure;
} XUnmapEvent;

The event member is set either to the unmapped window or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. This is the
window used by the X server to report the event. The window member is set to the

Events and Event-Handling Functions 8-33

window that was unmapped. The from_configure member is set to True if the event was
generated as a result of a resizing of the window’s parent when the window itself had a
win_gravity of UnmapGravity.

VisibilityNotify Events

The X server can report VisibilityNotify events to clients wanting any change in
the visibility of the specified window. A region of a window is visible if someone looking at
the screen can actually see it. The X server generates this event whenever the visibility
changes state. However, this event is never generated for windows whose class is
InputOnly.

All VisibilityNotify events caused by a hierarchy change are generated after any
hierarchy event (UnmapNotify, MapNotify, ConfigureNotify,
GravityNotify, CirculateNotify) caused by that change. Any
VisibilityNotify event on a given window is generated before any Expose events
on that window, but it is not required that all VisibilityNotify events on all
windows be generated before all Expose events on all windows. The X protocol does not
constrain the ordering of VisibilityNotify events with respect to FocusOut
EnterNotify, and LeaveNotify events.

To receive VisibilityNotify events, set the VisibilityChangeMask bit in the
event-mask attribute of the window.

The structure for this event type contains:

typedef struct {

int type; /% VisibiltyNotify */

unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;

int state;

} XVisibilityEvent;

The window member is set to the window whose visibility state changes. The state
member is set to the state of the window’s visibility and can be
VisibilityUnobscured, VisibilityPartiallyObscured, or
VisibilityFullyObscured. The X server ignores all of a window’s subwindows
when determining the visibility state of the window and processes VisibilityNotify
events according to the following:

o When the window changes state from partially obscured, fully obscured, or not
viewable to viewable and completely unobscured, the X server generates the event
with the state member of the XVisibilityEvent structure set to
VisibilityUnobscured.

8-34 Events and Event-Handling Functions

o When the window changes state from viewable and completely unobscured or not
viewable to viewable and partially obscured, the X server generates the event with
the state member of the XVisibilityEvent structure set to
VisibilityPartiallyObscured.

e When the window changes state from viewable and completely unobscured, viewable
and partially obscured, or not viewable to viewable and fully obscured, the X server
generates the event with the state member of the XVisibilityEvent structure
setto VisibilityFullyObscured.

8.4.7 Structure Control Events
This section discusses:

e CirculateRequest events

e ConfigureRequest events

e MapRequest events

o ResizeRequest events

CirculateRequest Events

The X server can report CirculateRequest events to clients wanting information
about when another client initiates a circulate window request on a specified window. The
X server generates this event type whenever a client initiates a circulate window request on
a window and a subwindow actually needs to be restacked. To initiate a circulate window
request on the window, the client calls XCirculateSubwindows,
XCirculateSubwindowsUp, or XCirculateSubwindowsDown.

To receive CirculateRequest events, set the SubstructureRedirectMask in
the event-mask attribute of the window. Then, in the future, the circulate window request
for the specified window is not executed, and thus, any subwindow’s position in the stack is
not changed. For example, a client application calls XCirculateSubwindowsUp to
raise a subwindow to the top of the stack. If you had selected
SubstructureRedirectMask on the window, the X server reports to you a
CirculateRequest event and does not raise the subwindow to the top of the stack.

The structure for this event type contains:

Events and Event-Handling Functions 8-35

typedef struct {

int type; /* CirculateRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from ¥/

Window parent;

Window window;

int place; /* PlaceOnTop, PlaceOnBottom */
} XCirculateRequestEvent;

The parent member is set to the parent window. The window member is set to the
subwindow to be restacked. The place member is set to what the new position in the
stacking order should be and is either PlaceOnTop or PlaceOnBottom. Ifitis
PlaceOnTop, the subwindow should be on top of all siblings. If it is PLaceOnBottom,
the subwindow should be below all siblings.

ConfigureRequest Events

The X server can report ConfigureRequest events to clients wanting information
about when a different client initiates a configure window request on any child of a
specified window. The configure window request attempts to reconfigure a window’s size,
position, border, and stacking order. The X server generates this event whenever a
different client initiates a configure window request on a window by calling
XConfigureWindow, XLowerWindow, XRaiseWindow, XMapRaised,
XMoveResizeWindow, XMoveWindow, XResizeWindow, XRestackWindows,

or XSetWindowBorderWidth.

To receive ConfigureRequest events, set the SubstructureRedirectMask bit

in the event-mask attribute of the window. ConfigureRequest events are generated
when a ConfigureWindow protocol request is issued on a child window by another
client. For example, suppose a client application calls XLowerWindow to lower a
window. If you had selected SubstructureRedirectMask on the parent window

and if the override-redirect attribute of the window is set to False, the X server reports a
ConfigureRequest event to you and does not lower the specified window.

The structure for this event type contains:

8-36 Events and Event-Handling Functions

typedef struct {

int type; /* ConfigureRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
int detail; /* Above, Below, TopIf, BottomIf, Opposite */
unsigned long value_mask;
} XConfigureRequestEvent;

The parent member is set to the parent window. The window member is set to the window
whose size, position, border width, or stacking order is to be reconfigured. The
value_mask member indicates which components were specified in the
ConfigureWindow protocol request. The corresponding values are reported as given

in the request. The remaining values are filled in from the current geometry of the
window, except in the case of above (sibling) and detail (stack-mode), which are reported
as Above and None, respectively, if they are not given in the request.

MapRequest Events

The X server can report MapRequest events to clients wanting information about a
different client’s desire to map windows. A window is considered mapped when a map
window request completes. The X server generates this event whenever a different client
initiates a map window request on an unmapped window whose override_redirect member
is set to False. Clients initiate map window requests by calling XMapWindow,
XMapRaised, or XMapSubwindows.

To receive MapRequest events, set the SubstructureRedirectMask bit in the
event-mask attribute of the window. This means another client’s attempts to map a child
window by calling one of the map window request functions is intercepted, and you are
sent a MapRequest instead. For example, assume a client application calls
XMapWindow to map a window. If you (usually a window manager) had selected
SubstructureRedirectMask on the parent window and if the override-redirect
attribute of the window is set to False, the X server reports a MapRequest event to
you and does not map the specified window. Thus, this event gives your window manager
client the ability to control the placement of subwindows.

The structure for this event type contains:

Events and Event-Handling Functions 8-37

typedef struct {

int type; /* MapRequest */

unsigned long serial; /* # of last request processed by server */

Bool send event; /% true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window parent;
Window window;
} XMapRequestEvent;

The parent member is set to the parent window. The window member is set to the window
to be mapped.

ResizeRequest Events

The X server can report ResizeRequest events to clients wanting information about
another client’s attempts to change the size of a window. The X server generates this
event whenever some other client attempts to change the size of the specified window by
calling XConfigureWindow, XResizeWindow, or XMoveResizeWindow.

To receive ResizeRequest events, set the ResizeRedirect bit in the event-mask

attribute of the window. Any attempts to change the size by other clients are then
redirected.

The structure for this event type contains:

typedef struct {

int type; /* ResizeRequest */

unsigned long serial; /* # of last request processed by server */

Bool send event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
int width, height;
} XResizeRequestEvent;

The window member is set to the window whose size another client attempted to change.
The width and height members are set to the inside size of the window, excluding the
border.

8.4.8 Colormap State Change Events

The X server can report ColormapNotify events to clients wanting information about
when the colormap changes and when a colormap is installed or uninstalled. The X server
generates this event type whenever a client application:

o Changes the colormap member of the XSetWindowAttributes structure by
calling XChangeWindowAttributes, XFreeColormap, or
XSetWindowColormap

8-38 Events and Event-Handling Functions

o Installs or uninstalls the colormap by calling XInstallColormap or
XUninstallColormap

To receive ColormapNotify events, set the ColormapChangeMask bit in the
event-mask attribute of the window.

The structure for this event type contains:

typedef struct {

int type; /* ColormapNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;

Colormap colormap; /* colormap or None %/

Bool new;

int state; /* ColormapInstalled, ColormapUninstalled */

} XColormapEvent;

The window member is set to the window whose associated colormap is changed, installed,
or uninstalled. For a colormap that is changed, installed, or uninstalled, the colormap
member is set to the colormap associated with the window. For a colormap that is changed
by a call to XFreeColormap, the colormap member is set to None. The new member
is set to indicate whether the colormap for the specified window was changed or installed
or uninstalled and can be True or False. Ifitis True, the colormap was changed. If it
is False, the colormap was installed or uninstalled. The state member is always set to
indicate whether the colormap is installed or uninstalled and can be
ColormapInstalled or ColormapUninstalled.

8.4.9 Client Communication Events
This section discusses:

s ClientMessage events

PropertyNotify events
e SelectionClear events
o SelectionNotify events

e SelectionRequest events

Events and Event-Handling Functions 8-39

ClientMessage Events
The X server generates ClientMessage events only when a client calls the function
XSendEvent.

The structure for this event type contains:

typedef struct {

int type; /* ClientMessage */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
Atom message_type;
int format;
union {
char b{20];
short s[10];
long 1([5]1;
} data;
} XClientMessageEvent;

The window member is set to the window to which the event was sent. The message_type
member is set to an atom that indicates how the data should be interpreted by the
receiving client. The format member is set to 8, 16, or 32 and specifies whether the data
should be viewed as a list of bytes, shorts, or longs. The data member is a union that
contains the members b, s, and 1. The b, s, and | members represent data of 20 8-bit
values, 10 16-bit values, and 5 32-bit values. Particular message types might not make use
of all these values. The X server places no interpretation on the values in the
message_type or data members.

PropertyNotify Events
The X server can report PropertyNotify events to clients wanting information about
property changes for a specified window.

To receive PropertyNotify events, set the PropertyChangeMask bit in the
event-mask attribute of the window.

The structure for this event type contains:

typedef struct {

int type; /* PropertyNotify */

unsigned long serial; /* # of last request processed by server %/

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;

Atom atom;

Time time;

int state; /% PropertyNewValue or PropertyDeleted */

} XPropertyEvent;

8-40 Events and Event-Handling Functions

The window member is set to the window whose associated property was changed. The
atom member is set to the property’s atom and indicates which property was changed or
desired. The time member is set to the server time when the property was changed. The
state member is set to indicate whether the property was changed to a new value or
deleted and can be PropertyNewValue or PropertyDelete. The state member is
set to PropertyNewValue when a property of the window is changed using
XChangeProperty or XRotateWindowProperties (even when adding zero-
length data using XChangeProperty) and when replacing all or part of a property with
identical data using XChangeProperty or XRotateWindowProperties. The
state member is set to PropertyDeleted when a property of the window is deleted
using XDeleteProperty or, if the delete argument is True,
XGetWindowProperty.

SelectionClear Events

The X server reports SelectionClear events to the current owner of a selection. The
X server generates this event type on the window losing ownership of the selection to a
new owner. This sequence of events could occur whenever a client calls
XSetSelectionOwner.

The structure for this event type contains:

typedef struct {

int type; /* SelectionClear */

unsigned long serial; /* # of last request processed by server ¥/
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
Atom selection;
Time time;

} XSelectionClearEvent;

The window member is set to the window losing ownership of the selection. The selection
member is set to the selection atom. The time member is set to the last change time
recorded for the selection. The owner member is the window that was specified by the
current owner in its XSetSelectionOwner call

SelectionRequest Events

The X server reports SelectionRequest events to the owner of a selection. The X
server generates this event whenever a client requests a selection conversion by calling
XConvertSelection and the specified selection is owned by a window.

The structure for this event type contains:

Events and Event-Handling Functions 8-41

typedef struct {
int type;
unsigned long serial;

~ Bool send_event;

Display *display;
Window owner;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

} XSelectionRequestEvent;

/*
/¥*
/*
/*

SelectionRequest */

of last request processed by server */

true if this came from a SendEvent request */
Display the event was read from */

The owner member is set to the window owning the selection and is the window that was
specified by the current owner in its XSetSelectionOwner call. The requestor
member is set to the window requesting the selection. The selection member is set to the
atom that names the selection. For example, PRIMARY is used to indicate the primary
selection. The target member is set to the atom that indicates the type the selection is
desired in. The property member can be a property name or None. The time member is
set to the time and is a timestamp or CurrentTime from the ConvertSelection

request.

The client who owns the selection should do the following:

¢ The owner client should convert the selection based on the atom contained in the

target member.,

« If a property was specified (that is, the property member is set), the owner client
should store the result as that property on the requestor window and then send a
SelectionNotify event to the requestor by calling XSendEvent with an
empty event-mask; that is, the event should be sent to the creator of the requestor

window.

o If None is specified as the property, the owner client should choose a property
name on the requestor window and then send a SelectionNotify event giving

the actual name.

« If the selection cannot be converted as requested, the owner client should send a
SelectionNotify event with the property set to None.

8-42 Events and Event-Handling Functions

SelectionNotify Events

This event is generated by the X server in response to a ConvertSelection protocol
request when there is no owner for the selection. When there is an owner, it should be
generated by the owner of the selection by using XSendEvent. The owner of a selection
should send this event to a requestor when a selection has been converted and stored as a
property or when a selection conversion could not be performed (which is indicated by
setting the property member to None).

If None is specified as the property in the ConvertSelection protocol request, the
owner should choose a property name, store the result as that property on the requestor
window, and then send a SelectionNotify giving that actual property name.

The structure for this event type contains:

typedef struct {

int type; /% SelectionNotify */

unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from %/

Window requestor;
Atom selection;
Atom target;
Atom property; /* atom or None */
Time time;
} XSelectionEvent;

The requestor member is set to the window associated with the requestor of the selection.
The selection member is set to the atom that indicates the selection. For example,
PRIMARY is used for the primary selection. The target member is set to the atom that
indicates the converted type. For example, PIXMAP is used for a pixmap. The property
member is set to the atom that indicates which property the result was stored on. If the
conversion failed, the property member is set to None. The time member is set to the
time the conversion took place and can be a timestamp or CurrentTime.

8.5 Selecting Events

There are two ways to select the events you want reported to your client application. One
way is to set the event_mask member of the XSetWindowAttributes structure when
you call XCreateWindow and XChangeWindowAttributes. Another way is to

use XSelectInput.

XSelectInput (display, w, event_mask)
Display *display;
Window w;
long event_mask;

Events and Event-Handling Functions 8-43

display Specifies the connection to the X server.
w Specifies the window whose events you are interested in.
event_mask Specifies the event mask.

The XSelectInput function requests that the X server report the events associated
with the specified event mask. Initially, X will not report any of these events. Events are
reported relative to a window. If a window is not interested in a device event, it usually
propagates to the closest ancestor that is interested, unless the do_not_propagate mask
prohibits it.

Setting the event-mask attribute of a window overrides any previous call for the same
window but not for other clients. Multiple clients can select for the same events on the
same window with the following restrictions:

« Multiple clients can select events on the same window because their event masks are
disjoint. When the X server generates an event, it reports it to all interested clients.

e Only one client at a time can select CirculateRequest,
ConfigureRequest, or MapRequest events, which are associated with the
event mask SubstructureRedirectMask.

e Only one client at a time can select a ResizeRequest event, which is associated
with the event mask ResizeRedirectMask.

« Only one client at a time can select a ButtonPress event, which is associated
with the event mask ButtonPressMask.

The server reports the event to all interested clients.

XSelectInput can generate a BadWindow error.

8.6 Handling the Output Buffer

The output buffer is an area used by Xlib to store requests. The functions described in this
section flush the output buffer if the function would block or not return an event. That is,
all requests residing in the output buffer that have not yet been sent are transmitted to the
X server. These functions differ in the additional tasks they might perform.

To flush the output buffer, use XFlush.

XFlush (display)
Display *display;

display Specifies the connection to the X server.

8-44 Events and Event-Handling Functions

The XFlush function flushes the output buffer. Most client applications need not use this
function because the output buffer is automatically flushed as needed by calls to
XPending, XNextEvent, and XWindowEvent. Events generated by the server may
be enqueued into the library’s event queue.

To flush the output buffer and then wait until all requests have been processed, use
XSync.

XSync (display, discard)
Display *display;
Bool discard ;

display Specifies the connection to the X server.

discard Specifies a Boolean value that indicates whether XSyne discards all events on
the event queue.

The XSync function flushes the output buffer and then waits until all requests have been
received and processed by the X server. Any errors generated must be handled by the
error handler. For each error event received by Xlib, XSync calls the client application’s
error handling routine (see section 8.12.2). Any events generated by the server are
enqueued into the library’s event queue.

Finally, if you passed False, XSync does not discard the events in the queue. If you
passed True, XSync discards all events in the queue, including those events that were on
the queue before XSync was called. Client applications seldom need to call XSync.

8.7 Event Queue Management

Xlib maintains an event queue. However, the operating system also may be buffering data
in its network connection that is not yet read into the event queue.

To check the number of events in the event queue, use XEventsQueued.

int XEventsQueued(display, mode)
Display *display;

int mode;
display Specifies the connection to the X server.
mode Specifies the mode. You can pass QueuedAlready,

QueuedAfterFlush, or QueuedAfterReading.

Events and Event-Handling Functions 8-45

If mode is QueuedAlready, XEventsQueued returns the number of events already
in the event queue (and never performs a system call). If mode is QueuedAfterFlush,
XEventsQueued returns the number of events already in the queue if the number is
nonzero. If there are no events in the queue, XEventsQueued flushes the output buffer,
attempts to read more events out of the application’s connection, and returns the number
read. If mode is QueuedAfterReading, XEventsQueued returns the number of
events already in the queue if the number is nonzero. If there are no events in the queue,
XEventsQueued attempts to read more events out of the application’s connection
without flushing the output buffer and returns the number read.

XEventsQueued always returns immediately without I/O if there are events already in
the queue. XEventsQueued with mode QueuedAfterFlush is identical in behavior
to XPending. XEventsQueued with mode QueuedAlready is identical to the
XQLength function.

To return the number of events that are pending, use XPending.
int XPending (display)

Display *display ;
display Specifies the connection to the X server.

The XPending function returns the number of events that have been received from the
X server but have not been removed from the event queue. XPending is identical to
XEventsQueued with the mode QueuedAfterFlush specified.

8.8 Manipulating the Event Queue

Xlib provides functions that let you manipulate the event queue. The next three sections
discuss how to:

 Obtain events, in order, and remove them from the queue
« Peek at events in the queue without removing them

 Obtain events that match the event mask or the arbitrary predicate procedures that
you provide

8.8.1 Returning the Next Event

To get the next event and remove it from the queue, use XNextEvent.

8-46 Events and Event-Handling Functions

XNextEvent (display, event_retum)
Display *display ;
XEvent *event_return ;

display Specifies the connection to the X server.

event_return Returns the next event in the queue.

The XNextEvent function copies the first event from the event queue into the specified
XEvent structure and then removes it from the queue. If the event queue is empty,
XNextEvent flushes the output buffer and blocks until an event is received.

To peek at the event queue, use XPeekEvent.
XPeekEvent (display, event return)
Display *display;
XEvent *event retumn ;
display Specifies the connection to the X server.
event_return Returns a copy of the matched event’s associated structure.

The XPeekEvent function returns the first event from the event queue, but it does not
remove the event from the queue. If the queue is empty, XPeekEvent flushes the
output buffer and blocks until an event is received. It then copies the event into the client-
supplied XEvent structure without removing it from the event queue.

8.8.2 Selecting Events Using a Predicate Procedure

Each of the functions discussed in this section requires you to pass a predicate procedure
that determines if an event matches what you want. Your predicate procedure must decide
only if the event is useful and must not call Xlib functions. In particular, a predicate is
called from inside the event routine, which must lock data structures so that the event
queue is consistent in a multi-threaded environment.

The predicate procedure and its associated arguments are:
Bool (*predicate) (display, event, arg)
Display *display ;
XEvent *event;
char *arg;
display Specifies the connection to the X server.
event Specifies a pointer to the XEvent structure.

arg Specifies the argument passed in from the XIfEvent, XCheckIfEvent,
or XPeekIfEvent function.

Events and Event-Handling Functions 8-47

The predicate procedure is called once for each event in the queue until it finds a match.
After finding a match, the predicate procedure must return True. If it did not find a
match, it must return False.

To check the event queue for a matching event and, if found, remove the event from the
queue, use XIfEvent.

XIfEvent (display, event retum, predicate, arg)
Display *display;
XEvent *event_retum ;
Bool (*predicate)();

char *arg;
display Specifies the connection to the X server.
event_retum Returns the matched event’s associated structure.
predicate Specifies the procedure that is to be called to determine if the next event
in the queue matches what you want.
arg Specifies the user-supplied argument that will be passed to the predicate

procedure.

The XIfEvent function completes only when the specified predicate procedure returns
True for an event, which indicates an event in the queue matches. XIfEvent flushes
the output buffer if it blocks waiting for additional events. XIfEvent removes the
matching event from the queue and copies the structure into the client-supplied XEvent
structure.

To check the event queue for a matching event without blocking, use XCheckIfEvent.

Bool XCheckIfEvent (display, event return, predicate, arg)
Display *display ;
XEvent *event return ;
Bool (*predicate)();

char *arg;
display Specifies the connection to the X server.
event_return Returns a copy of the matched event’s associated structure.
predicate Specifies the procedure that is to be called to determine if the next event
in the queue matches what you want.
arg Specifies the user-supplied argument that will be passed to the predicate

procedure.

8-48 Events and Event-Handling Functions

When the predicate procedure finds a match, XCheckIfEvent copies the matched
event into the client-supplied XEvent structure and returns True. (This event is
removed from the queue.) If the predicate procedure finds no match, XCheckIfEvent
returns False, and the output buffer will have been flushed. All earlier events stored in
the queue are not discarded.

To check the event queue for a matching event without removing the event from the
queue, use XPeekIfEvent.

XPeekIfEvent (display, event return, predicate, arg)
Display *display;
XEvent *event_return ;
Bool (*predicate) () ;

char *arg;
display Specifies the connection to the X server.
event_return Returns a copy of the matched event’s associated structure.
predicate Specifies the procedure that is to be called to determine if the next event
in the queue matches what you want.
arg Specifies the user-supplied argument that will be passed to the predicate

procedure.

The XPeekIfEvent function returns only when the specified predicate procedure
returns True for an event. After the predicate procedure finds a match,
XPeekIfEvent copies the matched event into the client-supplied XEvent structure
without removing the event from the queue. XPeekIfEvent flushes the output buffer if
it blocks waiting for additional events.

8.8.3 Selecting Events Using a Window or Event Mask

The functions discussed in this section let you select events by window or event types,
allowing you to process events out of order.

To remove the next event that matches both a window and an event mask, use
XWindowEvent.

XWindowEvent (display, w, event_mask, event return)
Display *display;
Window w;
long event_mask ;
XEvent *event_retum ;

display Specifies the connection to the X server.

w Specifies the window whose events you are interested in.

Events and Event-Handling Functions 8-49

event_mask Specifies the event mask.
event_return Returns the matched event’s associated structure.

The XWindowEvent function searches the event queue for an event that matches both
the specified window and event mask. When it finds a match, XWindowEvent removes
that event from the queue and copies it into the specified XEvent structure. The other
events stored in the queue are not discarded. If a matching event is not in the queue,
XWindowEvent flushes the output buffer and blocks until one is received.

To remove the next event that matches both a window and an event mask (if any), use
XCheckWindowEvent. This function is similar to XWindowEvent except that it
never blocks and it returns a Bool indicating if the event was returned.

Bool XCheckWindowEvent (display, w, event_mask, event return)
Display *display;
Window w;
long event_mask;
XEvent *event return ;

display Specifies the connection to the X server.

w Specifies the window whose events you are interested in.
event_mask Specifies the event mask.

event_return Returns the matched event’s associated structure.

The XCheckWindowEvent function searches the event queue and then the events
available on the server connection for the first event that matches the specified window
and event mask. If it finds a match, XCheckWindowEvent removes that event, copies it
into the specified XEvent structure, and returns True. The other events stored in the
queue are not discarded. If the event you requested is not available,
XCheckWindowEvent returns False, and the output buffer will have been flushed.

To remove the next event that matches an event mask, use XMaskEvent.

XMaskEvent (display, event_mask, event return)
Display *display;
long event_mask ;
XEvent *event return ;

display Specifies the connection to the X server.
event_mask Specifies the event mask.
event_retumn Returns the matched event’s associated structure.

8-50 Events and Event-Handling Functions

The XMaskEvent function searches the event queue for the events associated with the
specified mask. When it finds a match, XMaskEvent removes that event and copies it
into the specified XEvent structure. The other events stored in the queue are not
discarded. If the event you requested is not in the queue, XMaskEvent flushes the
output buffer and blocks until one is received.

To return and remove the next event that matches an event mask (if any), use
XCheckMaskEvent. This function is similar to XMaskEvent except that it never
blocks and it returns a Bool indicating if the event was returned.

Bool XCheckMaskEvent (display, event mask, event return)
Display *display; - -
long event_mask;
XEvent “event retumn ;

display Specifies the connection to the X server.
event_mask Specifies the event mask.
event_return Returns the matched event’s associated structure.

The XCheckMaskEvent function searches the event queue and then any events
available on the server connection for the first event that matches the specified mask. If it
finds a match, XCheckMaskEvent removes that event, copies it into the specified
XEvent structure, and returns True. The other events stored in the queue are not
discarded. If the event you requested is not available, XCheckMaskEvent returns
False, and the output buffer will have been flushed.

To return and remove the next event in the queue that matches an event type, use
XCheckTypedEvent.

Bool XCheckTypedEvent (display, event type, event return)
Display *display;
int event type;
XEvent *event retumn ;

display Specifies the connection to the X server.
event_type Specifies the event type to be compared.
event_return Returns the matched event’s associated structure.

Events and Event-Handling Functions 8-51

The XCheckTypedEvent function searches the event queue and then any events
available on the server connection for the first event that matches the specified type. If it
finds a match, XCheckTypedEvent removes that event, copies it into the specified
XEvent structure, and returns True. The other events in the queue are not discarded.
If the event is not available, XCheckTypedEvent returns False, and the output buffer
will have been flushed.

To return and remove the next event in the queue that matches an event type and a
window, use XCheckTypedWindowEvent.

Bool XCheckTypedWindowEvent (display, w, event type, event return)
Display *display;
Window w;
int event_type;
XEvent ¥event_retumn ;

display Specifies the connection to the X server.

w Specifies the window.

event_type Specifies the event type to be compared.
event_return Returns the matched event’s associated structure.

The XCheckTypedWindowEvent function searches the event queue and then any
events available on the server connection for the first event that matches the specified type
and window. If it finds a match, XCheckTypedWindowEvent removes the event from
the queue, copies it into the specified XEvent structure, and returns True. The other
events in the queue are not discarded. If the event is not available,
XCheckTypedWindowEvent returns False, and the output buffer will have been
flushed.

8.9 Putting an Event Back into the Queue

To push an event back into the event queue, use XPutBackEvent.
XPutBackEvent (display, event)

Display *display ;

XEvent *event;

display Specifies the connection to the X server.

event Specifies a pointer to the event.

8-52 Events and Event-Handling Functions

The XPutBackEvent function pushes an event back onto the head of the display’s event
queue by copying the event into the queue. This can be useful if you read an event and
then decide that you would rather deal with it later. There is no limit to the number of
times in succession that you can call XPutBackEvent.

8.10 Sending Events to Other Applications

To send an event to a specified window, use XSendEvent. This function is often used in
selection processing. For example, the owner of a selection should use XSendEvent to
send a SelectionNotify event to a requestor when a selection has been converted
and stored as a property.

Status XSendEvent (display, w, propagate, event_mask, event send)
Display *display ;
Window w;
Bool propagate ;
long event_mask;
XEvent *event_send;

display Specifies the connection to the X server.

w Specifies the window the event is to be sent to, PointerWindow, or
InputFocus.

propagate Specifies a Boolean value.

event_mask Specifies the event mask.
event send Specifies a pointer to the event that is to be sent.

The XSendEvent function identifies the destination window, determines which clients
should receive the specified events, and ignores any active grabs. This function requires
you to pass an event mask. For a discussion of the valid event mask names, see section 8.3.
This function uses the w argument to identify the destination window as follows:

o If wis PointerWindow, the destination window is the window that contains the
pointer.

o If wis InputFocus and if the focus window contains the pointer, the destination
window is the window that contains the pointer; otherwise, the destination window is
the focus window.

To determine which clients should receive the specified events, XSendEvent uses the
propagate argument as follows:

o If event_mask is the empty set, the event is sent to the client that created the
destination window. If that client no longer exists, no event is sent.

Events and Event-Handling Functions 8-53

« If propagate is False, the event is sent to every client selecting on destination any
of the event types in the event_mask argument.

« If propagate is True and no clients have selected on destination any of the event
types in event-mask, the destination is replaced with the closest ancestor of
destination for which some client has selected a type in event-mask and for which no
intervening window has that type in its do-not-propagate-mask. If no such window
exists or if the window is an ancestor of the focus window and InputFocus was
originally specified as the destination, the event is not sent to any clients. Otherwise,
the event is reported to every client selecting on the final destination any of the types
specified in event_mask.

The event in the XEvent structure must be one of the core events or one of the events
defined by an extension (or a BadValue error results) so that the X server can correctly
byte-swap the contents as necessary. The contents of the event are otherwise unaltered and
unchecked by the X server except to force send_event to True in the forwarded event and
to set the serial number in the event correctly.

XSendEvent returns zero if the conversion to wire protocol format failed and returns
nonzero otherwise.

XSendEvent can generate BadValue and BadWindow errors.

8.11 Getting Pointer Motion History

Some X server implementations will maintain a more complete history of pointer motion
than is reported by event notification. The pointer position at each pointer hardware
interrupt may be stored in a buffer for later retrieval. This buffer is called the motion
history buffer. For example, a few applications, such as paint programs, want to have a
precise history of where the pointer traveled. However, this historical information is highly
excessive for most applications.

To determine the size of the motion buffer, use XDisplayMotionBufferSize.
unsigned long XDisplayMotionBufferSize (display)

Display *display;
display Specifies the connection to the X server.

The server may retain the recent history of the pointer motion and do so to a finer
granularity than is reported by MotionNotify events. The XGetMotionEvents
function makes this history available.

To get the motion history for a specified window and time, use XGetMotionEvents.

8-54 Events and Event-Handling Functions

XTimeCoord *XGetMotionEvents (display, w, start, stop, nevenis_retum)
Display *display;
Window w;
Time start, stop;
int *nevents_return ;

display Specifies the connection to the X server.

w Specifies the window.

star¢

stop Specify the time interval in which the events are returned from the

motion history buffer. You can pass a timestamp or CurrentTime.
nevents_return Returns the number of events from the motion history buffer.

The XGetMotionEvents function returns all events in the motion history buffer that
fall between the specified start and stop times, inclusive, and that have coordinates that lie
within the specified window (including its borders) at its present placement. If the start
time is later than the stop time or if the start time is in the future, no events are returned.
If the stop time is in the future, it is equivalent to specifying CurrentTime. The return
type for this function is a structure defined as follows:

typedef struct {
Time time;
short x, y:
} XTimeCoord;

The time member is set to the time, in milliseconds. The x and y members are set to the
coordinates of the pointer and are reported relative to the origin of the specified window.
To free the data returned from this call, use XFree.

XGetMotionEvents can generate a BadWindow error.

8.12 Handling Error Events

Xlib provides functions that you can use to enable or disable synchronization and to use
the default error handlers.

Events and Event-Handling Functions 8 -55

8.12.1 Enabling or Disabling Synchronization

When debugging X applications, it often is very convenient to require Xlib to behave
synchronously so that errors are reported as they occur. The following function lets you
disable or enable synchronous behavior. Note that graphics may occur 30 or more times
more slowly when synchronization is enabled. On UNIX-based systems, there is also a
global variable _Xdebug that, if set to nonzero before starting a program under a
debugger, will force synchronous library behavior.

After completing their work, all Xlib functions that generate protocol requests call what is
known as an after function. XSetAfterFunction sets which function is to be called.

int (*XSetAfterFunction(display, procedure))()
Display *display ;
int (*procedure) ();

display Specifies the connection to the X server.

procedure Specifies the function to be called after an Xlib function that generates a
protocol request completes its work.

The specified procedure is called with only a display pointer. XSetAfterFunction
returns the previous after function.

To enable or disable synchronization, use XSynchronize.
int (*XSynchronize (display, onoff))()

Display *display ;

Bool onoff;

display Specifies the connection to the X server.

onoff Specifies a Boolean value that indicates whether to enable or disable
synchronization.

The XSynchronize function returns the previous after function. If onoff is True,
XSynchronize turns on synchronous behavior. If onoffis False, XSynchronize
turns off synchronous behavior.

8-56 Events and Event-Handling Functions

8.12.2 Using the Default Error Handlers

There are two default error handlers in Xlib: one to handle typically fatal conditions (for
example, the connection to a display server dying because a machine crashed) and one to
handle error events from the X server. These error handlers can be changed to user-
supplied routines if you prefer your own error handling and can be changed as often as you
like. If either function is passed a NULL pointer, it will reinvoke the default handler. The
action of the default handlers is to print an explanatory message and exit.

To set the error handler, use XSetErrorHandler.

XSetErrorHandler (handler)
int (*handler)(Display *, XErrorEvent ¥)

handler Specifies the program’s supplied error handler.

Xlib generally calls the program’s supplied error handler whenever an error is received. It
is not called on BadName errors from OpenFont, LookupColor, or
AllocNamedColor protocol requests or on BadFont errors from a QueryFont
protocol request. These errors generally are reflected back to the program through the
procedural interface. Because this condition is not assumed to be fatal, it is acceptable for
your error handler to return. However, the error handler should not call any functions
(directly or indirectly) on the display that will generate protocol requests or that will look
for input events.

The XErrorEvent structure contains:

typedef struct {

int type;
Display *display; /* Display the event was read from */
unsigned long serial; /* serial number of failed request */

unsigned char error_code;/* error code of failed request */
unsigned char request_code;/* Major op-code of failed request */
unsigned char minor_code;/* Minor op-code of failed request */
XID resourceid; /* resource id %/

} XErrorEvent;

The serial member is the number of requests, starting from one, sent over the network
connection since it was opened. It is the number that was the value of NextRequest
immediately before the failing call was made. The request_code member is a protocol
request of the procedure that failed, as defined in <X11/Xproto.h>, The following
error codes can be returned by the functions described in this chapter:

Events and Event-Handling Functions 8-57

Error Code

Description

BadAccess

BadAlloc

BadAtom
BadColor

BadCursor

BadDrawable

BadFont

BadGC

BadIDChoice

A client attempts to grab a key/button combination already grabbx
by another client.

A client attempts to free a colormap entry that it had not already
allocated.

A client attempts to store into a read-only or unallocated colormaj
entry.

A client attempts to modify the access control list from other than
the local (or otherwise authorized) host.

A client attempts to select an event type that another client has
already selected.

The server fails to allocate the requested resource. Note that the
explicit listing of BadAlloc errors in requests only covers
allocation errors at a very coarse level and is not intended to (nor
can it in practice hope to) cover all cases of a server running out of
allocation space in the middle of service. The semantics when a
server runs out of allocation space are left unspecified, but a serve:
may generate a BadAlloc error on any request for this reason,
and clients should be prepared to receive such errors and handle o
discard them.

A value for an atom argument does not name a defined atom.

A value for a colormap argument does not name a defined
colormap.

A value for a cursor argument does not name a defined cursor.

A value for a drawable argument does not name a defined window
or pixmap.

A value for a font argument does not name a defined font (or, in
some cases, GContext).

A value for a GContext argument does not name a defined
GContext.

The value chosen for a resource identifier either is not included in
the range assigned to the client or is already in use. Under normal
circumstances, this cannot occur and should be considered a servei
or Xlib error.

8-58 Events and Event-Handling Functions

BadImplementation

BadLength

BadMatch

BadName
BadPixmap
BadRequest

BadValue

BadWindow

The server does not implement some aspect of the request. A server
that generates this error for a core request is deficient. As such, this
error is not listed for any of the requests, but clients should be
prepared to receive such errors and handle or discard them.

The length of a request is shorter or longer than that required to
contain the arguments. This is an internal Xlib or server error.

The length of a request exceeds the maximum length accepted by the
server.

In a graphics request, the root and depth of the graphics context
does not match that of the drawable.

An InputOnly window is used as a drawable.

Some argument or pair of arguments has the correct type and range,
but it fails to match in some other way required by the request.

An InputOnly window lacks this attribute.
A font or color of the specified name does not exist.
A value for a pixmap argument does not name a defined pixmap.

The major or minor opcode does not specify a valid request. This
usually is an Xlib or server error.

Some numeric value falls outside of the range of values accepted by
the request. Unless a specific range is specified for an argument, the
full range defined by the argument’s type is accepted. Any argument
defined as a set of alternatives typically can generate this error (due
to the encoding).

A value for a window argument does not name a defined window.

NOTE

The BadAtom, BadColor, BadCursor, BadDrawable,
BadFont, BadGC, BadPixmap, and BadWindow errors are
also used when the argument type is extended by a set of fixed

alternatives.

Events and Event-Handling Functions 8-59

To obtain textual descriptions of the specified error code, use XGetErrorText.

XGetErrorText (display, code, buffer retum, length)
Display *display;

int code;
char *buffer retumn ;
int length;
display Specifies the connection to the X server.
code Specifies the error code for which you want to obtain a description.
buffer_return Returns the error description.
length Specifies the size of the buffer.

The XGetErrorText function copies a null-terminated string describing the specified
error code into the specified buffer. It is recommended that you use this function to obtain
an error description because extensions to Xlib may define their own error codes and error
strings.

To obtain error messages from the error database, use XGetErrorDatabaseText.

XGetErrorDatabaseText (display, name, message, default string, buffer retum, length)
Display *display ;
char *name, *message;
char *default_string;
char *buffer_return ;

int length ;
display Specifies the connection to the X server.
name Specifies the name of the application.
message Specifies the type of the error message.
default_string Specifies the default error message if none is found in the database.
buffer_return Returns the error description.
length Specifies the size of the buffer.

The XGetErrorDatabaseText function returns a message (or the default message)
from the error message database. Xlib uses this function internally to look up its error
messages. On a UNIX-based system, the error message database is
/usr/1ib/X11/XErrorDB.

The name argument should generally be the name of your application. The message
argument should indicate which type of error message you want. Xlib uses three
predefined message types to report errors (uppercase and lowercase matter):

8-60 Events and Event-Handling Functions

XProtoError The protocol error number is used as a string for the message argument.
XlibMessage These are the message strings that are used internally by the library.

XRequest The major request protocol number is used for the message argument. If
no string is found in the error database, the default_string is returned to
the buffer argument.

To report an error to the user when the requested display does not exist, use
XDisplayName.

char *XDisplayName (string)
char *string;

string Specifies the character string,

The XDisplayName function returns the name of the display that XOpenDisplay
would attempt to use. If a NULL string is specified, XDisplayName looks in the
environment for the display and returns the display name that XOpenDisplay would
attempt to use. This makes it easier to report to the user precisely which display the
program attempted to open when the initial connection attempt failed.

To handle fatal I/O errors, use XSetIOErrorHandler.
XSetIOErrorHandler (handler)

int (*handler) (Display *);
handler Specifies the program’s supplied error handler.

The XSetIOErrorHandler sets the fatal I/O error handler. Xlib calls the program’s
supplied error handler if any sort of system call error occurs (for example, the connection
to the server was lost). This is assumed to be a fatal condition, and the called routine
should not return. If the I/O error handler does return, the client process exits.

Events and Event-Handling Functions 8-61

Predefined Property Functions 9

There are a number of predefined properties for information commonly associated with
windows. The atoms for these predefined properties can be found in <X11/Xatom.h>,
where the prefix XA _is added to each atom name.

Xlib provides functions that you can use to perform operations on predefined properties.
This chapter discusses how to:

o Communicate with window managers

« Manipulate standard colormaps

9.1 Communicating with Window Managers

This section discusses a set of properties and functions that are necessary for clients to
communicate effectively with window managers. Some of these properties have complex
structures. Because all the data in a single property on the server has to be of the same
format (8-bit, 16-bit, or 32-bit) and because the C structures representing property types
cannot be guaranteed to be uniform in the same way, Set and Get functions are provided
for properties with complex structures.

These functions define but do not enforce minimal policy among window managers.
Writers of window managers are urged to use the information in these properties rather
than invent their own properties and types. A window manager writer, however, can
define additional properties beyond this least common denominator.

In addition to Set and Get functions for individual properties, Xlib includes one function,
XSetStandardProperties, that sets all or portions of several properties.
Applications are encouraged to provide the window manager more information than is
possible with XSetStandardProperties. To do so, they should call the Set
functions for the additional or specific properties that they need.

Every application should specify the following information:
« Name of the application

o Name to be used in the icon

Predefined Property Functions 9-1

o Command used to invoke the application
« Size and window manager hints

Xlib does not set defaults for the properties described in this section. Thus, the default
behavior is determined by the window manager and may be based on the presence or
absence of certain properties. All the properties are considered to be hints to a window
manager. When implementing window management policy, a window manager determines
what to do with this information and can ignore it.

The supplied properties are:

9-2 Predefined Property Functions

Name Type Format Description

WM_NAME STRING 8 Name of the application.
WM_ICON NAME STRING 8 Name to be used in icon.

WM _NORMAL HINTS WM SIZE HINTS 32 Size hints for a window in its
normal state. The C type of this
propertyis XSizeHints.

WM_ZOOM_HINTS WM_SIZE_HINTS 32 Size hints for a zoomed window.
The C type of this property is
XSizeHints.

WM_HINTS WM_HINTS 32 Additional hints set by client for
use by the window manager. The
C type of this property is
XWMHints.

WM_COMMAND STRING 8 The command and arguments,
separated by ASCII nulls, used to
invoke the application.

WM_ICON SIZE WM_ICON_SIZE 32 The window manager may set this
property on the root window to
specify the icon sizes it supports.
The C type of this property is
XIconSize.

WM_CLASS STRING 32 Set by application programs to
allow window and session
managers to obtain the
application’s resources from the
resource database.

WM_TRANSIENT FOR WINDOW 32 Set by application programs to
indicate to the window manager
that a transient top-level window,
such as a dialog box, is not really a
normal application window.

The atom names stored in <X11/Xatom.h > are named XA PROPERTY NAME.

Predefined Property Functions 9-3

Xlib provides functions that you can use to set and get predefined properties. Note that
calling the Set function for a property with complex structure redefines all members in that
property, even though only some of those members may have a specificd new value.
Simple properties for which Xlib does not provide a Set or Get function can be set by using
XChangeProperty, and their values can be retrieved using XGetWindowProperty.
The remainder of this section discusses how to:

« Set standard properties

« Set and get the name of a window

« Set and get the icon name of a window

o Set the command and arguments of the application
e Set and get window manager hints

« Sct and get window size hints

« Sct and get icon size hints

o Set and get the class of a window

« Set and get the transient property for a window

9.1.1 Setting Standard Properties

Use XSetStandardProperties to specify a minimum set of properties describing
the “quickie” application. This function sets all or portions of the WM_NAME,
WM_ICON_NAME, WM_HINTS, WM_COMMAND, and WM_NORMAL _HINTS
properties. v

XSetStandardProperties (display, w, window_name, icon_name, icon_pixmap, argv, argc, hints)
Display *display ;
Window w;
char *window_name ;
char *icon_name;
Pixmap icon_pixmap ;
char **argy;
int arge;
XSizeHints *hints;

display Specifies the connection to the X server.
w Specifies the window.
window_name Specifies the window name (null-terminated string).

icon_name Specifies the icon name (null-terminated string).

9-4 Predefined Property Functions

icon_pixmap Specifies the bitmap that is to be used for the icon or None.

argy Specifies the application’s argument list. (Typically, the main program
argv array.)

argc Specifies the number of arguments.

hints Specifies a pointer to the size hints for the window in its normal state.

Use XSetStandardProperties to allow simple applications to set the most essential
properties with a single call. Use XSetStandardProperties to give a window
manager some information about your program’s preferences. However, don’t use this
function with appiications that need to communicate more information than the function
can handle.

XSetStandardProperties can generate BadAlloc and BadWindow errors.

9.1.2 Setting and Getting Window Names

Xlib provides functions that you can use to set and read the name of a window. These
functions set and read the WM_NAME property.

To assign a name to a window, use XStoreName.
XStoreName (display, w, window_name)

Display *display;

Window w;

char *window_name;
display Specifies the connection to the X server.
w Specifies the window.

window_name Specifies window name (null-terminated string).

The XStoreName function assigns the name passed to window_name to the specified
window. A window manager can display the window name in some prominent place, such
as the title bar, to allow users to identify windows easily. Some window managers may
display a window’s name in the window’s icon, although they are encouraged to use the
window’s icon name if one is provided by the application.

XStoreName can generate BadAlloc and BadWindow errors.
To get the name of a window, use XFe tchName.
Status XFetchName (display, w, window_name_retumn)

Display *display ;

Window w;
char **window_name _return ;

Predefined Property Functions 9-5

display Specifies the connection to the X server.
w Specifies the window.
window_name_return Returns pointer to window name (null-terminated string).

The XFetchName function returns the name of the specified window. If it succeeds, it
returns nonzero; if no name is set for the window, it returns zero. If the WM_NAME
property has not been set for this window, XFetchName sets window_name “return to
NULL. When finished with it, a clicnt uses XFree to release the window name string.

XFetchName can generate a BadWindow error.

9.1.3 Setting and Getting lcon Names

Xlib provides functions that you can use to set and read the name to be displayed in a
window’s icon. These functions set and read the WM_ICON_NAME property.

To set the name to be displayed in a window’s icon, use XSetIconName.
XSetIconName (display, w, icon_name)

Display *display ;

Window w;

char *icon_name ;
display Specifies the connection to the X server.
w Specifies the window.
icon name Specifies icon name (null-terminated string).
XSetIconName can generate BadAlloc and BadWindow errors.
To get the name a window wants displayed in its icon, use XGetIconName.
Status XGetIconName (display, w, icon_name_return)

Display *display ;

Window w;
char **icon name return ;

display Specifies the connection to the X server.
w Specifies the window.
icon_name_return Returns pointer to window’s icon name (null-terminated string).

The XGetIconName function returns the name for display in the specified window’s
icon. Ifit succeeds, it returns nonzero; if no icon name is set for the window, it returns
zero. If no name is assigned to the window, XGetIconName sets icon_name_return to
NULL. A client uses XFree to release the icon name string.

9-6 Predefined Property Functions

XGetIconName can gencrate a BadWindow error.

9.1.4 Setting the Command

To set the command property, use XSetCommand. This function sets the
WM_COMMAND property.

XSetCommand (display, w, argv, argc)
Display *display ;
Window w;
char **argy;

int arge;

display Specifies the connection to the X server.

w Specifies the window.
argy Specifies the application’s argument list.
arge Specifies the number of arguments.

XSetCommand sets the command and arguments used to invoke the application.

XSetCommand can generate BadAlloc and BadWindow errors.

9.1.5 Setting and Getting Window Manager Hints

The functions discussed in this section set and read the WM_HINTS property and use the
flags and the XWMHints structure, as defined in the <X11/Xutil.h> header file:

/* Window manager hints mask bits */

#define InputHint (1L << 0)
#define StateHint (IL << 1)
#define IconPixmapHint (1L << ?2)
#define IconWindowHint (IL << 3)
#define IconPositionHint (1L << 4)
#define IconMaskHint (AL <<5)
#define WindowGroupHint (1L << 6)
#define AllHints (InputHint | StateHint | IconPixmapHint |

IconWindowHint | IconPositionHint |
IconMaskHint | WindowGroupHint)

Predefined Property Functions 9-7

/* Values */

typedef struct {

long flags; /* marks which fields in this structure are defined */
Bool input; /* does this application rely on the window manager to
get keyboard input? */
int initial_state; /% see below */
Pixmap icon_pixmap; /% pixmap to be used as icon */
Window icon_window; /* window to be used as icon */
int icon_x, icon_y; /* initial position of icon */
Pixmap icon_mask; /* pixmap to be used as mask for icon_pixmap */
XID window_group; /% id of related window group */
/* this structure may be extended in the future */
} XWMHints;

The input member is used to communicate to the window manager the input focus model
used by the application. Applications that expect input but never explicitly set focus to any
of their subwindows (that is, use the push model of focus management), such as X10-style
applications that use real-estate driven focus, should set this member to True. Similarly,
applications that set input focus to their subwindows only when it is given to their top-level
window by a window manager should also set this member to True. Applications that
manage their own input focus by explicitly setting focus to one of their subwindows
whenever they want keyboard input (that is, use the pull model of focus management)
should set this member to False. Applications that never expect any keyboard input also
should set this member to False.

Pull model window managers should make it possible for push model applications to get
input by setting input focus to the top-level windows of applications whose input member is
True. Push model window managers should make sure that pull model applications do
not break them by resetting input focus to PointerRoot when it is appropriate (for
example, whenever an application whose input member is False sets input focus to one
of its subwindows).

The definitions for the initial_state flag are:

#define DontCareState
#define NormalState
#define ZoomState
#define IconicState
#define InactiveState

/* don’t know or care */

/* most applications start this way */

/* application wants to start zoomed */

/* application wants to start as an icon */

/* application believes it is seldom used;
some wm’s may put it on inactive menu */

WO

The icon_mask specifies which pixels of the icon _plxmap should be used as the icon. This
allows for nonrectangular icons. Both the icon _pixmap and icon_mask must be bitmaps.
The icon_window lets an application provide a window for use as an icon for window
managers that support such use. The window_group lets you specify that this window
belongs to a group of other windows. For example, if a single application manipulates

9-8 Predefined Property Functions

multiple top-level windows, this allows you to provide enough information that a window
manager can iconify all of the windows rather than just the one window.
To set the window manager hints for a window, use XSetWMHints.
XSetWMHints (display, w, wmbhints)
Display *display ;

Window w;
XWMHints *wmbhints;

display Specifies the connection to the X server.
w Specifies the window.
wmhints Specifies a pointer to the window manager hints.

The XSetWMHints function sets the window manager hints that include icon
information and location, the initial state of the window, and whether the application relies
on the window manager to get keyboard input.

XSetWMHints can generate BadAlloc and BadWindow errors.
To read the window manager hints for a window, use XGetWMHints.
XWMHints *XGetWMHints (display, w)

Display *display ;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XGetWMHints function reads the window manager hints and returns NULL if no
WM_HINTS property was set on the window or a pointer to a XWMHints structure if it
succeeds. When finished with the data, free the space used for it by calling XFree.

XGetWMHints can generate a BadWindow error.

9.1.6 Setting and Getting Window Sizing Hints
Xlib provides functions that you can use to set or get window sizing hints.

The functions discussed in this section use the flags and the XSizeHints structure, as
defined in the <X11/Xutil.h> header file:

Predefined Property Functions 9-9

/* Size hints mask bits */

#define USPosition (1L <<0) /* user specifiedx,y*/

#define USSize (1L << 1) /* user specified width, height */

#define PPosition (IL << 2) /* program specified position */

#define PSize (IL << 3) /* program specified size */

#define PMinSize (IL << 4) /* program specified minimum size */

#define PMaxSize (IL << 5) /* program specified maximum size */

#define PResizeInc (1L <<6) /* program specified resize increments */
#define PAspect (IL << 7) /* program specified min and max aspect ratios */
#define PAllHints (PPosition | PSize | PMinSize | PMaxSize |

PResizelnc | PAspect)

/* Values */

typedef struct {
long flags; /* marks which fields in this structure are defined */
int x, y;
int width, height;
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;

struct {
int x; /* numerator */
int y; /* denominator */

} min_aspect, max_aspect;
} XSizeHints;

The x, y, width, and height members describe a desired position and size for the window.
To indicate that this information was specified by the user, set the USPosition and
USSize flags. To indicate that it was specified by the application without any user
involvement, set PPosition and PSize. This lets a window manager know that the
user specifically asked where the window should be placed or how the window should be
sized and that the window manager does not have to rely on the program’s opinion.

The min_width and min_height members specify the minimum window size that still allows
the apphcatlon to be useful. The max width and max_height members specify the
maximum window size. The width_inc cand height_inc members define an arithmetic
progression of sizes (minimum to maximum) into which the window prefers to be resized.
The min_aspect and max_aspect members are expressed as ratios of x and y, and they
allow an application to specify the range of aspect ratios it prefers.

The next two functions set and read the WM_NORMAL HINTS property.

To set the size hints for a given window in its normal state, use XSetNormalHints.

9-10 Predefined Property Functions

XSetNormalHints (display, w, hints)
Display *display;
Window w;
XSizeHints *hints;

display Specifies the connection to the X server.
w Specifies the window.
hints Specifies a pointer to the size hints for the window in its normal state.

The XSetNormalHints function sets the size hints structure for the specified window.
Applications use XSetNormalHints to inform the window manager of the size or
position desirable for that window. In addition, an application that wants to move or resize
itself should call XSetNormalHints and specify its new desired location and size as

well as making direct Xlib calls to move or resize. This is because window managers may
ignore redirected configure requests, but they pay attention to property changes.

To set size hints, an application not only must assign values to the appropriate members in
the hints structure but also must set the flags member of the structure to indicate which
information is present and where it came from. A call to XSetNormalHints is
meaningless, unless the flags member is set to indicate which members of the structure
have been assigned values.

XSetNormalHints can generate BadAlloc and BadWindow errors.
To return the size hints for a window in its normal state, use XGetNormalHints.
Status XGetNormalHints (display, w, hints_return)

Display *display;

Window w;
XSizeHints *hints_return ;

display Specifies the connection to the X server.
w Specifies the window.
hints_return Returns the size hints for the window in its normal state.

The XGetNormalHints function returns the size hints for a window in its normal state.
It returns a nonzero status if it succeeds or zero if the application specified no normal size
hints for this window.

XGetNormalHints can generate a BadWindow error.
The next two functions set and read the WM_ZOOM_HINTS property.

To set the zoom hints for a window, use XSetZoomHints.

Predefined Property Functions 9-11

XSetZoomHints (display, w, zhints)
Display *display;
Window w;
XSizeHints *zhints;

display Specifies the connection to the X server.
w Specifies the window.

zhints Specifies a pointer to the zoom hints.

Many window managers think of windows in one of three states: iconic, normal, or
zoomed. The XSetZoomHints function provides the window manager with information
for the window in the zoomed state.

XSetZoomHints can generate BadAlloc and BadWindow errors.
To read the zoom hints for a window, use XGetZoomHints.
Status XGetZoomHints (display, w, zhints_return)

Display *display;

Window w;
XSizeHints *zhints return ;

display Specifies the connection to the X server.
w Specifies the window.
zhints_return Returns the zoom hints.

The XGetZoomHints function returns the size hints for a window in its zoomed state. It
returns a nonzero status if it succeeds or zero if the application specified no zoom size
hints for this window.

XGetZoomHints can generate a BadWindow error.
To set the value of any property of type WM_SIZE HINTS, use XSetSizeHints.

XSetSizeHints (display, w, hints, property)
Display *display;

Window w;

XSizeHints *hints;

Atom property ;
display Specifies the connection to the X server.
w Specifies the window.
hints Specifies a pointer to the size hints,

property Specifies the property name.

9-12 Predefined Property Functions

The XSetSizeHints function sets the XSizeHints structure for the named property
and the specified window. This is used by XSetNormalHints and XSetZoomHints,
and can be used to set the value of any property of type WM_SIZE_HINTS. Thus, it may
be useful if other properties of that type get defined.

XSetSizeHints can generate BadAlloc, BadAtom, and BadWindow errors.
To read the value of any property of type WM_SIZE HINTS, use XGetSizeHints.

Status XGetSizeHints (display, w, hints_return, property)
Display *display;

Window w;
XSizeHints *hints_return ;
Atom property ;
display Specifies the connection to the X server.
w Specifies the window.
hints_return Returns the size hints.
property Specifies the property name.

XGetSizeHints returns the XSizeHints structure for the named property and the
specified window. This is used by XGetNormalHints and XGetZoomHints. It also
can be used to retrieve the value of any property of type WM_SIZE HINTS. Thus, it may
be useful if other propertles of that type get defined. XGet$S izeHints returns a
nonzero status if a size hint was defined or zero otherwise.

XGetSizeHints can generate BadAtom and BadWindow errors.

9.1.7 Setting and Getting Icon Size Hints

Applications can cooperate with window managers by providing icons in sizes supported by
a window manager. To communicate the supported icon sizes to the applications, a
window manager should set the icon size property on the root window of the screen. To
find out what icon sizes a window manager supports, applications should read the icon size
property from the root window of the screen.

The functions discussed in this section set or read the WM_ICON_SIZE property. In
addition, they use the XIconSize structure, which is defined in <X11/Xutil.h> and
contains:

typedef struct {
int min_width, min_height;
int max width, max _height;
int width_inc, height_inc;
} XIconSize;

Predefined Property Functions 9-13

The width_inc and height_inc members define an arithmetic progression of sizes
(minimum to maximum) that represent the supported icon sizes.

To set the icon size hints for a window, use XSetIconSizes.

XSetIconSizes (display, w, size list, count)
Display *display ;

Window w;
XIconSize *size list;
int count;
display Specifies the connection to the X server.
w Specifies the window.
size_list Specifies a pointer to the size list.
count Specifies the number of items in the size list.

The XSetIconSizes function is used only by window managers to set the supported
icon sizes.

XSetIconSizes can generate BadAlloc and BadWindow errors.
To return the icon sizes hints for a window, use XGetIconSizes.

Status XGetIconSizes(display, w, size list_return, count retum)
Display *display ; - -
Window w;

XIconSize **size list_return ;
int *count return;

display Specifies the connection to the X server.

w Specifies the window.

size_list_return Returns a pointer to the size list.
count_return Returns the number of items in the size list.

The XGetIconSizes function returns zero if a window manager has not set icon sizes
or nonzero otherwise. XGetIconSizes should be called by an application that wants to
find out what icon sizes would be most appreciated by the window manager under which
the application is running. The application should then use XSetWMHints to supply the
window manager with an icon pixmap or window in one of the supported sizes. To free the
data allocated in size_list_return, use XFree.

XGetIconSizes can generate a BadWindow error.

9-14 Predefined Property Functions

9.1.8 Setting and Getting the Class of a Window

Xlib provides functions to set and get the class of a window. These functions set and read
the WM_CLASS property. In addition, they use the XClassHint structure, which is
defined in <X11/Xutil.h> and contains:

typedef struct {
char *res_name;
char *res_class;
} XClassHint;

The res_name mermber contains the apphcatlon name, and the res_class member contains
the application class. Note that the name set in this property may differ from the name set
as WM_NAME. That is, WM_NAME specifies what should be displayed in the title bar
and, therefore, can contain temporal information (for example, the name of a file currently
in an editor’s buffer). On the other hand, the name specified as part of WM_CLASS is the
formal name of the application that should be used when retrieving the apphcatlon S
resources from the resource database.

To set the class of a window, use XSetClassHint,

XSetClassHint (display, w, class_hints)
Display *display;
Window w;
XClassHint *class_hints ;

display Specifies the connection to the X server.
w Specifies the window.
class_hints Specifies a pointer to a XClassHint structure that is to be used.

The XSetClassHint function sets the class hint for the specified window.
XSetClassHint can generate BadAlloc and BadWindow errors.
To get the class of a window, use XGetClassHint.
Status XGetClassHint(display, w, class_hints_return)
Display *display ;

Window w;
XClassHint *class_hints_return ;

display Specifies the connection to the X server.
w Specifies the window.
class_hints_return Returns the XClassHint structure.

Predefined Property Functions 9-15

The XGetClassHint function returns the class of the specified window. To free
res_name and res_class when finished with the strings, use XFree.

XGetClassHint can generate a BadWindow error.

9.1.9 Setting and Getting the Transient Property

An application may want to indicate to the window manager that a transient, top-level
window (for example, a dialog box) is operating on behalf of (or is transient for) another
window. To do so, the application would set the WM_TRANSIENT_FOR property of the
dialog box to be the window ID of its main window. Some window managers use this
information to unmap an application’s dialog boxes (for example, when the main
application window gets iconified).

The functions discussed in this section set and read the WM_TRANSIENT FOR
property.

To set the WM_TRANSIENT _FOR property for a window, use
XSetTransientForHint.

XSetTransientForHint (display, w, prop window)
Display *display ;
Window w;
Window prop_window ;

display Specifies the connection to the X server.

w Specifies the window.

prop_window Specifies the window that the WM_TRANSIENT _FOR property is to be
set to.

The XSetTransientForHint function sets the WM_TRANSIENT FOR property of
the specified window to the specified prop_window.

XSetTransientForHint can generate BadAlloc and BadWindow errors.

To get the WM_TRANSIENT FOR value for a window, use
XGetTransientForHint.

Status XGetTransientForHint (display, w, prop window_retum)
Display *display;
Window w;
Window *prop window retumn ;

display Specifies the connection to the X server.

w Specifies the window.

9-16 Predefined Property Functions

prop_window _return Returns the WM_TRANSIENT _FOR property of the specified
window.

The XGetTransientForHint function returns the WM_TRANSIENT FOR property
for the specified window.

XGetTransientForHint can generate a BadWindow error.

9.2 Manipulating Standard Colormaps

Applications with color palettes, smooth-shaded drawings, or digitized images demand
large numbers of colors. In addition, these applications often require an efficient mapping
from color triples to pixel values that display the appropriate colors.

As an example, consider a 3D display program that wants to draw a smoothly shaded
sphere. At each pixel in the image of the sphere, the program computes the intensity and
color of light reflected back to the viewer. The result of each computation is a triple of
RGB coefficients in the range 0.0 to 1.0. To draw the sphere, the program needs a
colormap that provides a large range of uniformly distributed colors. The colormap should
be arranged so that the program can convert its RGB triples into pixel values very quickly,
because drawing the entire sphere requires many such conversions.

On many current workstations, the display is limited to 256 or fewer colors. Applications
must allocate colors carefully, not only to make sure they cover the entire range they need
but also to make use of as many of the available colors as possible. On a typical X display,
many applications are active at once. Most workstations have only one hardware look-up
table for colors, so only one application colormap can be installed at a given time. The
application using the installed colormap is displayed correctly, and the other applications
“go technicolor” and are displayed with false colors.

As another example, consider a user who is running an image processing program to
display earth-resources data. The image processing program needs a colormap set up with
8 reds, 8 greens, and 4 blues (a total of 256 colors). Because some colors are already in
use in the default colormap, the image processing program allocates and installs a new
colormap.

The user decides to alter some of the colors in the image. He invokes a color palette
program to mix and choose colors. The color palette program also needs a colormap with
8 reds, 8 greens, and 4 blues, so just as the image-processing program, it must allocate and
install a new colormap.

Predefined Property Functions 9-17

Because only one colormap can be installed at a time, the color palette may be displayed
incorrectly whenever the image-processing program is active. Conversely, whenever the
palette program is active, the image may be displayed incorrectly. The user can never
match or compare colors in the palette and image. Contention for colormap resources can
be reduced if applications with similar color needs share colormaps.

As another example, the image processing program and the color palette program could
share the same colormap if there existed a convention that described how the colormap
was set up. Whenever either program was active, both would be displayed correctly.

The standard colormap properties define a set of commonly used colormaps. Applications
that share these colormaps and conventions display true colors more often and provide a
better interface to the user.

9.2.1 Standard Colormaps

Standard colormaps allow applications to share commonly used color resources. This
allows many applications to be displayed in true colors simultaneously, even when each
application needs an entirely filled colormap.

Several standard colormaps are described in this section. Usually, a window manager
creates these colormaps. Applications should use the standard colormaps if they already
exist. If the standard colormaps do not exist, you should create them by opening a new
connection, creating the properties, and setting the close-down mode of the connection to
RetainPermanent.

The XStandardColormap structure contains:

typedef struct {
Colormap colormap;
unsigned long red max;
unsigned long red_mult;
unsigned long green_max;
unsigned long green mult;
unsigned long blue_max;
unsigned long blue_mult;
unsigned long base_pixel;

} XStandardColormap;

The colormap member is the colormap created by the XCreateColormap function.
The red_max, green_max, and blue_max members give the maximum red, green, and blue
values, respectively. Each color coefficient ranges from zero to its max, inclusive. For
example, a common colormap allocation is 3/3/2 (3 planes for red, 3 planes for green, and
2 planes for blue). This colormap would have red_max = 7, green_max = 7, and blue_max
= 3. An alternate allocation that uses only 216 colors is red_max = 5, green_max = 5, and
blue_max = 5.

9-18 Predefined Property Functions

The red_mult, green_mult, and blue_mult members give the scale factors used to compose
a full pixel value. (See the discussion of the base_pixel members for further information.)
For a 3/3/2 allocation, red_mult might be 32, green_mult might be 4, and blue_mult might
be 1. For a 6-colors-each allocation, red_mult might be 36, green_mult might be 6, and
blue_mult might be 1.

The base_pixel member gives the base pixel value used to compose a full pixel value.
Usually, the base_pixel is obtained from a call to the XAllocColorPlanes function.
Given integer red, green, and blue coefficients in their appropriate ranges, one then can
compute a corresponding pixel value by using the following expression:

r * red mult + g * green mult + b * blue_mult + base pixel

For GrayScale colormaps, only the colormap, red_max, red_mult, and base_pixel
members are defined. The other members are ignored.

To compute a GrayScale pixel value, use the following expression:

gray * red mult + base_pixel

The properties containing the XStandardColormap information have the type
RGB_COLOR_MAP,

9.2.2 Standard Colormap Properties and Atoms

Several standard colormaps are available. Each standard colormap is defined by a
property, and each such property is identified by an atom. The following list names the
atoms and describes the colormap associated with each one. The <X11/Xatom.h>
header file contains the definitions for each of the following atoms, which are prefixed
with XA .

RGB_DEFAULT MAP This atom names a property. The value of the property is an
XStandardColormap.

The property defines an RGB subset of the default colormap of the
screen. Some applications only need a few RGB colors and may be
able to allocate them from the system default colormap. This is the
ideal situation because the fewer colormaps that are active in the
system the more applications are displayed with correct colors at all
times.

Predefined Property Functions 9-19

RGB_BEST MAP

RGB_RED _MAP

A typical allocation for the RGB_DEFAULT_MAP on 8-plane
displays is 6 reds, 6 greens, and 6 blues. This gives 216 uniformly
distributed colors (6 intensities of 36 different hues) and still leaves
40 elements of a 256-element colormap available for special-purpose
colors for text, borders, and so on.

This atom names a property. The value of the property is an
XStandardColormap.

The property defines the best RGB colormap available on the
screen. (Of course, this is a subjective evaluation.) Many image
processing and 3D applications need to use all available colormap
cells and to distribute as many perceptually distinct colors as possible
over those cells. This implies that there may be more green values
available than red, as well as more green or red than blue.

On an 8-plane PseudoColor display, RGB_BEST_MAP should
be a 3/3/2 allocation. On a 24-plane DirectColor display,
RGB_BEST_MAP should be an 8/8/8 allocation. On other displays,
the RGB BEST MAP allocation is purely up to the implementor of
the display.

RGB_ GREEN MAP

RGB_ BLUE MAP

RGB_GRAY_MAP

These atoms name properties. The value of each property is an
XStandardColormap.

The properties define all-red, all-green, and all-blue colormaps,
respectively. These maps are used by applications that want to make
color-separated images. For example, a user might generate a full-
color image on an 8-plane display both by rendering an image three
times (once with high color resolution in red, once with green, and
once with blue) and by multiply-exposing a single frame in a camera.

This atom names a property. The value of the property is an
XStandardColormap.

The property describes the best GrayScale colormap available on
the screen. As previously mentioned, only the colormap, red_max,
red_mult, and base_pixel members of the XStandardColormap
structure are used for GrayScale colormaps.

9-20 Predefined Property Functions

9.2.3 Getting and Setting an XStandardColormap Structure

To get the XStandardColormap structure associated with one of the described atoms,
use XGetStandardColormap.

Status XGetStandardColormap(display, w, colormap return, property)
Display *display ;
Window w;
XStandardColormap *colormap retum ;
Atom property ; /* RGB_BEST MAP, etc. */

display Specifies the connection to the X server.

w Specifies the window.

colormap_retum Returns the colormap associated with the specified atom.
property Specifies the property name.

The XGetStandardColormap function returns the colormap definition associated
with the atom supplied as the property argument. For example, to fetch the standard
GrayScale colormap for a display, you use XGetStandardColormap with the
following syntax:

XGetStandardColormap(dpy, DefaultRootWindow(dpy), &cmap, XA_RGB_GRAY_MAP);

Once you have fetched a standard colormap, you can use it to convert RGB values into
pixel values. For example, given an XStandardColormap structure and floating-point
RGB coefficients in the range 0.0 to 1.0, you can compose pixel values with the following C
expression:

pixel = base_pixel
+ ((unsigned long) (0.5 + r * red_max)) * red_mult
+ ((unsigned long) (0.5 + g * green_max)) * green_mult
+ ((unsigned long) (0.5 + b * blue_max)) * blue_mult;

The use of addition rather than logical OR for composing pixel values permits allocations
where the RGB value is not aligned to bit boundaries.
XGetStandardColormap can generate BadAtom and BadWindow errors.
To set a standard colormap, use XSetStandardColormap.
XSetStandardColormap(display, w, colormap, property)

Display *display;

Window w;

XStandardColormap *colormap ;
Atom property ; /* RGB_BEST_MAP, etc. */

Predefined Property Functions 9-21

display Specifies the connection to the X server.
w Specifies the window.

colormap Specifies the colormap.

property Specifies the property name.

The XSetStandardColormap function usually is only used by window managers. To
create a standard colormap, follow this procedure:

1. Open a new connection to the same server.
2. Grab the server.
3. See if the property is on the property list of the root window for the screen.

4. If the desired property is not present:

o Create a colormap (not required for RGB_DEFAULT_MAP)
« Determine the color capabilities of the display.

e Call XAllocColorPlanes or XAllocColorCells to allocate cells in
the colormap.

e Call XStoreColors to store appropriate color values in the colormap.
« Fill in the descriptive members in the XStandardColormap structure.
« Attach the property to the root window.

e Use XSetCloseDownMode to make the resource permanent.

5. Ungrab the server.

XSetStandardColormap can generate BadAlloc, BadAtom, and BadWindow
€ITors.

9-22 Predefined Property Functions

Application Utility Functions 1 0

Once you have initialized the X system, you can use the Xlib utility functions to:
o Handle keyboard events
¢ Obtain the X environment defaults
« Parse window geometry strings
o Parse hardware colors strings
o Generate regions
o Manipulate regions
« Use cut and paste buffers
¢ Determine the appropriate visual
¢ Manipulate images
e Manipulate bitmaps
¢ Use the resource manager

« Use the context manager
As a group, the functions discussed in this chapter provide the functionality that is
frequently needed and that spans toolkits. Many of these functions do not generate actual
protocol requests to the server.

10.1 Keyboard Utility Functions

This section discusses keyboard event functions and KeySym classification macros.

Application Utility Functions = 10-1

10.1.1 Keyboard Event Functions

The X server does not predefine the keyboard to be ASCII characters. It is often useful to
know that the a key was just pressed or that it was just released. When a key is pressed or
released, the X server sends keyboard events to client programs. The structures associated
with keyboard events contain a keycode member that assigns a number to each physical
key on the keyboard. For a discussion of keyboard event processing, see section 8.4.1. For
information on how to manipulate the keyboard encoding, see section 7.9.

Because KeyCodes are completely arbitrary and may differ from server to server, client
programs wanting to deal with ASCII text, for example, must explicitly convert the
KeyCode value into ASCII. Therefore, Xlib provides functions to help you customize the
keyboard layout. Keyboards differ dramatically, so writing code that presumes the
existence of a particular key on the main keyboard creates portability problems.

Keyboard events are usually sent to the deepest viewable window underneath the pointer’s
position that is interested in that type of event. It is also possible to assign the keyboard
input focus to a specific window. When the input focus is attached to a window, keyboard
events go to the client that has selected input on that window rather than the window
under the pointer.

The functions in this section handle the shift modifier computations suggested by the
protocol. The KeySym table is internally modified to define the lowercase transformation
of a-z by adding the lowercase KeySym to the first element of the KeySym list (used
internally) defined for the KeyCode, when the list is of length 1. If you want the
untransformed KeySyms defined for a key, you should only use the functions described in
section 7.9,

To look up the KeySyms, use XLookupKeysym,
KeySym XLookupKeysym(key event, index)
XKeyEvent *key event;
int index;
key_event Specifies the KeyPress or KeyRelease event.

index Specifies the index into the KeySyms list for the event’s KeyCode.

The XLookupKeysym function uses a given keyboard event and the index you specified
to return the KeySym from the list that corresponds to the KeyCode member in the
XKeyPressedEvent or XKeyReleasedEvent structure. If no KeySym is defined
for the KeyCode of the event, XLookupKeysym returns NoSymbol.

To refresh the stored modifier and keymap information, use
XRefreshKeyboardMapping.

10-2 Application Utility Functions

XRefreshKeyboardMapping (event_map)
XMappingEvent *event map ;

event_ map Specifies the mapping event that is to be used.

The XRefreshKeyboardMapping function refreshes the stored modifier and keymap
information. You usually call this function when a MappingNotify event with a
request member of MappingKeyboard or MappingModifier occurs. The result is
to update Xlib’s knowledge of the keyboard.

To map a key event to an ISO Latin-1 string, use XLookupString.

int XLookupString(event struct, buffer retun, bytes buffer, keysym return, status_in_out)
XKeyEvent *event struct;
char *buffer_retum ;
int bytes_buffer;
KeySym *keysym_return ;
XComposeStatus *status_in_out;

event_struct Specifies the key event structure to be used. You can pass
XKeyPressedEvent or XKeyReleasedEvent.

buffer_return Returns the translated characters.

bytes_buffer Specifies the length of the buffer. No more than bytes_buffer of

translation are returned.

keysym_return Returns the KeySym computed from the event if this argument is not
NULL.

status_in_out Specifies or returns the XComposeStatus structure or NULL.

The XLookupString function is a convenience routine that maps a key event to an ISO
Latin-1 string, using the modifier bits in the key event to deal with shift, lock, and control.
It returns the translated string into the user’s buffer. It also detects any rebound KeySyms
(see XRebindKeysym) and returns the specified bytes. XLookupString returns the
length of the string stored in the tag buffer. If the lock modifier has the caps lock KeySym
associated with it, XLookupString interprets the lock modifier to perform caps lock
processing.

If present (non-NULL), the XComposeStatus structure records the state, which is
private to Xlib, that needs preservation across calls to XLookupString to implement
compose processing.

To rebind the meaning of a KeySym for a client, use XRebindKeysym.

Application Utility Functions 10-3

XRebindKeysym(display, keysym, list, mod_count, string, bytes string)
Display *display;
KeySym keysym ;
KeySym list[];
int mod count;
unsigned char *string;
int bytes_string;

display Specifies the connection to the X server.

keysym Specifies the KeySym that is to be rebound.

list Specifies the KeySyms to be used as modifiers.

mod_count Specifies the number of modifiers in the modifier list.

string Specifies a pointer to the string that is copied and will be returned by
XLookupString.

bytes_string Specifies the length of the string.

The XRebindKeysym function can be used to rebind the meaning of a KeySym for the
client. It does not redefine any key in the X server but merely provides an easy way for
long strings to be attached to keys. XLookupString returns this string when the
appropriate set of modifier keys are pressed and when the KeySym would have been used
for the translation. Note that you can rebind a KeySym that may not exist.

To convert the name of the KeySym to the KeySym code, use XStringToKeysym.
KeySym XStringToKeysym(string)

char *string;
string Specifies the name of the KeySym that is to be converted.

Valid KeySym names are listed in <X11/keysymdef.h> by removing the XK _ prefix
from each name. If the specified string does not match a valid KeySym,
XStringToKeysym returns NoSymbol.

To convert a KeySym code to the name of the KeySym, use XKeysymToString.
char *XKeysymToString (keysym)

KeySym keysym ;
keysym Specifies the KeySym that is to be converted.

The returned string is in a static area and must not be modified. If the specified KeySym is
not defined, XKeysymToString returns a NULL.

To convert a key code to a defined KeySym, use XKeycodeToKeysym.

10-4 Application Utility Functions

KeySym XKeycodeToKeysym(display, keycode, index)
Display *display;
KeyCode keycode ;
int index;
display Specifies the connection to the X server.
keycode Specifies the KeyCode.
index Specifies the element of KeyCode vector.

The XKeycodeToKeysym function uses internal Xlib tables and returns the KeySym
defined for the specified KeyCode and the element of the KeyCode vector. If no symbol is
defined, XKeycodeToKeysym returns NoSymbol.

To convert a KeySym to the appropriate KeyCode, use XKeysymToKeycode.

KeyCode XKevsymToKeycode (display, keysym)
Display *display ;
KeySym keysym ;

display Specifies the connection to the X server.
keysym Specifies the KeySym that is to be searched for.

If the specified KeySym is not defined for any KeyCode, XKeysymToKeycode returns
zero.

10.1.2 Keysym Classification Macros

You may want to test if a KeySym is, for example, on the keypad or on one of the function
keys. You can use the KeySym macros to perform the following tests.

IsCursorKey (keysym)

Returns True if the specified KeySym is a cursor key.

IsFunctionKey (keysym)

Returns True if the specified KeySym is a function key.

IsKeypadKey (keysym)

Returns True if the specified KeySym is a keypad key.

IsMiscFunctionKey (keysym)

Returns True if the specified KeySym is a miscellaneous function key.

Application Utility Functions 10-5

IsModifierKey (keysym)
Returns True if the specified KeySym is a modifier key.

IsPFKey (keysym)

Returns True if the specified KeySym is a PF key.

10.2 Obtaining the X Environment Defaults

A program often needs a variety of options in the X environment (for example, fonts,
colors, mouse, background, text, and cursor). Specifying these options on the command
line is inefficient and unmanageable because individual users have a variety of tastes with
regard to window appearance. XGetDefault makes it easy to find out the fonts, colors,
and other environment defaults favored by a particular user. Defaults are usually loaded
into the RESOURCE_MANAGER property on the root window at login. If no such
property exists, a resource file in the user’s home directory is loaded. On a UNIX-based
system, this file is $HOME/ . Xdefaults. After loading these defaults, XGetDefault
merges additional defaults specified by the XENVIRONMENT environment variable. If
XENVIRONMENT is defined, it contains a full path name for the additional resource file.
If XENVIRONMENT is not defined, XGetDefault looks for SHOME/ .Xdefaults-
name , where name specifies the name of the machine on which

the application is running. For details of the format of these files, see section 10.11.

The XGetDefault function provides a simple interface for clients not wishing to use the
X toolkit or the more elaborate interfaces provided by the resource manager discussed in
section 10.11.

char *XGetDefault (display, program, option)
Display *display ;
char *program ;
char *option;

display Specifies the connection to the X server.

program Specifies the program name for the Xlib defaults (usually argv[0] of the main
program).
option Specifies the option name.

The XGetDefault function returns the value NULL if the option name specified in this
argument does not exist for the program. The strings returned by XGetDefault are
owned by Xlib and should not be modified or freed by the client.

To obtain a pointer to the resource manager string of a display, use
XResourceManagerString.

10-6 Application Utility Functions

char *XResourceManagerString (display)
Display *display;

display Specifies the connection to the X server.

The XResourceManagerString returns the RESOURCE_MANAGER property
from the server’s root window of screen zero, which was returned when the connection was
opened using XOpenDisplay.

10.3 Parsing the Window Geometry

To parse standard window geometry strings, use XParseGeometry.

int XParseGeometry (parsestring, x return, y return, width_retum, height return)
char *parsestring ;
int *x _retum, *y retum;

int *width_retun, *height retum;

parsestring Specifies the string you want to parse.
x_retum

y_return Return the x and y offsets.

width_return

height_return Return the width and height determined.

By convention, X applications use a standard string to indicate window size and placement.
XParseGeometry makes it easier to conform to this standard because it allows you to
parse the standard window geometry. Specifically, this function lets you parse strings of
the form:

[=1[<width>x<height>] [{+-}<xoffser>{+-}<yoffset>]

The items in this form map into the arguments associated with this function. (Items
enclosed in < > are integers, items in [] are optional, and items enclosed in { } indicate
“choose one of”. Note that the brackets should not appear in the actual string.)

The XParseGeometry function returns a bitmask that indicates which of the four

values (width, height, xoffset, and yoffset) were actually found in the string and whether the
x and y values are negative. By convention, -0 is not equal to +0, because the user needs to
be able to say “position the window relative to the right or bottom edge.” For each value
found, the corresponding argument is updated. For each value not found, the argument is
left unchanged. The bits are represented by XValue, YValue, WidthValue,

Application Utility Functions 10-7

HeightValue, XNegative, or YNegative and are defined in <X11/Xutil.h>.
They will be set whenever one of the values is defined or one of the signs is set.

If the function returns either the XValue or YValue flag, you should place the window
at the requested position.

To parse window geometry given a user-specified position and a default position, use
XGeometry.

int XGeometry (display, screen, position, default_position, bwidth, fwidth, fheight, xadder,
yadder, x retum, y return, width_return, height return)
Display *display;
int screen;
char *position, *default_position ;
unsigned int bwidth;
unsigned int fwidth, fheight;
int xadder, yadder;
int *x_reurn, *y retum;
int *width_return, *height retum ;

display Specifies the connection to the X server.

screen Specifies the screen.

position

default_position Specify the geometry specifications.

bwidth Specifies the border width.

fheight

fwidth Specify the font height and width in pixels (increment size).
xadder

yadder Specify additional interior padding needed in the window.
X_return

y_return Return the x and y offsets.

width_return

height_return Return the width and height determined.

You pass in the border width (bwidth), size of the increments fwidth and fheight (typically
font width and height), and any additional interior space (xadder and yadder) to make it
easy to compute the resulting size. The XGeometry function returns the position the
window should be placed given a position and a default position. XGeometry determines
the placement of a window using a geometry specification as specified by
XParseGeometry and the additional information about the window. Given a fully
qualified default geometry specification and an incomplete geometry specification,

10-8 Application Utility Functions

XParseGeometry returns a bitmask value as defined above in the XParseGeometry
call, by using the position argument.

The returned width and height will be the width and height specified by default_position as
overridden by any user-specified position. They are not affected by fwidth, fheight, xadder,
or yadder. The x and y coordinates are computed by using the border width, the screen
width and height, padding as specified by xadder and yadder, and the fheight and fwidth
times the width and height from the geometry specifications.

10.4 Parsing the Color Specifications

To parse color values, use XParseColor.

Status XParseColor (display, colormap, spec, exact_def return)
Display *display;
Colormap colormap ;
char *spec;
XColor *evact_def retumn;

display Specifies the connection to the X server.

colormap Specifies the colormap.

spec Specifies the color name string; case is ignored.

exact_def return Returns the exact color value for later use and sets the DoRed,

DoGreen, and DoBlue flags.

The XParseColor function provides a simple way to create a standard user interface to
color. It takes a string specification of a color, typically from a command line or
XGetDefault option, and returns the corresponding red, green, and blue values that are
suitable for a subsequent call to XAllocColor or XStoreColor. The color can be
specified either as a color name (as in XAllocNamedColor) or as an initial sharp sign
character followed by a numeric specification, in one of the following formats:

#RGB (4 bits each)
#RRGGBB (8 bits each)
#RRRGGGBBB (12 bits each)
#RRRRGGGGBBBB (16 bits each)

The R, G, and B represent single hexadecimal digits (both uppercase and lowercase).
When fewer than 16 bits each are specified, they represent the most-significant bits of the
value. For example, #3a7 is the same as #3000a0007000. The colormap is used only to
determine which screen to look up the color on. For example, you can use the screen’s
default colormap.

Application Utility Functions 10-9

If the initial character is a sharp sign but the string otherwise fails to fit the above formats
or if the initial character is not a sharp sign and the named color does not exist in the
server’s database, XParseColor fails and returns zero.

XParseColor can generate a BadColor error.

10.5 Generating Regions

Regions are arbitrary sets of pixel locations. Xlib provides functions for manipulating
regions. The opaque type Region is defined in <X11/Xutil . h>.

To generate a region from a polygon, use XPolygonRegion.

Region XPolygonRegion(points, n, fill rule)
XPoint points[] ;
int n;
int fill rule;

points Specifies an array of points.
n Specifies the number of points in the polygon.
fill_rule Specifies the fill-rule you want to set for the specified GC. You can pass

EvenOddRule or WindingRule.

The XPolygonRegion function returns a region for the polygon defined by the points
array. For an explanation of fill rule, see XCreateGC.

To generate the smallest rectangle enclosing the region, use XClipBox.
XClipBox(r, rect return)

Region r;

XRectangle *rect_retumn ;
r Specifies the region.

rect_return Returns the smallest enclosing rectangle.

The XClipBox function returns the smallest rectangle enclosing the specified region.

10.6 Manipulating Regions

Xlib provides functions that you can use to manipulate regions. This section discusses how
to:

« Create, copy, or destroy regions

10-10 Application Utility Functions

* Move or shrink regions
o Compute with regions
« Determine if regions are empty or equal

e Locate a point or rectangle in a region

10.6.1 Creating, Copying, or Destroying Regions
To create a new empty region, use XCreateRegion.

Region XCreateRegion()

To set the clip-mask of a GC to a region, use XSetRegion.
XSetRegion (display, gc, r)
Display *display ;
GC gc;
Region r;
display Specifies the connection to the X server.
gc Specifies the GC.
r Specifies the region.

The XSetRegion function sets the clip-mask in the GC to the specified region. Once it
is set in the GC, the region can be destroyed.

To deallocate the storage associated with a specified region, use XDestroyRegion.

XDestroyRegion(r)
Region r;
r Specifies the region.

10.6.2 Moving or Shrinking Regions
To move a region by a specified amount, use X0ffsetRegion.

XOffsetRegion(r, dx, dy)
Region r;
int dx, dy;

r Specifies the region.

Application Utility Functions 10-11

dx
dy Specify the x and y coordinates, which define the amount you want to move the
specified region.

To reduce a region by a specified amount, use XShrinkRegion.
XShrinkRegion(r, dx, dy)

Region r;

int dx, dy;
r Specifies the region.

dx
dy Specify the x and y coordinates, which define the amount you want to shrink the
specified region.

Positive values shrink the size of the region, and negative values expand the region.

10.6.3 Computing with Regions
To compute the intersection of two regions, use XIntersectRegion.

XIntersectRegion(sra, srb, dr_retun)
Region sra, srb, dr return;

sra
srb Specify the two regions with which you want to perform the computation.
dr_return Returns the result of the computation.

To compute the union of two regions, use XUnionRegion.

XUnionRegion(sra, srb, dr_return)
Region sra, stb, dr return;

sra
srb Specify the two regions with which you want to perform the computation.
dr_return Returns the result of the computation.

To create a union of a source region and a rectangle, use XUnionRectWithRegion.
XUnionRectWithRegion(rectangle, src_region, dest region_retum)
XRectangle *rectangle ;

Region src_region ;
Region dest_region_retum ;

rectangle Specifies the rectangle.

10-12 Application Utility Functions

src_region Specifies the source region to be used.
dest_region_retum Returns the destination region.

The XUnionRectWithRegion function updates the destination region from a union of
the specified rectangle and the specified source region.

To subtract two regions, use XSubtractRegion.

XSubtractRegion(sra, srb, dr retum)
Region sra, stb, dr retum;

sra
srb Specify the two regions with which you want to perform the computation.
dr_return Returns the result of the computation.

The XSubtractRegion function subtracts stb from sra and stores the results in
dr_return.

To calculate the difference between the union and intersection of two regions, use
XXorRegion.

XXorRegion(sra, srb, dr_retum)
Region sra, srb, dr retum;

sra
srb Specify the two regions with which you want to perform the computation.
dr_return Returns the result of the computation.

10.6.4 Determining if Regions Are Empty or Equal
To determine if the specified region is empty, use XEmptyRegion.
Bool XEmptyRegion(r)
Region r;
r Specifies the region.
The XEmptyRegion function returns True if the region is empty.
To determine if two regions have the same offset, size, and shape, use XEqualRegion.

Bool XEqualRegion(rl, r2)
Region rl, r2;

Application Utility Functions 10-13

rl
r2 Specify the two regions.

The XEqualRegion function returns True if the two regions have the same offset, size,
and shape.
10.6.5 Locating a Point or a Rectangle in a Region

To determine if a specified point resides in a specified region, use XPointInRegion.

Bool XPointInRegion(r, x, y)

Region r;
int x, y;
r Specifies the region.
x
y Specify the x and y coordinates, which define the point.

The XPointInRegion function returns True if the point (x, y) is contained in the
regionr,

To determine if a specified rectangle is inside a region, use XRectInRegion.

int XRectInRegion(r, x, y, width, height)
Region 7;
int x, y;
unsigned int width, height;

r Specifies the region.
X
y Specify the x and y coordinates, which define the coordinates of the upper-left

corner of the rectangle.

width
height Specify the width and height, which define the rectangle .

The XRectInRegion function returns Rectangleln if the rectangle is entirely in the
specified region, RectangleOut if the rectangle is entirely out of the specified region,
and RectanglePart if the rectangle is partially in the specified region.

10-14 Application Utility Functions

10.7 Using the Cut and Paste Buffers

Xlib provides functions that you can use to cut and paste buffers for programs using this
form of communications. Selections are a more useful mechanism for interchanging data
between clients because typed information can be exchanged. X provides property names
for properties in which bytes can be stored for implementing cut and paste between
windows (implemented by use of properties on the first root window of the display). It is
up to applications to agree on how to represent the data in the buffers. The data is most
often ISO Latin-1 text. The atoms for eight such buffer names are provided and can be
accessed-as a ring or as explicit buffers (numbered 0 through 7). New applications are
encouraged to share data by using selections (see section 4.4).

To store data in cut buffer 0, use XStoreBytes.
XStoreBytes (display, bytes, nbytes)

Display *display;
char *bytes;

int nbytes ;
display Specifies the connection to the X server.
bytes Specifies the bytes, which are not necessarily ASCII or null-terminated.
nbytes Specifies the number of bytes to be stored.

Note that the cut buffer’s contents need not be text, so zero bytes are not special. The cut
buffer’s contents can be retrieved later by any client calling XFetchBytes.

XStoreBytes can generate a BadAlloc error.
To store data in a specified cut buffer, use XStoreBuffer.
XStoreBuffer (display, bytes, nbytes, buffer)
Display *display ;
char *bytes ;
int nbytes;
int buffer;
display Specifies the connection to the X server.
bytes Specifies the bytes, which are not necessarily ASCII or null-terminated.
nbytes Specifies the number of bytes to be stored.
buffer Specifies the buffer in which you want to store the bytes.

If the property for the buffer has never been created, a BadAtom error results.

Application Utility Functions 10-15

XStoreBuffer can generate BadAlloc and BadAtom errors.
To return data from cut buffer 0, use XFetchBytes.

char *XFetchBytes (display, nbytes retum)
Display *display;
int *nbytes_retum ;

display Specifies the connection to the X server.
nbytes_return Returns the number of bytes in the buffer.

The XFetchBytes function returns the number of bytes in the nbytes_return argument,
if the buffer contains data. Otherwise, the function returns NULL and sets nbytes to 0.
The appropriate amount of storage is allocated and the pointer returned. The client must
free this storage when finished with it by calling XFree. Note that the cut buffer does not
necessarily contain text, so it may contain embedded zero bytes and may not terminate
with a null byte.

To return data from a specified cut buffer, use XFetchBuffer.
char *XFetchBuffer (display, nbytes_retumn, buffer)

Display *display;
int *nbytes retum ;

int buffer;”
display Specifies the connection to the X server.
nbytes_return Returns the number of bytes in the buffer.
buffer Specifies the buffer from which you want the stored data returned.

The XFetchBuffer function returns zero to the nbytes_return argument if there is no
data in the buffer.

XFetchBuffer can generate a BadValue error.
To rotate the cut buffers, use XRotateBuffers.
XRotateBuffers (display, rotate)

Display *display;

int rotate;

displ Specifies the connection to the X server.
piay p

rotate Specifies how much to rotate the cut buffers,

10-16 Application Utility Functions

The XRotateBuffers function rotates the cut buffers, such that buffer 0 becomes
buffer n, buffer 1 becomes n + 1 mod 8, and so on. This cut buffer numbering is global to
the display. Note that XRotateBuffers generates BadMatch errors if any of the
eight buffers have not been created.

10.8 Determining the Appropriate Visual Type

A single display can support multiple screens. Each screen can have several different
visual types supported at different depths. You can use the functions described in this
section to determine which visual to use for your application.

The functions in this section use the visual information masks and the XVisualInfo
structure, which is defined in <X11/Xutil.h> and contains:

/* Visual information mask bits */

#define VisualNoMask 0x0
#define VisualIDMask Ox1
#define VisualScreenMask 0x2
#define VisualDepthMask 0x4
#define VisualClassMask 0x8
#define VisualRedMaskMask 0x10
#define VisualGreenMaskMask 0x20
#define VisualBlueMaskMask 0x40

#define VisualColormapSizeMask 0x80
#define VisualBitsPerRGBMask 0x100
#define VisualAllMask 0x1FF

/* Values */

typedef struct {
Visual *visual;
VisuallD visualid;
int screen;
unsigned int depth;
int class;
unsigned long red_mask;
unsigned long green mask;
unsigned long blue_mask;
int colormap_size;
int bits_per_rgb;

} XVisuallnfo;

Application Utility Functions 10-17

To obtain a list of visual information structures that match a specified template, use
XGetVisuallInfo.

XVisuallnfo *XGetVisuallnfo (display, vinfo_mask, vinfo_template, nitems_return)
Display *display ;
long vinfo_mask ;
XVisualInfo *vinfo_template;
int *nitems_return ;

display Specifies the connection to the X server.
vinfo_mask Specifies the visual mask value.
vinfo_template Specifies the visual attributes that are to be used in matching the

visual structures.
nitems_return Returns the number of matching visual structures.

The XGetVisualInfo function returns a list of visual structures that match the
attributes specified by vinfo_template. If no visual structures match the template using the
specified vinfo_mask, XGetVisualInfo returns a NULL. To free the data returned by
this function, use XFree.

To obtain the visual information that matches the specified depth and class of the screen,
use XMatchVisualInfo.

Status XMatchVisualInfo(display, screen, depth, class, vinfo_return)
Display *display;
int screen;
int. depth ;
int class;
XVisualInfo *vinfo_return;

display Specifies the connection to the X server.
screen Specifies the screen.

depth Specifies the depth of the screen.

class Specifies the class of the screen.
vinfo_return Returns the matched visual information.

The XMatchVisualInfo function returns the visual information for a visual that
matches the specified depth and class for a screen. Because multiple visuals that match
the specified depth and class can exist, the exact visual chosen is undefined. If a visual is
found, RMatchVisualInfo returns nonzero and the information on the visual to
vinfo_return. Otherwise, when a visual is not found, XMatchVisualInfo returns zero.

10-18 Application Utility Functions

10.9 Manipulating Images

Xlib provides several functions that perform basic operations on images. All operations on
images are defined using an XImage structure, as defined in <X11/X1ib.h>.

Because the number of different types of image formats can be very large, this hides details
of image storage properly from applications.

This section describes the functions for generic operations on images. Manufacturers can
provide very fast implementations of these for the formats frequently encountered on their
hardware. These functions are neither sufficient nor desirable to use for general image
processing. Rather, they are here to provide minimal functions on screen format images.
The basic operations for getting and putting images are XGetImage and XPutImage.

Note that no functions have been defined, as yet, to read and write images to and from
disk files.

The XImage structure describes an image as it exists in the client’s memory. The user can
request that some of the members such as height, width, and xoffset be changed when the
image is sent to the server. Note that bytes_per_line in concert with offset can be used to
extract a subset of the image. Other members (for example, byte order, bitmap _unit, and
so forth) are characteristics of both the image and the server. If these members differ
between the image and the server, XPutImage makes the appropriate conversions. The
first byte of the first line of plane n must be located at the address (data + (n * height *
bytes_per_line)). For a description of the XImage structure, see section 6.7.

To allocate sufficient memory for an XImage structure, use XCreateImage.

XImage *XCreatelmage (display, visual, depth, format, offset, data, width, height, bitmap pad,
bytes_per line)
Display *display;
Visual *visual;
unsigned int depth;
int format;
int offset;
char *data;
unsigned int width;
unsigned int height;
int bitmap pad ;
int bytes per line;

display Specifies the connection to the X server.
visual Specifies a pointer to the visual.

depth Specifies the depth of the image.

Application Utility Functions 10-19

format Specifies the format for the image. You can pass XYBitmap,
XYPixmap, or ZPixmap.

offset Specifies the number of pixels to ignore at the beginning of the
scanline.

data Specifies a pointer to the image data.

width Specifies the width of the image, in pixels.

height Specifies the height of the image, in pixels.

bitmap_pad Specifies the quantum of a scanline (8, 16, or 32). In other Words, the

start of one scanline is separated in client memory from the start of
the next scanline by an integer multiple of this many bits.

bytes_per line Specifies the number of bytes in the client image between the start of
one scanline and the start of the next.

The XCreateImage function allocates the memory needed for an XImage structure
for the specified display but does not allocate space for the image itself. Rather, it
initializes the structure byte-order, bit-order, and bitmap-unit values from the display and
returns a pointer to the XImage structure. The red, green, and blue mask values are
defined for Z format images only and are derived from the Visual structure passed in.
Other values also are passed in. The offset permits the rapid displaying of the image
without requiring each scanline to be shifted into position. If you pass a zero value in
bytes_per_line, Xlib assumes that the scanlines are contiguous in memory and calculates
the value of bytes_per_line itself.

Note that when the image is created using XCreateImage, XGetImage, or
XSublImage, the destroy procedure that the XDestroyImage function calls frees both
the image structure and the data pointed to by the image structure.

The basic functions used to get a pixel, set a pixel, create a subimage, and add a constant
offset to a Z format image are defined in the image object. The functions in this section
are really macro invocations of the functions in the image object and are defined in
<X11l/Xutil.h>.

To obtain a pixel value in an image, use XGetPixel.
unsigned long XGetPixel (ximage, x, y)
XImage *ximage;

int x;
int y;

ximage Specifies a pointer to the image.

10-20 Application Utility Functions

x
y Specify the x and y coordinates.

The XGetPixel function returns the specified pixel from the named image. The pixel
value is returned in normalized format (that is, the least-significant byte of the long is the
least-significant byte of the pixel). The image must contain the x and y coordinates.

To set a pixel value in an image, use XPutPixel.

int XPutPixel (ximage, x, y, pixel)
XImage *ximage;
int x;
int y;
unsigned long pivel;

ximage Specifies a pointer to the image.

x
y Specify the x and y coordinates.
pixel Specifies the new pixel value.

The XPutPixel function overwrites the pixel in the named image with the specified
pixel value. The input pixel value must be in normalized format (that is, the least-
significant byte of the long is the least-significant byte of the pixel). The image must
contain the x and y coordinates.

To create a subimage, use XSubImage.

XImage *XSubImage (ximage, x, y, subimage width, subimage height)
XImage *ximage;
int x;
int y;
unsigned int subimage width ;
unsigned int subimage height;

ximage Specifies a pointer to the image.

x

y Specify the x and y coordinates.

subimage_width Specifies the width of the new subimage, in pixels.

subimage_height Specifies the height of the new subimage, in pixels.

The XSubImage function creates a new image that is a subsection of an existing one. It
allocates the memory necessary for the new XImage structure and returns a pointer to
the new image. The data is copied from the source image, and the image must contain the
rectangle defined by x, y, subimage_width, and subimage_height.

Application Utility Functions 10-21

To increment each pixel in the pixmap by a constant value, use XAddPixel.
XAddPixel (ximage, value)
XImage *ximage;
long value;
ximage Specifies a pointer to the image.
value Specifies the constant value that is to be added.

The XAddPixel function adds a constant value to every pixel in an image. It is useful
when you have a base pixel value from allocating color resources and need to manipulate
the image to that form.

To deallocate the memory allocated in a previous call to XCreateImage, use
XDestroyImage.

int XDestroyImage (ximage)
XImage *ximage;
ximage Specifies a pointer to the image.

The XDestroyImage function deallocates the memory associated with the XImage
structure.

Note that when the image is created using XCreateImage, XGetImage, or
XSubImage, the destroy procedure that this macro calls frees both the image structure
and the data pointed to by the image structure.

10.10 Manipulating Bitmaps

Xlib provides functions that you can use to read a bitmap from a file, save a bitmap to a
file, or create a bitmap. This section describes those functions that transfer bitmaps to and
from the client’s file system, thus allowing their reuse in a later connection (for example,
from an entirely different client or to a different display or server).

The X version 11 bitmap file format is:

f#define name_width width

f#fdefine name_height height

f#define name_x_hot x

f#define name_y hot y

static char rame bits[] = { 0xNN,... }

10-22 Application Utility Functions

The variables ending with _x hot and _y_hot suffixes are optional because they are present
only if a hotspot has been defined for this bltmap The other variables are requlred The
_bits array must be large enough to contain the size bitmap. The bitmap unit is eight. The
name is derived from the name of the file that you specified on the original command line
by deleting the directory path and extension.

To read a bitmap from a file, use XReadBitmapFile.

int XReadBitmapFile(display, d, filename, width return, height return, bitmap_retum, x_hot_retum,

y_hot_return)

Display *display;

Drawable d;

char ¥*filename ;

unsigned int *width_retum, *height return;

Pixmap *bitmap return ;

int *x_hot return, *y hot retumn;

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

filename Specifies the file name to use. The format of the file name is
operating-system dependent.

width_retum

height_return Return the width and height values of the read in bitmap file.

bitmap_return Returns the bitmap that is created.

x_hot_return

y_hot_retumn Return the hotspot coordinates.

The XReadBitmapFile function reads in a file containing a bitmap. The file can be
either in the standard X version 10 format (that is, the format used by X version 10 bitmap
program) or in the X version 11 bitmap format. If the file cannot be opened,
XReadBitmapFile returns BitmapOpenFailed. If the file can be opened but does
not contain valid bitmap data, it returns Bi tmapFileInvalid. If insufficient working
storage is allocated, it returns Bi tmapNoMemory. If the file is readable and valid, it
returns BitmapSuccess.

XReadBitmapFile returns the bitmap’s height and width, as read from the file, to
width_return and height_return. It then creates a plxmap of the appropriate size, reads the
bitmap data from the file into the pixmap, and assigns the pixmap to the caller’s variable
bitmap. The caller must free the bitmap using XFreePixmap when finished. If
name_X_hot and name_y_hot exist, XReadBitmapFile returns them to x_hot_return
and y | hot return; otherwise, it returns -1,-1.

XReadBitmapFile can generate BadAlloc and BadDrawable errors.

Application Utility Functions 10-23

To write out a bitmap to a file, use XWriteBitmapFile.

int XWriteBitmapFile(display, filename, bitmap, width, height, x _hot, y_hot)
Display *display;
char *filename ;
Pixmap bitmap ;
unsigned int width, height;
int x hot, y hot;

display Specifies the connection to the X server.

filename Specifies the file name to use. The format of the file name is operating-
system dependent.

bitmap Specifies the bitmap.

width

height Specify the width and height.

x_hot

y_hot Specify where to place the hotspot coordinates (or -1,-1 if none are present)
in the file.

The XWriteBitmapFile function writes a bitmap out to a file. While
XReadBitmapFile can read in either X version 10 format or X version 11 format,
XWriteBitmapFile always writes out X version 11 format. If the file cannot be
opened for writing, it returns BitmapOpenFailed. If insufficient memory is allocated,
XWriteBitmapFile returns BitmapNoMemory; otherwise, on no error, it returns
BitmapSuccess. Ifx hot andy hot are not -1, -1, XWriteBitmapFile writes them
out as the hotspot coordinates for the bitmap.

XWriteBitmapFile can generate BadDrawable and BadMatch errors.

To create a pixmap and then store bitmap-format data into it, use
XCreatePixmapFromBitmapData.

Pixmap XCreatePixmapFromBitmapData(display, d, data, width, height, fg, bg, depth)
Display *display;
Drawable d;
char *data;
unsigned int width, height;
unsigned long fg, bg;
unsigned int depth;

display Specifies the connection to the X server.
d Specifies the drawable that indicates the screen.

data Specifies the data in bitmap format.

10-24 Application Utility Functions

width
height Specify the width and height.

1z
bg ‘Specify the foreground and background pixel values to use.

depth Specifies the depth of the pixmap.

The XCreatePixmapFromBitmapData function creates a pixmap of the given depth
and then does a bitmap-format XPutImage of the data into it. The depth must be
supported by the screen of the specified drawable, or a BadMatch error results.

XCreatePixmapFromBitmapData can generate BadAlloc and BadMatch
errors.

To include a bitmap written out by XWriteBitmapFile in a program directly, as
opposed to reading it in every time at run time, use XCreateBitmapFromData.

Pixmap XCreateBitmapFromData(display, d, data, width, height)
Display *display;
Drawable d;
char *data;
unsigned int width, height;

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.
data Specifies the location of the bitmap data.
width

height Specify the width and height.

The XCreateBitmapFromData function allows you to include in your C program
(using #include) a bitmap file that was written out by XWriteBitmapFile (X version
11 format only) without reading in the bitmap file. The following example creates a gray
bitmap:

ffinclude "gray.bitmap"

Pixmap bitmap;
bitmap = XCreateBitmapFromData(display, window, gray bits, gray_width, gray_height);

If insufficient working storage was allocated, XCreateBitmapFromData returns
None. It is your responsibility to free the bitmap using XFreePixmap when finished.

XCreateBitmapFromData can generate a BadAlloc error.

Application Utility Functions 10-25

10.11 Using the Resource Manager

The resource manager is a database manager with a twist. In most database systems, you
perform a query using an imprecise specification, and you get back a set of records. The
resource manager, however, allows you to specify a large set of values with an imprecise
specification, to query the database with a precise specification, and to get back only a
single value. This should be used by applications that need to know what the user prefers
for colors, fonts, and other resources. It is this use as a database for dealing with X
resources that inspired the name “Resource Manager,” although the resource manager
can be and is used in other ways.

For example, a user of your application may want to specify that all windows should have a
blue background but that all mail-reading windows should have a red background.
Presuming that all applications use the resource manager, a user can define this
information using only two lines of specifications. Your personal resource database usually
is stored in a file and is loaded onto a server property when you log in. This database is
retrieved automatically by Xlib when a connection is opened.

As an example of how the resource manager works, consider a mail-reading application
called xmh. Assume that it is designed so that it uses a complex window hierarchy all the
way down to individual command buttons, which may be actual small subwindows in some
toolkits. These are often called objects or widgets. In such toolkit systems, each user
interface object can be composed of other objects and can be assigned a name and a class.
Fully qualified names or classes can have arbitrary numbers of component names, but a
fully qualified name always has the same number of component names as a fully qualified
class. This generally reflects the structure of the application as composed of these objects,
starting with the application itself.

For example, the xmh mail program has a name “xmh” and is one of a class of “Mail”
programs. By convention, the first character of class components is capitalized, and the
first letter of name components is in lowercase. Each name and class finally has an
attribute (for example “foreground” or “font”). If each window is properly assigned a
name and class, it is easy for the user to specify attributes of any portion of the application.

At the top level, the application might consist of a paned window (that is, a window divided
into several sections) named “toc”. One pane of the paned window is a button box window
named “buttons” and is filled with command buttons. One of these command buttons is
used to retrieve (include) new mail and has the name “include”. This window has a fully
qualified name, “xmbh.toc.buttons.include”, and a fully qualified class,
“Xmh.VPaned.Box.Command”. Its fully qualified name is the name of its parent,
“xmbh.toc.buttons”, followed by its name, “include”. Its class is the class of its parent,

10-26 Application Utility Functions

“Xmh.VPaned.Box”, followed by its particular class, “Command”. The fully qualified
name of a resource is the attribute’s name appended to the object’s fully qualified name,
and the fully qualified class is its class appended to the object’s class.

This include button needs the following resources:
« Title string
o Font
» Foreground color for its inactive state
« Background color for its inactive state
o Foreground color for its active state
» Background color for its active state

Each of the resources that this button needs are considered to be attributes of the button
and, as such, have a name and a class. For example, the foreground color for the button in
its active state might be named “activeForeground”, and its class would be “Foreground.”

When an application looks up a resource (for example, a color), it passes the complete
name and complete class of the resource to a look-up routine. After look up, the resource
manager returns the resource value and the representation type.

The resource manager allows applications to store resources by an incomplete
specification of name, class, and a representation type, as well as to retrieve them given a
fully qualified name and class.

10.11.1 Resource Manager Matching Rules

The algorithm for determining which resource name or names match a given query is the
heart of the database. Resources are stored with only partially specified names and
classes, using pattern matching constructs. An asterisk (*) is used to represent any number
of intervening components (including none). A period (.) is used to separate immediately
adjacent components. All queries fully specify the name and class of the resource needed.
A trailing period and asterisk are not removed. The library supports 100 components in a
name or class. The look-up algorithm then searches the database for the name that most
closely matches (is most specific) this full name and class. The rules for a match in order
of precedence are:

1. The attribute of the name and class must match. For example, queries for:

xterm.scrollbar.background (name)
XTerm,Scrollbar,Background (class)

Application Utility Functions 10-27

will not match the following database entry:

xterm.scrollbar:on

2. Database entries with name or class prefixed by a period (.) are more specific than
those prefixed by an asterisk (*). For example, the entry xterm.geometry is more
specific than the entry xterm*geometry.

3. Names are more specific than classes. For example, the entry
“*scrollbar.background” is more specific than the entry “*Scrollbar.Background”.

4. Specifying a name or class is more specific than omitting either. For example, the
entry “Scrollbar*Background” is more specific than the entry “*Background”.

5. Left components are more specific than right components. For example,
“*vt100*background” is more specific than the entry “*scrollbar*background” for
the query “.vt100.scrollbar.background”.

6. If neither a period (.) nor an asterisk (*) is specified at the beginning, a period (.) is
implicit. For example, “xterm.background” is identical to “xterm.background”.

Names and classes can be mixed. As an example of these rules, assume the following user
preference specification:

xmh¥*background: red
*command . font: 8x13
*command.background: blue
*Command .Foreground: green

xmh . toc*Command . activeForeground :black

A query for the name “xmh.toc.messagefunctions.include.activeForeground™ and class
“Xmh.VPaned.Box.Command.Foreground” would match
“xmh.toc*Command.activeForeground” and return “black”. However, it also matches
“*Command.Foreground”.

Using the precedence algorithm described above, the resource manager would return the
value specified by “xmh.toc*Command.activeForeground”.
10.11.2 Basic Resource Manager Definitions

The definitions for the resource manager’s use are contained in
<X11l/Xresource.h>. Xlib also uses the resource manager internally to allow for
non-English language error messages.

10-28 Application Utility Functions

Database values consist of a size, an address, and a representation type. The size is
specified in bytes. The representation type is a way for you to store data tagged by some
application-defined type (for example, “font” or “color”). It has nothing to do with the C
data type or with its class. The XrmValue structure contains:

typedef struct {
unsigned int size;
caddr_t addr;

} XrmValue, *XrmValuePtr;

A resource database is an opaque type used by the look-up functions.

typedef struct _XrmHashBucketRec *XrmDatabase;

To initialize the resource manager, use XrmInitialize.

void XrmInitialize();

Most uses of the resource manager involve defining names, classes, and representation
types as string constants. However, always referring to strings in the resource manager can
be slow, because it is so heavily used in some toolkits. To solve this problem, a shorthand
for a string is used in place of the string in many of the resource manager functions.
Simple comparisons can be performed rather than string comparisons. The shorthand
name for a string is called a quark and is the type XrmQuark. On some occasions, you
may want to allocate a quark that has no string equivalent.

A quark is to a string what an atom is to a string in the server, but its use is entirely local to
your application.

To allocate a new quark, use XrmUniqueQuark.

XrmQuark XrmUniqueQuark()

The XrmUniqueQuark function allocates a quark that is guaranteed not to represent
any string that is known to the resource manager.

To allocate some memory you will never give back, use Xpermalloc.
char *Xpermalloc (size)

unsigned int size;

The Xpermalloc function is used by some toolkits for permanently allocated storage
and allows some performance and space savings over the completely general memory
allocator.

Each name, class, and representation type is typedef'd as an XrmQuark.

Application Utility Functions 10-29

typedef int XrmQuark, *XrmQuarkList;
typedef XrmQuark XrmName;
typedef XrmQuark XrmClass;
typedef XrmQuark XrmRepresentation;

Lists are represented as null-terminated arrays of quarks. The size of the array must be
large enough for the number of components used.

typedef XrmQuarkList XrmNameList;
typedef XrmQuarkList XrmClassList;
To convert a string to a quark, use XrmStringToQuark.
#define XrmStringToName(string) XrmStringToQuark(string)
fidefine XrmStringToClass(string) XrmStringToQuark(string)
#define XrmStringToRepresentation(string) XrmStringToQuark(string)
XrmQuark XrmStringToQuark (string)
char *string;
string Specifies the string for which a quark is to be allocated.
To convert a quark to a string, use XrmQuarkToString.
#define XrmNameToString(name) XrmQuarkToString(name)
#define XrmClassToString(class) XrmQuarkToString(class)
#define XrmRepresentationToString(type) XrmQuarkToString(type)
char *XrmQuarkToString (quark)
XrmQuark quark;
quark Specifies the quark for which the equivalent string is desired.

These functions can be used to convert to and from quark representations. The string
pointed to by the return value must not be modified or freed. If no string exists for that
quark, XrmQuarkToString returns NULL.

To convert a string with one or more components to a quark list, use
XrmStringToQuarkList.

#define XrmStringToNameList(str, name) XrmStringToQuarkList((str), (name))
#define XrmStringToClassList(str,class) XrmStringToQuarkList((str), (class))

void XrmStringToQuarkList (string, quarks return)
char *string;
XrmQuarkList quarks_return ;

string Specifies the string for which a quark is to be allocated.

10-30 Application Utility Functions

quarks_return Returns the list of quarks.

The XrmStringToQuarkList function converts the null-terminated string (generally a
fully qualified name) to a list of quarks. The components of the string are separated by a
period or asterisk character.

A binding list is a list of type XrmBindingList and indicates if components of name or
class lists are bound tightly or loosely (that is, if wildcarding of intermediate components is
specified).

typedef enum {XrmBindTightly, XrmBindLoosely} XrmBinding, *XrmBindinglList;

XrmBindTightly indicates that a period separates the components, and
XrmBindLoosely indicates that an asterisk separates the components.

To convert a string with one or more components to a binding list and a quark list, use
XrmStringToBindingQuarkList.
XrmStringToBindingQuarkList (string, bindings retum, quarks retum)

char *swring;

XrmBindingList bindings_retum ;
XrmQuarkList quarks rewum ;

string Specifies the string for which a quark is to be allocated.

bindings_return Returns the binding list. The caller must allocate sufficient space for
the binding list before calling
XrmStringToBindingQuarkList.

quarks_return Returns the list of quarks. The caller must allocate sufficient space
for the quarks list before calling
XrmStringToBindingQuarkList.

Component names in the list are separated by a period or an asterisk character. If the
string does not start with a period or an asterisk, a period is assumed. For example,
“*a.b*c” becomes:

quarks a b c
bindings loose tight loose

10.11.3 Resource Database Access

Xlib provides resource management functions that you can use to manipulate resource
databases. The next sections discuss how to:

« Store and get resources

Application Utility Functions 10-31

¢ Get database levels
« Merge two databases

o Retrieve and store databases

Storing Into a Resource Database

To store resources into the database, use XrmPutResource or XrmQPutResource.
Both functions take a partial resource specification, a representation type, and a value.
This value is copied into the specified database.

void XrmPutResource (database, specifier, type, value)
XrmDatabase *database ;
char *specifier ;
char *type;
XrmValue *value;

database Specifies a pointer to the resource database.

specifier Specifies a complete or partial specification of the resource.
type Specifies the type of the resource.

value Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmPutResource creates a new database and returns a
pointer to it. XrmPutResource is a convenience function that calls
XrmStringToBindingQuarkList followed by:

XrmQPutResource(database, bindings, quarks, XrmStringToQuark(type), value)

void XrmQPutResource (database, bindings, quarks, type, value)
XrmDatabase *database;
XrmBindingList bindings ;
XrmQuarkList quarks ;
XrmRepresentation type;
XrmValue *value;

database Specifies a pointer to the resource database.

bindings Specifies a list of bindings.

quarks Specifies the complete or partial name or the class list of the resource.
type Specifies the type of the resource.
value Specifies the value of the resource, which is specified as a string.

10-32 Application Utility Functions

If database contains NULL, XrmQPutResource creates a new database and returns a
pointer to it.

To add a resource that is specified as a string, use XrmPutStringResource.
void XrmPutStringResource (database, specifier, value)

XrmDatabase *database;
char *specifier ;

char *value;
database Specifies a pointer to the resource database.
specifier Specifies a complete or partial specification of the resource.
value Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmPutStringResource creates a new database and
returns a pointer to it. XrmPutStringResource adds a resource with the specified
value to the specified database. XrmPutStringResource is a convenience routine
that takes both the resource and value as null-terminated strings, converts them to quarks,
and then calls XrmQPutResource, using a “String” representation type.

To add a string resource using quarks as a specification, use
XrmQPutStringResource.

void XrmQPutStringResource (database, bindings, quarks, value)
XrmDatabase *database ;
XrmBindingList bindings;
XrmQuarkList quarks;
char *value;

database Specifies a pointer to the resource database.
bindings Specifies a list of bindings.
quarks Specifies the complete or partial name or the class list of the resource.

value Specifies the value of the resource, which is specified as a string,

If database contains NULL, XrmQPutStringResource creates a new database and
returns a pointer to it. XrmQPutStringResource is a convenience routine that
constructs an XrmValue for the value string (by calling strlen to compute the size)
and then calls XrmQPutResource, using a “String” representation type.

To add a single resource entry that is specified as a string that contains both a name and a
value, use XrmPutLineResource.

void XrmPutLineResource (database, line)

XrmDatabase *database;
char *line;

Application Utility Functions 10-33

database Specifies a pointer to the resource database.

line Specifies the resource value pair as a single string. A single colon (©)
separates the name from the value.

If database contains NULL, XrmPutLineResource creates a new database and
returns a pointer to it. XrmPutLineResource adds a single resource entry to the
specified database. Any white space before or after the name or colon in the line
argument is ignored. The value is terminated by a new-line or a NULL character. To
allow values to contain embedded new-line characters, a “\n” is recognized and replaced
by a new-line character. For example, line might have the value
“xterm*background:green\n”. Null-terminated strings without a new line are also
permitted.

Looking Up from a Resource Database
To retrieve a resource from a resource database, use XrmGetResource or
XrmQGetResource.

Bool XrmGetResource(database, str name, str_class, str_type return, value return)
XrmDatabase database;
char *sir_name;
char *sir_class;
char **str type retum;
XrmValue *value retumn ;

database Specifies the database that is to be used.

str_name Specifies the fully qualified name of the value being retrieved (as a
string).

str_class Specifies the fully qualified class of the value being retrieved (as a
string).

str_type_return Returns a pointer to the representation type of the destination (as a
string).

value_return Returns the value in the database.

Bool XrmQGetResource (database, quark_name, quark class, quark type return, value retumn)
XrmDatabase database;
XrmNameList quark_name ;
XrmClassList quark class;
XrnRepresentation *quark type return ;
XrmValue ¥value retumn;

database Specifies the database that is to be used.

10-34 Application Utility Functions

quark_name Specifies the fully qualified name of the value being retrieved (as a

quark).

quark_class Specifies the fully qualified class of the value being retrieved (as a
quark).

quark_type_retumn Returns a pointer to the representation type of the destination (as
a quark).

value_return Returns the value in the database.

The XrmGetResource and XrmQGetResource functions retrieve a resource from

the specified database. Both take a fully qualified name /class pair, a destination resource
representation, and the address of a value (size/address pair). The value and returned type
point into database memory; therefore, you must not modify the data.

The database only frees or overwrites entries on XrmPutResource,
XrmQPutResource, or XrmMergeDatabases. A client that is not storing new
values into the database or is not merging the database should be safe using the address
passed back at any time until it exits. If a resource was found, both XrmGetResource
and XrmQGetResource return True; otherwise, they return False.

Database Search Lists

Most applications and toolkits do not make random probes into a resource database to
fetch resources. The X toolkit access pattern for a resource database is quite stylized. A
series of from 1 to 20 probes are made with only the last name/class differing in each
probe. The XrmGetResource function is at worst a 2" algorithm, where # is the length
of the name /class list. This can be improved upon by the application programmer by
prefetching a list of database levels that might match the first part of a name /class list.

To return a list of database levels, use XrmQGetSearchList.
typedef XrmHashTable *XrmSearchList;

Bool XrmQGetSearchList(database, names, classes, list_retun, list length)
XrmDatabase database;
XrmNameList names ;
XrmClassList classes;
XrmSearchList list_return;
int list length ;

database Specifies the database that is to be used.
names Specifies a list of resource names.
classes Specifies a list of resource classes.

Application Utility Functions 10-35

list_retum Returns a search list for further use. The caller must allocate sufficient
space for the list before calling XrmQGetSearchList.

list_length Specifies the number of entries (not the byte size) allocated for
list_return.

The XrmQGetSearchList function takes a list of names and classes and returns a list
of database levels where a match might occur. The returned list is in best-to-worst order
and uses the same algorithm as XrmGetResource for determining precedence. If
list_return was large enough for the search list, XrmQGetSearchList returns True;
otherwise, it returns False.

The size of the search list that the caller must allocate is dependent upon the number of
levels and wildcards in the resource specifiers that are stored in the database. The worst
case length is 3", where n is the number of name or class components in names or classes.

When using XrmQGetSearchList followed by multiple probes for resources with a
common name and class prefix, only the common prefix should be specified in the name
and class list to XrmQGetSearchList.

To search resource database levels for a given resource, use
XrmQGetSearchResource.

Bool XrmQGetSearchResource (list, name, class, type return, value return)
XrmSearchList list;
XrmName name;
XrmClass class;
XrmRepresentation *fype_return;
XrmValue *value retum ;

list Specifies the search list returned by XrmQGetSearchList.
name Specifies the resource name.

class Specifies the resource class.

type_return Returns data representation type.

value_return Returns the value in the database.

The XrmQGetSearchResource function searches the specified database levels for the
resource that is fully identified by the specified name and class. The search stops with the
first match. XrmQGetSearchResource returns True if the resource was found;
otherwise, it returns False.

A call io XrmQGetSearchList with a name and class list containing all but the last
component of a resource name followed by a call to XrmQGetSearchResource with
the last component name and class returns the same database entry as
XrmGetResource and XrmQGetResource with the fully qualified name and class.

10-36 Application Utility Functions

Merging Resource Databases
To merge the contents of one database into another database, use
XrmMergeDatabases.

void XrmMergeDatabases (source_db, target db)
XrmDatabase source_db, *target db;

source_db Specifies the resource database that is to be merged into the target
database.

target db Specifies a pointer to the resource database into which the source database
is to be merged.

The XrmMergeDatabases function merges the contents of one database into another.
It may overwrite entries in the destination database. This function is used to combine
databases (for example, an application specific database of defaults and a database of user
preferences). The merge is destructive; that is, the source database is destroyed.

Retrieving and Storing Databases
To retrieve a database from disk, use XrmGetFileDatabase.
XrmDatabase XrmGetFileDatabase (filename)
char *filename;
Jilename Specifies the resource database file name.

The XrmGetFileDatabase function opens the specified file, creates a new resource
database, and loads it with the specifications read in from the specified file. The specified
file must contain lines in the format accepted by XrmPutLineResource. Ifit cannot
open the specified file, XrmGetFileDatabase returns NULL.

To store a copy of a database to disk, use XrmPutFileDatabase.
void XrmPutFileDatabase (database, stored db)

XrmDatabase database ;

char *stored_db ;
database Specifies the database that is to be used.

stored_db Specifies the file name for the stored database.

The XrmPutFileDatabase function stores a copy of the specified database in the
specified file. The file is an ASCII text file that contains lines in the format that is
accepted by XrmPutLineResource.

To create a database from a string, use XrmGetStringDatabase.

Application Utility Functions 10-37

XrmDatabase XrmGetStringDatabase (data)
char *data;

data Specifies the database contents using a string.

The XrmGetStringDatabase function creates a new database and stores the
resources specified in the specified null-terminated string. XrmGetStringDatabase
is similar to XrmGetFileDatabase except that it reads the information out of a string
instead of out of a file. Each line is separated by a new-line character in the format
accepted by XrmPutLineResource.

10.11.4 Parsing Command Line Options

The XrmParseCommand function can be used to parse the command line arguments to
a program and modify a resource database with selected entries from the command line.

typedef enum {

XrmoptionNoArg, /* Value is specified in OptionDescRec.value */
XrmoptionIsArg, /* Value is the option string itself */
XrmoptionStickyArg, /* Value is characters immediately following option */
XrmoptionSepArg, /% Value is next argument in argv */

XrmoptionResArg, /* Resource and value in next argument in argv */
XrmoptionSkipArg, /* Ignore this option and the next argument in argv */
XrmoptionSkipLine /* Ignore this option and the rest of argv */

} XrmOptionKind;

typedef struct {

char *option; /* Option specification string in argv */

char *resourceName; /* Binding and resource name (sans application name) */
XrmOptionKind argKind; /* Which style of option it is */

caddr_t value; /* Value to provide if XrmoptionNoArg */

} XrmOptionDescRec, *XrmOptionDescList;

To load a resource database from a C command line, use XrmParseCommand.

void XrmParseCommand (database, table, table count, name, argc_in_out, argv_in_out,)
XrmDatabase *database; -
XrmOptionDescList table;
int table_count;
char *name;
int *argc_in_out;
char **argv_in_out;

database Specifies a pointer to the resource database.

table Specifies the table of command line arguments to be parsed.
table_count Specifies the number of entries in the table.

name Specifies the application name.

10-38 Application Utility Functions

argc_in_out Specifies the number of arguments and returns the number of remaining
arguments.
argv_in_out Specifies a pointer to the command line arguments and returns the

remaining arguments.

The XrmParseCommand function parses an (argc, argv) pair according to the specified
option table, loads recognized options into the specified database with type “String,” and
modifies the (arge, argv) pair to remove all recognized options.

The specified table is used to parse the command line. Recognized entries in the table are
removed from argv, and entries are made in the specified resource database. The table
entries contain information on the option string, the option name, the style of option, and a
value to provide if the option kind is XrmoptionNoArg. The argc argument specifies
the number of arguments in argv and is set to the remaining number of arguments that
were not parsed. The name argument should be the name of your application for use in
building the database entry. The name argument is prefixed to the resourceName in the
option table before storing the specification. No separating (binding) character is inserted.
The table must contain either a period (.) or an asterisk (*) as the first character in each
resourceName entry. To specify a more completely qualified resource name, the
resourceName entry can contain multiple components.

For example, the following is part of the standard option table from the X Toolkit
XtInitialize function:

static XrmOptionDescRec opTable[] = {

{"-background”, '"*background", XrmoptionSepArg, (caddr_t) NULL},
{"-bd", "*borderColor", XrmoptionSepArg, (caddr_t) NULL},
{"-bg", "*background", XrmoptionSepArg, (caddr_t) NULL},
{"-borderwidth", "*TopLevelShell.borderWidth", XrmoptionSepArg,(caddr_t) NULL},
{"-bordercolor", "*borderColor", XrmoptionSepArg, (caddr_t) NULL},
{"-bw", "*TopLevelShell.borderWidth", XrmoptionSepArg,(caddr_t) NULL},
{"-display", ".display", XrmoptionSepArg, (caddr_t) NULL},
{"-fg", "*foreground", XrmoptionSepArg, (caddr_t) NULL},
{"-£fn", "*font", XrmoptionSepArg, (caddr_t) NULL},
{"-font", "*font", XrmoptionSepArg, (caddr_t) NULL},
{"-foreground", '"*foreground", XrmoptionSepArg, (caddr_t) NULL},
{"-geometry", " .TopLevelShell.geometry", XrmoptionSepArg, (caddr_t) NULL},
{"-iconic", ".TopLevelShell.iconic", XrmoptionNoArg, (caddr_t) "on"},

{"-name", " .name", XrmoptionSepArg, (caddr_t) NULL},
{"-reverse", "*reverseVideo", XrmoptionNoArg, (caddr_t) "on"},

{"-xv", "*reverseVideo", XrmoptionNoArg, (caddr_t) "on"},

{"-synchronous",

" .synchronous",

XrmoptionNoArg, (caddr_t) "on"},

{"-title", ".TopLevelShell . title", XrmoptionSepArg, (caddr_t) NULL},
{"-xrm", NULL, XrmoptionResArg, (caddr_t) NULL},
}

Application Utility Functions 10-39

In this table, if the -background (or -bg) option is used to set background colors, the stored
resource specifier matches all resources of attribute background. If the -borderwidth
option is used, the stored resource specifier applies only to border width attributes of class
TopLevelShell (that is, outer-most windows, including pop-up windows). If the -title option
is used to set a window name, only the topmost application windows receive the resource.

When parsing the command line, any unique unambiguous abbreviation for an option
name in the table is considered a match for the option. Note that uppercase and lowercase
matter.

10.12 Using the Context Manager

The context manager provides a way of associating data with a window in your program.
Note that this is local to your program; the data is not stored in the server on a property
list. Any amount of data in any number of pieces can be associated with a window, and
each piece of data has a type associated with it. The context manager requires knowledge
of the window and type to store or retrieve data.

Essentially, the context manager can be viewed as a two-dimensional, sparse array: one
dimension is subscripted by the window and the other by a context type field. Each entry
in the array contains a pointer to the data. Xlib provides context management functions
with which you can save data values, get data values, delete entries, and create a unique
context type. The symbols used are in <X11/Xutil.h>,

To save a data value that corresponds to a window and context type, use
XSaveContext.

int XSaveContext(display, w, context, data)
Display *display ;

Window w;
XContext context;
caddr_t data;
display Specifies the connection to the X server.
w Specifies the window with which the data is associated.

context Specifies the context type to which the data belongs.
data Specifies the data to be associated with the window and type.

If an entry with the specified window and type already exists, XSaveContext overrides
it with the specified context. The XSaveContext function returns a nonzero error code
if an error has occurred and zero otherwise. Possible errors are XCNOMEM (out of
memory).

10-40 Application Utility Functions

To get the data associated with a window and type, use XFindContext.

int XFindContext(display, w, context, data_retum)
Display *display ;
Window w;
XContext context;
caddr_t *data_return;

display Specifies the connection to the X server.

w Specifies the window with which the data is associated.
context Specifies the context type to which the data belongs.
data_return Returns a pointer to the data.

Because it is a return value, the data is a pointer. The XFindContext function returns
anonzero error code if an error has occurred and zero otherwise. Possible errors are
XCNOENT (context-not-found).

To delete an entry for a given window and type, use XDeleteContext.
int XDeleteContext(display, w, context)

Display *display;

Window w;

XContext context;
display Specifies the connection to the X server.
w Specifies the window with which the data is associated.
context Specifies the context type to which the data belongs.

The XDeleteContext function deletes the entry for the given window and type from
the data structure. This function returns the same error codes that XFindContext
returns if called with the same arguments. XDeleteContext does not free the data
whose address was saved.

To create a unique context type that may be used in subsequent calls to XSaveContext
and XFindContext, use XUniqueContext.

XContext XUniqueContext()

Application Utility Functions 10-41

Xlib Functions and Protocol Requests

A

This appendix provides two tables that relate to Xlib functions and the X protocol. The
following table lists each Xlib function (in alphabetical order) and the corresponding

protocol request that it generates.

Xlib Function Protocol Request
XActivateScreenSaver ForceScreenSaver
XAddHost ChangeHosts
XAddHosts ChangeHosts
XAddToSaveSet ChangeSaveSet
XAllocColor AllocColor
XAllocColorCells AllocColorCells
XAllocColorPlanes AllocColorPlanes
XAllocNamedColor AllocNamedColor
XAllowEvents AllowEvents
XAutoRepeatOff ChangeKeyboardControl
XAutoRepeatOn ChangeKeyboardControl
XBell Bell
XChangeActivePointerGrab ~ ChangeActivePointerGrab
XChangeGC ChangeGC
XChangeKeyboardControl ChangeKeyboardControl
XChangeKeyboardMapping ~ ChangeKeyboardMapping
XChangePointerControl ChangePointerControl
XChangeProperty ChangeProperty
XChangeSaveSet ChangeSaveSet
XChangeWindowAttributes ChangeWindowAttributes
XCirculateSubwindows CirculateWindow
XCirculateSubwindowsDown CirculateWindow
XCirculateSubwindowsUp CirculateWindow
XClearArea ClearArea
XClearWindow ClearArca
XConfigureWindow ConfigureWindow
XConvertSelection ConvertSelection
XCopyArea CopyAreca

Xlib Functions and Protocol Requests A-1

XCopyColormapAndFree
XCopyGC

XCopyPlane
XCrcateBitmapFromData

XCreateColormap
XCreateFontCursor
XCreateGC
XCreateGlyphCursor
XCreatePixmap
XCreatePixmapCursor
XCreatePixmapFromData

XCreateSimpleWindow
XCreateWindow
XDefineCursor
XDeleteProperty
XDestroySubwindows
XDestroyWindow
XDisableAccessControl
XDrawArc
XDrawArcs
XDrawlmageString
XDrawlmageString16
XDrawLine
XDrawLines
XDrawPoint
XDrawPoints
XDrawRectangle
XDrawRectangles
XDrawSegments
XDrawString
XDrawString16
XDrawText
XDrawTexti6
XEnableAccessControl
XFetchBytes
XFetchName

XFillArc

CopyColormapAndFree
CopyGC
CopyPlane
CreateGC
CreatePixmap
FreeGC

PutImage
CreateColormap
CreateGlyphCursor
CreateGC
CreateGlyphCursor
CreatePixmap
CreateCursor
CreateGC
CreatePixmap
FreeGC

Putlmage
CreateWindow
CreateWindow
ChangeWindowAttributes
DeleteProperty
DestroySubwindows
DestroyWindow
SetAccessControl
PolyArc

PolyArc
ImageText8
ImageText16
PolySegment
PolyLine

PolyPoint

PolyPoint
PolyRectangle
PolyRectangle
PolySegment
PolyText8
PolyText16
PolyText8
PolyText16
SetAccessControl
GetProperty
GetProperty
PolyFillArc

A-2 Xlib Functions and Protocol Requests

XFillArcs

XFillPolygon
XFillRectangle
XFillRectangles
XForceScreenSaver
XFreeColormap
XFreeColors
XFreeCursor
XFreeFont

XFreeGC
XFreePixmap
XGetAtomName
XGetFontPath
XGetGeometry
XGetlconSizes
XGetImage
XGetInputFocus
XGetKeyboardControl
XGetKeyboardMapping
XGetModifierMapping
XGetMotionEvents
XGetModifierMapping
XGetNormalHints
XGetPointerControl
XGetPointerMapping
XGetScreenSaver
XGetSelectionOwner
XGetSizeHints
XGetWMHints
XGetWindowAttributes

XGetWindowProperty
XGetZoomHints
XGrabButton
XGrabKey
XGrabKeyboard
XGrabPointer
XGrabServer
XInitExtension
XInstallColormap
XlInternAtom
XKillClient
XListExtensions

PolyFillArc

FillPoly
PolyFillRectangle
PolyFillRectangle
ForceScreenSaver
FreeColormap
FreeColors
FreeCursor
CloseFont

FreeGC

FreePixmap
GetAtomName
GetFontPath
GetGeometry
GetProperty
GetImage
GetInputFocus
GetKeyboardControl
GetKeyboardMapping
GetModifierMapping
GetMotionEvents
GetModifierMapping
GetProperty
GetPointerControl
GetPointerMapping
GetScreenSaver
GetSelectionOwner
GetProperty
GetProperty
GetWindowAttributes
GetGeometry
GetProperty
GetProperty
GrabButton
GrabKey
GrabKeyboard
GrabPointer
GrabServer
QueryExtension
InstallColormap
InternAtom
KillClient
ListExtensions

Xlib Functions and Protocol Requests A-3

XListFonts
XListFontsWithInfo
XListHosts

XListInstalledColormaps

XListProperties
XLoadFont
XLoadQueryFont

XLookupColor
XLowerWindow
XMapRaised

XMapSubwindows
XMapWindow
XMoveResizeWindow
XMoveWindow
XNoOp
XOpenDisplay
XParseColor
XPutImage
XQueryBestCursor
XQueryBestSize
XQueryBestStipple
XQueryBestTile
XQueryColor
XQueryColors
XQueryExtension
XQueryFont
XQueryKeymap
XQueryPointer
XQueryTextExtents
XQueryTextExtents16
XQueryTree
XRaiseWindow
XReadBitmapFile

XRecolorCursor
XRemoveFromSaveSet
XRemoveHost
XRemoveHosts
XReparentWindow

ListFonts
ListFontsWithInfo
ListHosts
ListInstalledColormaps
ListProperties
OpenFont
OpenFont
QueryFont
LookupColor
ConfigureWindow
ConfigureWindow
MapWindow
MapSubwindows
MapWindow
ConfigureWindow
ConfigureWindow
NoOperation
CreateGC
LookupColor
PutImage
QueryBestSize
QueryBestSize
QueryBestSize
QueryBestSize
QueryColors
QueryColors
QueryExtension
QueryFont
QueryKeymap
QueryPointer
QueryTextExtents
QueryTextExtents
QueryTree
ConfigureWindow
CreateGC
CreatePixmap
FreeGC

PutImage
RecolorCursor
ChangeSaveSet
ChangeHosts
ChangeHosts
ReparentWindow

A-4 Xlib Functions and Protocol Requests

XResetScreenSaver
XResizeWindow
XRestackWindows
XRotateBuffers
XRotateWindowProperties
XSelectInput
XSendEvent
XSetAccessControl
XSetArcMode
XSetBackground
XSetClipMask
XSetClipOrigin
XSetClipRectangles
XSetCloseDownMode
XSetCommand
XSetDashes
XSetFillRule
XSetFillStyle
XSetFont
XSetFontPath
XSetForeground
XSetFunction
XSetGraphicsExposures
XSetIconName
XSetIconSizes
XSetInputFocus
XSetLineAttributes
XSetModifierMapping
XSetNormalHints
XSetPlanecMask
XSetPointerMapping
XSetScreenSaver
XSetSelectionOwner
XSetSizeHints
XSetStandardProperties
XSetState

XSetStipple
XSetSubwindowMode
XSetTile
XSetTSOrigin
XSetWMHints
XSetWindowBackground

ForceScreenSaver
ConfigureWindow
ConfigureWindow
RotateProperties
RotateProperties
ChangeWindowAttributes
SendEvent
SetAccessControl
ChangeGC
ChangeGC
ChangeGC
ChangeGC
SetClipRectangles
SetCloseDownMode
ChangeProperty
SetDashes
ChangeGC
ChangeGC
ChangeGC
SetFontPath
ChangeGC
ChangeGC
ChangeGC
ChangeProperty
ChangeProperty
SetInputFocus
ChangeGC
SetModifierMapping
ChangeProperty
ChangeGC
SetPointerMapping
SetScreenSaver
SetSelectionOwner
ChangeProperty
ChangeProperty
ChangeGC
ChangeGC
ChangeGC
ChangeGC
ChangeGC
ChangeProperty
ChangeWindowAttributes

XSetWindowBackgroundPixmapChangeWindowAttributes

Xlib Functions and Protocol Requests A-5

XSetWindowBorder
XSetWindowBorderPixmap
XSetWindowBorderWidth
XSetWindowColormap
XSetZoomHints
XStoreBuffer
XStoreBytes
XStoreColor
XStoreColors
XStoreName
XStoreNamedColor
XSync
XTranslateCoordinates
XUndefineCursor
XUngrabButton
XUngrabKey
XUngrabKeyboard
XUngrabPointer
XUngrabServer
XUninstallColormap
XUnloadFont
XUnmapSubwindows
XUnmapWindow
XWarpPointer

ChangeWindowAttributes
ChangeWindowAttributes
ConfigureWindow
ChangeWindowAttributes
ChangeProperty
ChangeProperty
ChangeProperty
StoreColors

StoreColors
ChangeProperty
StoreNamedColor
GetInputFocus
TranslateCoordinates
ChangeWindowAttributes
UngrabButton
UngrabKey
UngrabKeyboard
UngrabPointer
UngrabServer
UninstallColormap
CloseFont
UnmapSubwindows
UnmapWindow
WarpPointer

A-6 Xlib Functions and Protocol Requests

The following table lists each X protocol request (in alphabetical order) and the Xlib

functions that reference it.

Protocol Request

Xlib Function

AllocColor
AllocColorCells
AllocCol